To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / CPDs / @gaussian_CPD / CPD_to_lambda_msg.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.91 KB)

1
function lam_msg = CPD_to_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence)
2
% CPD_TO_LAMBDA_MSG Compute lambda message (gaussian)
3
% lam_msg = compute_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence)
4
% Pearl p183 eq 4.52
5

    
6
switch msg_type
7
 case 'd',
8
  error('gaussian_CPD can''t create discrete msgs')
9
 case 'g',
10
  cps = ps(CPD.cps);
11
  cpsizes = CPD.sizes(CPD.cps);
12
  self_size = CPD.sizes(end);
13
  i = find_equiv_posns(p, cps); % p is n's i'th cts parent
14
  psz = cpsizes(i);
15
  if all(msg{n}.lambda.precision == 0) % no info to send on
16
    lam_msg.precision = zeros(psz, psz);
17
    lam_msg.info_state = zeros(psz, 1);
18
    return;
19
  end
20
  [m, Q, W] = gaussian_CPD_params_given_dps(CPD, [ps n], evidence);
21
  Bmu = m;
22
  BSigma = Q;
23
  for k=1:length(cps) % only get pi msgs from cts parents
24
    pk = cps(k);
25
    if pk ~= p
26
      %bk = block(k, cpsizes);
27
      bk = CPD.cps_block_ndx{k};
28
      Bk = W(:, bk);
29
      m = msg{n}.pi_from_parent{k}; 
30
      BSigma = BSigma + Bk * m.Sigma * Bk';
31
      Bmu = Bmu + Bk * m.mu;
32
    end
33
  end
34
  % BSigma = Q + sum_{k \neq i} B_k Sigma_k B_k'
35
  %bi = block(i, cpsizes);
36
  bi = CPD.cps_block_ndx{i};
37
  Bi = W(:,bi);
38
  P = msg{n}.lambda.precision;
39
  if (rcond(P) > 1e-3) | isinf(P)
40
    if isinf(P) % Y is observed
41
      Sigma_lambda = zeros(self_size, self_size); % infinite precision => 0 variance
42
      mu_lambda = msg{n}.lambda.mu; % observed_value;
43
    else
44
      Sigma_lambda = inv(P);
45
      mu_lambda = Sigma_lambda * msg{n}.lambda.info_state;
46
    end
47
    C = inv(Sigma_lambda + BSigma);
48
    lam_msg.precision = Bi' * C * Bi;
49
    lam_msg.info_state = Bi' * C * (mu_lambda - Bmu);
50
  else
51
    % method that uses matrix inversion lemma to avoid inverting P
52
    A = inv(P + inv(BSigma));
53
    C = P - P*A*P;
54
    lam_msg.precision = Bi' * C * Bi;
55
    D = eye(self_size) - P*A;
56
    z = msg{n}.lambda.info_state;
57
    lam_msg.info_state = Bi' * (D*z - D*P*Bmu);
58
  end
59
end