To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / CPDs / @gaussian_CPD / Old / maximize_params.m @ 8:b5b38998ef3b
History | View | Annotate | Download (4.76 KB)
| 1 |
function CPD = maximize_params(CPD, temp) |
|---|---|
| 2 |
% MAXIMIZE_PARAMS Set the params of a CPD to their ML values (Gaussian) |
| 3 |
% CPD = maximize_params(CPD, temperature) |
| 4 |
% |
| 5 |
% Temperature is currently only used for entropic prior on Sigma |
| 6 |
|
| 7 |
% For details, see "Fitting a Conditional Gaussian Distribution", Kevin Murphy, tech. report, |
| 8 |
% 1998, available at www.cs.berkeley.edu/~murphyk/papers.html |
| 9 |
% Refering to table 2, we use equations 1/2 to estimate the covariance matrix in the untied/tied case, |
| 10 |
% and equation 9 to estimate the weight matrix and mean. |
| 11 |
% We do not implement spherical Gaussians - the code is already pretty complicated! |
| 12 |
|
| 13 |
if ~adjustable_CPD(CPD), return; end |
| 14 |
|
| 15 |
%assert(approxeq(CPD.nsamples, sum(CPD.Wsum))); |
| 16 |
assert(~any(isnan(CPD.WXXsum))) |
| 17 |
assert(~any(isnan(CPD.WXYsum))) |
| 18 |
assert(~any(isnan(CPD.WYYsum))) |
| 19 |
|
| 20 |
[self_size cpsize dpsize] = size(CPD.weights); |
| 21 |
|
| 22 |
% Append 1s to the parents, and derive the corresponding cross products. |
| 23 |
% This is used when estimate the means and weights simultaneosuly, |
| 24 |
% and when estimatting Sigma. |
| 25 |
% Let x2 = [x 1]' |
| 26 |
XY = zeros(cpsize+1, self_size, dpsize); % XY(:,:,i) = sum_l w(l,i) x2(l) y(l)' |
| 27 |
XX = zeros(cpsize+1, cpsize+1, dpsize); % XX(:,:,i) = sum_l w(l,i) x2(l) x2(l)' |
| 28 |
YY = zeros(self_size, self_size, dpsize); % YY(:,:,i) = sum_l w(l,i) y(l) y(l)' |
| 29 |
for i=1:dpsize |
| 30 |
XY(:,:,i) = [CPD.WXYsum(:,:,i) % X*Y |
| 31 |
CPD.WYsum(:,i)']; % 1*Y |
| 32 |
% [x * [x' 1] = [xx' x |
| 33 |
% 1] x' 1] |
| 34 |
XX(:,:,i) = [CPD.WXXsum(:,:,i) CPD.WXsum(:,i); |
| 35 |
CPD.WXsum(:,i)' CPD.Wsum(i)]; |
| 36 |
YY(:,:,i) = CPD.WYYsum(:,:,i); |
| 37 |
end |
| 38 |
|
| 39 |
w = CPD.Wsum(:); |
| 40 |
% Set any zeros to one before dividing |
| 41 |
% This is valid because w(i)=0 => WYsum(:,i)=0, etc |
| 42 |
w = w + (w==0); |
| 43 |
|
| 44 |
if CPD.clamped_mean |
| 45 |
% Estimating B2 and then setting the last column (the mean) to the clamped mean is *not* equivalent |
| 46 |
% to estimating B and then adding the clamped_mean to the last column. |
| 47 |
if ~CPD.clamped_weights |
| 48 |
B = zeros(self_size, cpsize, dpsize); |
| 49 |
for i=1:dpsize |
| 50 |
if det(CPD.WXXsum(:,:,i))==0 |
| 51 |
B(:,:,i) = 0; |
| 52 |
else |
| 53 |
% Eqn 9 in table 2 of TR |
| 54 |
%B(:,:,i) = CPD.WXYsum(:,:,i)' * inv(CPD.WXXsum(:,:,i)); |
| 55 |
B(:,:,i) = (CPD.WXXsum(:,:,i) \ CPD.WXYsum(:,:,i))'; |
| 56 |
end |
| 57 |
end |
| 58 |
%CPD.weights = reshape(B, [self_size cpsize dpsize]); |
| 59 |
CPD.weights = B; |
| 60 |
end |
| 61 |
elseif CPD.clamped_weights % KPM 1/25/02 |
| 62 |
if ~CPD.clamped_mean % ML estimate is just sample mean of the residuals |
| 63 |
for i=1:dpsize |
| 64 |
CPD.mean(:,i) = (CPD.WYsum(:,i) - CPD.weights(:,:,i) * CPD.WXsum(:,i)) / w(i); |
| 65 |
end |
| 66 |
end |
| 67 |
else % nothing is clamped, so estimate mean and weights simultaneously |
| 68 |
B2 = zeros(self_size, cpsize+1, dpsize); |
| 69 |
for i=1:dpsize |
| 70 |
if det(XX(:,:,i))==0 % fix by U. Sondhauss 6/27/99 |
| 71 |
B2(:,:,i)=0; |
| 72 |
else |
| 73 |
% Eqn 9 in table 2 of TR |
| 74 |
%B2(:,:,i) = XY(:,:,i)' * inv(XX(:,:,i)); |
| 75 |
B2(:,:,i) = (XX(:,:,i) \ XY(:,:,i))'; |
| 76 |
end |
| 77 |
CPD.mean(:,i) = B2(:,cpsize+1,i); |
| 78 |
CPD.weights(:,:,i) = B2(:,1:cpsize,i); |
| 79 |
end |
| 80 |
end |
| 81 |
|
| 82 |
% Let B2 = [W mu] |
| 83 |
if cpsize>0 |
| 84 |
B2(:,1:cpsize,:) = reshape(CPD.weights, [self_size cpsize dpsize]); |
| 85 |
end |
| 86 |
B2(:,cpsize+1,:) = reshape(CPD.mean, [self_size dpsize]); |
| 87 |
|
| 88 |
% To avoid singular covariance matrices, |
| 89 |
% we use the regularization method suggested in "A Quasi-Bayesian approach to estimating |
| 90 |
% parameters for mixtures of normal distributions", Hamilton 91. |
| 91 |
% If the ML estimate is Sigma = M/N, the MAP estimate is (M+gamma*I) / (N+gamma), |
| 92 |
% where gamma >=0 is a smoothing parameter (equivalent sample size of I prior) |
| 93 |
|
| 94 |
gamma = CPD.cov_prior_weight; |
| 95 |
|
| 96 |
if ~CPD.clamped_cov |
| 97 |
if CPD.cov_prior_entropic % eqn 12 of Brand AI/Stat 99 |
| 98 |
Z = 1-temp; |
| 99 |
% When temp > 1, Z is negative, so we are dividing by a smaller |
| 100 |
% number, ie. increasing the variance. |
| 101 |
else |
| 102 |
Z = 0; |
| 103 |
end |
| 104 |
if CPD.tied_cov |
| 105 |
S = zeros(self_size, self_size); |
| 106 |
% Eqn 2 from table 2 in TR |
| 107 |
for i=1:dpsize |
| 108 |
S = S + (YY(:,:,i) - B2(:,:,i)*XY(:,:,i)); |
| 109 |
end |
| 110 |
%denom = max(1, CPD.nsamples + gamma + Z); |
| 111 |
denom = CPD.nsamples + gamma + Z; |
| 112 |
S = (S + gamma*eye(self_size)) / denom; |
| 113 |
if strcmp(CPD.cov_type, 'diag') |
| 114 |
S = diag(diag(S)); |
| 115 |
end |
| 116 |
CPD.cov = repmat(S, [1 1 dpsize]); |
| 117 |
else |
| 118 |
for i=1:dpsize |
| 119 |
% Eqn 1 from table 2 in TR |
| 120 |
S = YY(:,:,i) - B2(:,:,i)*XY(:,:,i); |
| 121 |
%denom = max(1, w(i) + gamma + Z); % gives wrong answers on mhmm1 |
| 122 |
denom = w(i) + gamma + Z; |
| 123 |
S = (S + gamma*eye(self_size)) / denom; |
| 124 |
CPD.cov(:,:,i) = S; |
| 125 |
end |
| 126 |
if strcmp(CPD.cov_type, 'diag') |
| 127 |
for i=1:dpsize |
| 128 |
CPD.cov(:,:,i) = diag(diag(CPD.cov(:,:,i))); |
| 129 |
end |
| 130 |
end |
| 131 |
end |
| 132 |
end |
| 133 |
|
| 134 |
|
| 135 |
check_covars = 0; |
| 136 |
min_covar = 1e-5; |
| 137 |
if check_covars % prevent collapsing to a point |
| 138 |
for i=1:dpsize |
| 139 |
if min(svd(CPD.cov(:,:,i))) < min_covar |
| 140 |
disp(['resetting singular covariance for node ' num2str(CPD.self)]); |
| 141 |
CPD.cov(:,:,i) = CPD.init_cov(:,:,i); |
| 142 |
end |
| 143 |
end |
| 144 |
end |
| 145 |
|
| 146 |
|
| 147 |
|