To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / CPDs / @deterministic_CPD / deterministic_CPD.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.75 KB)

1
function CPD = deterministic_CPD(bnet, self, fname, pfail)
2
% DETERMINISTIC_CPD Make a tabular CPD representing a (noisy) deterministic function
3
%
4
% CPD = deterministic_CPD(bnet, self, fname)
5
% This calls feval(fname, pvals) for each possible vector of parent values.
6
% e.g., suppose there are 2 ternary parents, then pvals = 
7
%  [1 1], [2 1], [3 1],   [1 2], [2 2], [3 2],   [1 3], [2 3], [3 3]
8
% If v = feval(fname, pvals(i)), then
9
%  CPD(x | parents=pvals(i)) = 1 if x==v, and = 0 if x<>v
10
% e.g., suppose X4 = X2 AND (NOT X3). Then
11
%    bnet.CPD{4} = deterministic_CPD(bnet, 4, inline('((x(1)-1) & ~(x(2)-1)) + 1'));  
12
% Note that x(1) refers pvals(1) = X2, and x(2) refers to pvals(2)=X3
13
% See also boolean_CPD.
14
%
15
% CPD = deterministic_CPD(bnet, self, fname, pfail)
16
% will put probability mass 1-pfail on f(parents), and distribute pfail over the other values.
17
% This is useful for simulating noisy deterministic functions.
18
% If pfail is omitted, it is set to 0.
19
%
20

    
21

    
22
if nargin==0
23
  % This occurs if we are trying to load an object from a file.
24
  CPD = tabular_CPD(bnet, self);
25
  return;
26
elseif isa(bnet, 'deterministic_CPD')
27
  % This might occur if we are copying an object.
28
  CPD = bnet;
29
  return;
30
end
31

    
32
if nargin < 4, pfail = 0; end
33

    
34
ps = parents(bnet.dag, self);
35
ns = bnet.node_sizes;
36
psizes = ns(ps);
37
self_size = ns(self);
38

    
39
psucc = 1-pfail;
40

    
41
CPT = zeros(prod(psizes), self_size);
42
pvals = zeros(1, length(ps));
43
for i=1:prod(psizes)
44
  pvals = ind2subv(psizes, i);
45
  x = feval(fname, pvals);
46
  %fprintf('%d ', [pvals x]); fprintf('\n');
47
  if psucc == 1
48
    CPT(i, x) = 1;
49
  else
50
    CPT(i, x) = psucc;
51
    rest = mysetdiff(1:self_size, x);
52
    CPT(i, rest) = pfail/length(rest);
53
  end
54
end
55
CPT = reshape(CPT, [psizes self_size]);  
56

    
57
CPD = tabular_CPD(bnet, self, 'CPT',CPT, 'clamped',1);
58

    
59