To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _beattracker / chromaframe.m
History | View | Annotate | Download (2.78 KB)
| 1 |
function [spec] = chromaframe(x,spark); |
|---|---|
| 2 |
% function [spec,mfcc,cq,hpcp,chroma] = chromaframe(x,spark); |
| 3 |
|
| 4 |
% function to return spectrogram, constq, hpcp and chromagram |
| 5 |
% for one single frame of arbitrary length |
| 6 |
% with the possible inclusion of an adaptive thresholding stage. |
| 7 |
|
| 8 |
fmin = 110; |
| 9 |
fmax = 880; |
| 10 |
|
| 11 |
if nargin<2 |
| 12 |
spark = sparsekernel(fmin, fmax, 36, 44100/16, 0.054); |
| 13 |
spark(1025:end,:) = []; |
| 14 |
end |
| 15 |
|
| 16 |
|
| 17 |
% make x a row vector |
| 18 |
x = x(:)'; |
| 19 |
x2 = x; |
| 20 |
fs = 44100; |
| 21 |
% downsample by a factor of 16. |
| 22 |
%x = x(1:16:end); |
| 23 |
% x = resample(x,11025,44100); |
| 24 |
x = resample(x,2756,11024); |
| 25 |
% x = resample(x,11024,44096); |
| 26 |
|
| 27 |
len = length(x); |
| 28 |
|
| 29 |
|
| 30 |
% make windowing function |
| 31 |
w = hanningz(len); |
| 32 |
w = w(:)'; |
| 33 |
% w = ones(1,length(x)); % or no windowing... shouldn't be better.. |
| 34 |
% take fft |
| 35 |
spec = abs(fft(w.*x,2048)); |
| 36 |
spec = adapt_thresh(spec(1:1024),16,15); |
| 37 |
|
| 38 |
% %spec = spec(1:1024); |
| 39 |
% |
| 40 |
% %cq = adapt_thresh(abs(spec*spark)); |
| 41 |
% cq = abs(spec*spark); |
| 42 |
% hpcp = zeros(1,36); |
| 43 |
% |
| 44 |
% for k=1:36 |
| 45 |
% hpcp(k) = sum(abs(cq(k:36:end))); |
| 46 |
% end |
| 47 |
% |
| 48 |
% %hpcp = adapt_thresh(hpcp,2,3); |
| 49 |
% |
| 50 |
% % for k=1:round(abs(log2(fmax/fmin))), |
| 51 |
% % l(k) = sum(hpcp(k:3:end)); |
| 52 |
% % end |
| 53 |
% % |
| 54 |
% % [val,ind] = max(l); |
| 55 |
% % |
| 56 |
% % chroma = hpcp(ind:3:end); |
| 57 |
% % |
| 58 |
% for i=1:12 % sum bins.. |
| 59 |
% chroma(i) = sum(hpcp((i-1)*3+1:3*i)); |
| 60 |
% end |
| 61 |
|
| 62 |
|
| 63 |
%chroma = adapt_thresh(chroma,3,2); |
| 64 |
|
| 65 |
% % modulated complex lapped transform |
| 66 |
% % spec = abs(fmclt(x',1024)'); |
| 67 |
% % spec = adapt_thresh(spec); |
| 68 |
% |
| 69 |
% % % try to treat everything as gaussians |
| 70 |
% % n = 1:length(cq); |
| 71 |
% % mu = sum(n.*cq)/sum(cq); |
| 72 |
% % sigma = sqrt(sum((n-mu).^2)/sum(cq)); |
| 73 |
% % cq = exp(-0.5 * ((n - mu)./sigma).^2) ./ (sqrt(2*pi) .* sigma); |
| 74 |
% % |
| 75 |
% % n = 1:length(hpcp); |
| 76 |
% % mu = sum(n.*hpcp)/sum(hpcp); |
| 77 |
% % sigma = sqrt(sum((n-mu).^2)/sum(hpcp)); |
| 78 |
% % hpcp = exp(-0.5 * ((n - mu)./sigma).^2) ./ (sqrt(2*pi) .* sigma); |
| 79 |
% % |
| 80 |
% % n = 1:length(chroma); |
| 81 |
% % mu = sum(n.*chroma)/sum(chroma); |
| 82 |
% % sigma = sqrt(sum((n-mu).^2)/sum(chroma)); |
| 83 |
% % chroma = exp(-0.5 * ((n - mu)./sigma).^2) ./ (sqrt(2*pi) .* sigma); |
| 84 |
% % |
| 85 |
% % n = 1:length(spec); |
| 86 |
% % mu = sum(n.*spec)/sum(spec); |
| 87 |
% % sigma = sqrt(sum((n-mu).^2)/sum(spec)); |
| 88 |
% % spec = exp(-0.5 * ((n - mu)./sigma).^2) ./ (sqrt(2*pi) .* sigma); |
| 89 |
% |
| 90 |
% %x2 = resample(x2,8000,44100); |
| 91 |
% %spec = mfcc(x',8000,100); |
| 92 |
% %spec = abs(sum(spec'))'; |
| 93 |
% |
| 94 |
% x2 = x2(1:4:end); |
| 95 |
% spec2 = abs(fft(hanning(length(x2))'.*x2,2048)); |
| 96 |
% spec2 = spec2(1:1024); |
| 97 |
% mlmx = fft2melmx(1024,round(44100/16),40); |
| 98 |
% [size(mlmx) size(spec2)]; |
| 99 |
% mfcc = 20*log10(1+spec*mlmx'); |
| 100 |
% spec = 20*log10(1+spec*mlmx'); |
| 101 |
|
| 102 |
% spec = adapt_thresh(mfcc,2,3); |
| 103 |
% x2 = resample(x2,1378,44096); |
| 104 |
% len = length(x2); |
| 105 |
% w = hanningz(len); |
| 106 |
% w = w(:)'; |
| 107 |
% % take fft |
| 108 |
% spec = abs(fft(w.*x2,1024)); |
| 109 |
% spec = adapt_thresh(spec(1:512),16,15); |
| 110 |
spec = spec(1:512); |
| 111 |
% mlmx = fft2melmx(512,round(44100),40); |
| 112 |
% spec = spec*mlmx'; |