To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / CPDs / @gaussian_CPD / CPD_to_lambda_msg.m @ 8:b5b38998ef3b
History | View | Annotate | Download (1.91 KB)
| 1 |
function lam_msg = CPD_to_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence) |
|---|---|
| 2 |
% CPD_TO_LAMBDA_MSG Compute lambda message (gaussian) |
| 3 |
% lam_msg = compute_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence) |
| 4 |
% Pearl p183 eq 4.52 |
| 5 |
|
| 6 |
switch msg_type |
| 7 |
case 'd', |
| 8 |
error('gaussian_CPD can''t create discrete msgs')
|
| 9 |
case 'g', |
| 10 |
cps = ps(CPD.cps); |
| 11 |
cpsizes = CPD.sizes(CPD.cps); |
| 12 |
self_size = CPD.sizes(end); |
| 13 |
i = find_equiv_posns(p, cps); % p is n's i'th cts parent |
| 14 |
psz = cpsizes(i); |
| 15 |
if all(msg{n}.lambda.precision == 0) % no info to send on
|
| 16 |
lam_msg.precision = zeros(psz, psz); |
| 17 |
lam_msg.info_state = zeros(psz, 1); |
| 18 |
return; |
| 19 |
end |
| 20 |
[m, Q, W] = gaussian_CPD_params_given_dps(CPD, [ps n], evidence); |
| 21 |
Bmu = m; |
| 22 |
BSigma = Q; |
| 23 |
for k=1:length(cps) % only get pi msgs from cts parents |
| 24 |
pk = cps(k); |
| 25 |
if pk ~= p |
| 26 |
%bk = block(k, cpsizes); |
| 27 |
bk = CPD.cps_block_ndx{k};
|
| 28 |
Bk = W(:, bk); |
| 29 |
m = msg{n}.pi_from_parent{k};
|
| 30 |
BSigma = BSigma + Bk * m.Sigma * Bk'; |
| 31 |
Bmu = Bmu + Bk * m.mu; |
| 32 |
end |
| 33 |
end |
| 34 |
% BSigma = Q + sum_{k \neq i} B_k Sigma_k B_k'
|
| 35 |
%bi = block(i, cpsizes); |
| 36 |
bi = CPD.cps_block_ndx{i};
|
| 37 |
Bi = W(:,bi); |
| 38 |
P = msg{n}.lambda.precision;
|
| 39 |
if (rcond(P) > 1e-3) | isinf(P) |
| 40 |
if isinf(P) % Y is observed |
| 41 |
Sigma_lambda = zeros(self_size, self_size); % infinite precision => 0 variance |
| 42 |
mu_lambda = msg{n}.lambda.mu; % observed_value;
|
| 43 |
else |
| 44 |
Sigma_lambda = inv(P); |
| 45 |
mu_lambda = Sigma_lambda * msg{n}.lambda.info_state;
|
| 46 |
end |
| 47 |
C = inv(Sigma_lambda + BSigma); |
| 48 |
lam_msg.precision = Bi' * C * Bi; |
| 49 |
lam_msg.info_state = Bi' * C * (mu_lambda - Bmu); |
| 50 |
else |
| 51 |
% method that uses matrix inversion lemma to avoid inverting P |
| 52 |
A = inv(P + inv(BSigma)); |
| 53 |
C = P - P*A*P; |
| 54 |
lam_msg.precision = Bi' * C * Bi; |
| 55 |
D = eye(self_size) - P*A; |
| 56 |
z = msg{n}.lambda.info_state;
|
| 57 |
lam_msg.info_state = Bi' * (D*z - D*P*Bmu); |
| 58 |
end |
| 59 |
end |