Revision 38:c2204b18f4a2 userProgramsMikaelDeroche
| userProgramsMikaelDeroche/runMAP1_14.m | ||
|---|---|---|
| 1 |
function runMAP1_14 |
|
| 2 |
% runMAP1_14 is a general purpose test routine that can be adjusted to |
|
| 3 |
% test a number of different applications of MAP1_14 |
|
| 4 |
% |
|
| 5 |
% A range of options are supplied in the early part of the program |
|
| 6 |
% |
|
| 7 |
% #1 |
|
| 8 |
% Identify the file (in 'MAPparamsName') containing the model parameters |
|
| 9 |
% |
|
| 10 |
% #2 |
|
| 11 |
% Identify the kind of model required (in 'AN_spikesOrProbability'). |
|
| 12 |
% A full brainstem model ('spikes') can be computed or a shorter model
|
|
| 13 |
% ('probability') that computes only so far as the auditory nerve
|
|
| 14 |
% |
|
| 15 |
% #3 |
|
| 16 |
% Choose between a tone signal or file input (in 'signalType') |
|
| 17 |
% |
|
| 18 |
% #4 |
|
| 19 |
% Set the signal rms level (in leveldBSPL) |
|
| 20 |
% |
|
| 21 |
% #5 |
|
| 22 |
% Identify the channels in terms of their best frequencies in the vector |
|
| 23 |
% BFlist. |
|
| 24 |
% |
|
| 25 |
% Last minute changes to the parameters can be made using |
|
| 26 |
% the cell array of strings 'paramChanges'. |
|
| 27 |
% Each string must have the same format as the corresponding line in the |
|
| 28 |
% file identified in 'MAPparamsName' |
|
| 29 |
|
|
| 30 |
dbstop if error |
|
| 31 |
restorePath=path; |
|
| 32 |
addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore'], ... |
|
| 33 |
['..' filesep 'utilities']) |
|
| 34 |
|
|
| 35 |
%% #1 parameter file name |
|
| 36 |
MAPparamsName='Normal'; |
|
| 37 |
|
|
| 38 |
|
|
| 39 |
%% #2 probability (fast) or spikes (slow) representation: select one |
|
| 40 |
% AN_spikesOrProbability='spikes'; |
|
| 41 |
% or |
|
| 42 |
AN_spikesOrProbability='probability'; |
|
| 43 |
|
|
| 44 |
|
|
| 45 |
%% #3 A. pure tone, B. harmonic sequence or C. speech file input |
|
| 46 |
% comment out unwanted code |
|
| 47 |
|
|
| 48 |
% A. tone |
|
| 49 |
sampleRate= 441000; |
|
| 50 |
signalType= 'tones'; |
|
| 51 |
toneFrequency= 5000; % or a pure tone (Hz) |
|
| 52 |
duration=0.500; % seconds |
|
| 53 |
beginSilence=0.050; |
|
| 54 |
endSilence=0.050; |
|
| 55 |
rampDuration=.005; % raised cosine ramp (seconds) |
|
| 56 |
|
|
| 57 |
% or |
|
| 58 |
% B. harmonic tone (Hz) - useful to demonstrate a broadband sound |
|
| 59 |
% sampleRate= 44100; |
|
| 60 |
% signalType= 'tones'; |
|
| 61 |
% toneFrequency= F0:F0:8000; |
|
| 62 |
% duration=0.500; % seconds |
|
| 63 |
% beginSilence=0.250; |
|
| 64 |
% endSilence=0.250; |
|
| 65 |
% F0=210; |
|
| 66 |
% rampDuration=.005; % raised cosine ramp (seconds) |
|
| 67 |
|
|
| 68 |
% or |
|
| 69 |
% C. signalType= 'file'; |
|
| 70 |
% fileName='twister_44kHz'; |
|
| 71 |
|
|
| 72 |
%% #4 rms level |
|
| 73 |
% signal details |
|
| 74 |
leveldBSPL= 70; % dB SPL (80 for Lieberman) |
|
| 75 |
|
|
| 76 |
%% #5 number of channels in the model |
|
| 77 |
% 21-channel model (log spacing) |
|
| 78 |
numChannels=21; |
|
| 79 |
lowestBF=250; highestBF= 6000; |
|
| 80 |
BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels)); |
|
| 81 |
|
|
| 82 |
% or specify your own channel BFs |
|
| 83 |
% numChannels=1; |
|
| 84 |
% BFlist=toneFrequency; |
|
| 85 |
|
|
| 86 |
|
|
| 87 |
%% #6 change model parameters |
|
| 88 |
|
|
| 89 |
paramChanges={};
|
|
| 90 |
|
|
| 91 |
% Parameter changes can be used to change one or more model parameters |
|
| 92 |
% *after* the MAPparams file has been read |
|
| 93 |
% This example declares only one fiber type with a calcium clearance time |
|
| 94 |
% constant of 80e-6 s (HSR fiber) when the probability option is selected. |
|
| 95 |
% paramChanges={'AN_IHCsynapseParams.ANspeedUpFactor=5;', ...
|
|
| 96 |
% 'IHCpreSynapseParams.tauCa=86e-6; '}; |
|
| 97 |
|
|
| 98 |
|
|
| 99 |
|
|
| 100 |
%% delare 'showMap' options to control graphical output |
|
| 101 |
% see UTIL_showMAP for more options |
|
| 102 |
showMapOptions.printModelParameters=1; % prints all parameters |
|
| 103 |
showMapOptions.showModelOutput=1; % plot of all stages |
|
| 104 |
showMapOptions.printFiringRates=1; % prints stage activity levels |
|
| 105 |
showMapOptions.showEfferent=1; % tracks of AR and MOC |
|
| 106 |
showMapOptions.surfProbability=1; % 2D plot of HSR response |
|
| 107 |
|
|
| 108 |
if strcmp(signalType, 'file') |
|
| 109 |
% needed for labeling plot |
|
| 110 |
showMapOptions.fileName=fileName; |
|
| 111 |
else |
|
| 112 |
showMapOptions.fileName=[]; |
|
| 113 |
end |
|
| 114 |
|
|
| 115 |
%% Generate stimuli |
|
| 116 |
switch signalType |
|
| 117 |
case 'tones' |
|
| 118 |
% Create pure tone stimulus |
|
| 119 |
dt=1/sampleRate; % seconds |
|
| 120 |
time=dt: dt: duration; |
|
| 121 |
inputSignal=sum(sin(2*pi*toneFrequency'*time), 1); |
|
| 122 |
amp=10^(leveldBSPL/20)*28e-6; % converts to Pascals (peak) |
|
| 123 |
inputSignal=amp*inputSignal; |
|
| 124 |
% apply ramps |
|
| 125 |
% catch rampTime error |
|
| 126 |
if rampDuration>0.5*duration, rampDuration=duration/2; end |
|
| 127 |
rampTime=dt:dt:rampDuration; |
|
| 128 |
ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ... |
|
| 129 |
ones(1,length(time)-length(rampTime))]; |
|
| 130 |
inputSignal=inputSignal.*ramp; |
|
| 131 |
ramp=fliplr(ramp); |
|
| 132 |
inputSignal=inputSignal.*ramp; |
|
| 133 |
% add silence |
|
| 134 |
intialSilence= zeros(1,round(beginSilence/dt)); |
|
| 135 |
finalSilence= zeros(1,round(endSilence/dt)); |
|
| 136 |
inputSignal= [intialSilence inputSignal finalSilence]; |
|
| 137 |
|
|
| 138 |
case 'file' |
|
| 139 |
%% file input simple or mixed |
|
| 140 |
[inputSignal sampleRate]=wavread(fileName); |
|
| 141 |
dt=1/sampleRate; |
|
| 142 |
inputSignal=inputSignal(:,1); |
|
| 143 |
targetRMS=20e-6*10^(leveldBSPL/20); |
|
| 144 |
rms=(mean(inputSignal.^2))^0.5; |
|
| 145 |
amp=targetRMS/rms; |
|
| 146 |
inputSignal=inputSignal*amp; |
|
| 147 |
intialSilence= zeros(1,round(0.1/dt)); |
|
| 148 |
finalSilence= zeros(1,round(0.2/dt)); |
|
| 149 |
inputSignal= [intialSilence inputSignal' finalSilence]; |
|
| 150 |
end |
|
| 151 |
|
|
| 152 |
|
|
| 153 |
%% run the model |
|
| 154 |
tic |
|
| 155 |
fprintf('\n')
|
|
| 156 |
disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)]) |
|
| 157 |
disp([num2str(numChannels) ' channel model: ' AN_spikesOrProbability]) |
|
| 158 |
disp('Computing ...')
|
|
| 159 |
|
|
| 160 |
MAP1_14(inputSignal, sampleRate, BFlist, ... |
|
| 161 |
MAPparamsName, AN_spikesOrProbability, paramChanges); |
|
| 162 |
|
|
| 163 |
|
|
| 164 |
%% the model run is now complete. Now display the results |
|
| 165 |
UTIL_showMAP(showMapOptions, paramChanges) |
|
| 166 |
|
|
| 167 |
if strcmp(signalType,'tones') |
|
| 168 |
disp(['duration=' num2str(duration)]) |
|
| 169 |
disp(['level=' num2str(leveldBSPL)]) |
|
| 170 |
disp(['toneFrequency=' num2str(toneFrequency)]) |
|
| 171 |
global DRNLParams |
|
| 172 |
disp(['attenuation factor =' ... |
|
| 173 |
num2str(DRNLParams.rateToAttenuationFactor, '%5.3f') ]) |
|
| 174 |
disp(['attenuation factor (probability)=' ... |
|
| 175 |
num2str(DRNLParams.rateToAttenuationFactorProb, '%5.3f') ]) |
|
| 176 |
disp(AN_spikesOrProbability) |
|
| 177 |
end |
|
| 178 |
disp(paramChanges) |
|
| 179 |
toc |
|
| 180 |
path(restorePath) |
|
| 181 |
|
|
| userProgramsMikaelDeroche/testACF.m | ||
|---|---|---|
| 1 |
% function [P dt lags SACF]= testACF |
|
| 2 |
% testACF is a *script* to demonstrate the smoothed ACF of |
|
| 3 |
% Balaguer-Ballestera, E. Denham, S.L. and Meddis, R. (2008). |
|
| 4 |
% |
|
| 5 |
% Convert this to a *function* by uncommenting the first line |
|
| 6 |
% The function returns the P matrix plotted in Figure 96. |
|
| 7 |
% If a function is used, the following outputs are returned: |
|
| 8 |
% P: smoothed SACF (lags x time matrix) |
|
| 9 |
% dt: time interval between successive columns of P |
|
| 10 |
% lags: lags used in computing P |
|
| 11 |
% SACF: unsmoothed SACFs |
|
| 12 |
% |
|
| 13 |
% A range of options are supplied in the early part of the program |
|
| 14 |
% |
|
| 15 |
% #1 |
|
| 16 |
% Identify the model parameter file (in 'MAPparamsName') |
|
| 17 |
% |
|
| 18 |
% #2 |
|
| 19 |
% Identify the kind of model required (in 'AN_spikesOrProbability') |
|
| 20 |
% 'probability' is recommended for ACF work |
|
| 21 |
% |
|
| 22 |
% #3 |
|
| 23 |
% Choose between a harmonic complex or file input |
|
| 24 |
% by commenting out unwanted code |
|
| 25 |
% |
|
| 26 |
% #4 |
|
| 27 |
% Set the signal rms level (in leveldBSPL) |
|
| 28 |
% |
|
| 29 |
% #5 |
|
| 30 |
% Identify the model channel BFs in the vector 'BFlist'. |
|
| 31 |
% |
|
| 32 |
% #6 |
|
| 33 |
% Last minute changes to the model parameters can be made using |
|
| 34 |
% the cell array of strings 'paramChanges'. |
|
| 35 |
% This is used here to control the details of the ACF computations |
|
| 36 |
% Read the notes in this section for more information |
|
| 37 |
% |
|
| 38 |
% displays: |
|
| 39 |
% Figure 97 shows the AN response to the stimulus. this is a channel x time |
|
| 40 |
% display. The z-axis (and colour) is the AN fiber firing rate |
|
| 41 |
% |
|
| 42 |
% Figure 96 shows the P-matrix, the smoothed SACF. |
|
| 43 |
% |
|
| 44 |
% Figure 89 shows a summary of the evolution of the unsmoothed SACF |
|
| 45 |
% over time. If you wish to take a snapshot of the P-matrix at a |
|
| 46 |
% particular time, this figure can help identify when to take it. |
|
| 47 |
% The index on the y-axis, identifies the required row numbers |
|
| 48 |
% of the P or SACF matrix, e.g. P(:,2000) |
|
| 49 |
% |
|
| 50 |
% On request, (filteredSACFParams.plotACFs=1) Figure 89 shows the channel |
|
| 51 |
% by channel ACFs at intervals during the computation as a movie. |
|
| 52 |
% The number of ACF displays is controlled by 'plotACFsInterval' |
|
| 53 |
% and the movie can be slowed or speeded up using 'plotMoviePauses' |
|
| 54 |
% (see paramChanges section below). |
|
| 55 |
|
|
| 56 |
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|
| 57 |
% This global will find results from MAP1_14 |
|
| 58 |
global savedInputSignal ANprobRateOutput ANoutput dt dtSpikes savedBFlist |
|
| 59 |
% This global,from model parameter file |
|
| 60 |
global filteredSACFParams |
|
| 61 |
|
|
| 62 |
dbstop if error |
|
| 63 |
restorePath=path; |
|
| 64 |
addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore'], ... |
|
| 65 |
['..' filesep 'utilities']) |
|
| 66 |
|
|
| 67 |
% User sets up requirements |
|
| 68 |
%% #1 parameter file name |
|
| 69 |
MAPparamsName='Normal'; % recommended |
|
| 70 |
|
|
| 71 |
|
|
| 72 |
%% #2 probability (fast) or spikes (slow) representation: select one |
|
| 73 |
% AN_spikesOrProbability='spikes'; |
|
| 74 |
% or |
|
| 75 |
AN_spikesOrProbability='probability'; % recommended |
|
| 76 |
|
|
| 77 |
%% #3 A. harmonic sequence or B. speech file input |
|
| 78 |
% Comment out unwanted code |
|
| 79 |
% A. harmonic tone (Hz) - useful to demonstrate a broadband sound |
|
| 80 |
sampleRate= 44100; % recommended 44100 |
|
| 81 |
signalType= 'tones'; |
|
| 82 |
duration=0.100; % seconds |
|
| 83 |
beginSilence=0.020; |
|
| 84 |
endSilence=0.020; |
|
| 85 |
rampDuration=.005; % raised cosine ramp (seconds) |
|
| 86 |
|
|
| 87 |
% toneFrequency is a vector of component frequencies |
|
| 88 |
F0=120; |
|
| 89 |
toneFrequency= [3*F0 4*F0 5*F0]; |
|
| 90 |
|
|
| 91 |
% or |
|
| 92 |
% B. file input |
|
| 93 |
signalType= 'file'; |
|
| 94 |
fileName='Oh No'; |
|
| 95 |
|
|
| 96 |
%% #4 rms level |
|
| 97 |
leveldBSPL= 60; % dB SPL (80 for Lieberman) |
|
| 98 |
|
|
| 99 |
%% #5 number of channels in the model |
|
| 100 |
% 21-channel model (log spacing of BFs) |
|
| 101 |
numChannels=21; |
|
| 102 |
lowestBF=250; highestBF= 6000; |
|
| 103 |
BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels)); |
|
| 104 |
|
|
| 105 |
%% #6 change model parameters |
|
| 106 |
% Parameter changes can be used to change one or more model parameters |
|
| 107 |
% *after* the MAPparams file has been read (see manual) |
|
| 108 |
|
|
| 109 |
% Take control of ACF parameters |
|
| 110 |
% The filteredACF parameters are set in the MAPparamsNormal file |
|
| 111 |
% However, it is convenient to change them here leving the file intacta |
|
| 112 |
minPitch= 80; maxPitch= 500; numPitches=50; |
|
| 113 |
maxLag=1/minPitch; minLag=1/maxPitch; |
|
| 114 |
lags= linspace(minLag, maxLag, numPitches); |
|
| 115 |
|
|
| 116 |
paramChanges={...
|
|
| 117 |
'filteredSACFParams.lags=lags; % autocorrelation lags vector;',... |
|
| 118 |
'filteredSACFParams.acfTau= 2; % (Wiegrebe) time constant ACF;',... |
|
| 119 |
'filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF;',... |
|
| 120 |
'filteredSACFParams.plotACFs=1; % plot ACFs while computing;',... |
|
| 121 |
'filteredSACFParams.plotACFsInterval=0.01;',... |
|
| 122 |
'filteredSACFParams.plotMoviePauses=.1; ',... |
|
| 123 |
'filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags;',... |
|
| 124 |
'filteredSACFParams.lagsProcedure= ''useAllLags'';',... |
|
| 125 |
}; |
|
| 126 |
|
|
| 127 |
% Notes: |
|
| 128 |
% acfTau: time constant of unsmoothed ACF |
|
| 129 |
% lambda: time constant of smoothed ACFS |
|
| 130 |
% plotACFs: plot ACFs during computation (0 to switch off, for speed) |
|
| 131 |
% plotACFsInterval: sampling interval for plots |
|
| 132 |
% plotMoviePauses: pause duration between frames to allow viewing |
|
| 133 |
% usePressnitzer: gives low weights to long lags |
|
| 134 |
% lagsProcedure: used to fiddle with output (ignore) |
|
| 135 |
|
|
| 136 |
%% delare 'showMap' options to control graphical output |
|
| 137 |
% see UTIL_showMAP for more options |
|
| 138 |
showMapOptions=[]; |
|
| 139 |
% showMapOptions.showModelOutput=0; % plot of all stages |
|
| 140 |
showMapOptions.surfAN=1; % surface plot of HSR response |
|
| 141 |
showMapOptions.PSTHbinwidth=0.001; % smoothing for PSTH |
|
| 142 |
|
|
| 143 |
if exist('fileName','var')
|
|
| 144 |
% needed for labeling plot |
|
| 145 |
showMapOptions.fileName=fileName; |
|
| 146 |
end |
|
| 147 |
|
|
| 148 |
%% Generate stimuli |
|
| 149 |
switch signalType |
|
| 150 |
case 'tones' |
|
| 151 |
% Create tone stimulus |
|
| 152 |
dt=1/sampleRate; % seconds |
|
| 153 |
time=dt: dt: duration; |
|
| 154 |
inputSignal=sum(sin(2*pi*toneFrequency'*time), 1); |
|
| 155 |
amp=10^(leveldBSPL/20)*28e-6; % converts to Pascals (peak) |
|
| 156 |
inputSignal=amp*inputSignal; |
|
| 157 |
% apply ramps |
|
| 158 |
% catch rampTime error |
|
| 159 |
if rampDuration>0.5*duration, rampDuration=duration/2; end |
|
| 160 |
rampTime=dt:dt:rampDuration; |
|
| 161 |
ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ... |
|
| 162 |
ones(1,length(time)-length(rampTime))]; |
|
| 163 |
inputSignal=inputSignal.*ramp; |
|
| 164 |
ramp=fliplr(ramp); |
|
| 165 |
inputSignal=inputSignal.*ramp; |
|
| 166 |
% add silence |
|
| 167 |
intialSilence= zeros(1,round(beginSilence/dt)); |
|
| 168 |
finalSilence= zeros(1,round(endSilence/dt)); |
|
| 169 |
inputSignal= [intialSilence inputSignal finalSilence]; |
|
| 170 |
|
|
| 171 |
case 'file' |
|
| 172 |
%% file input simple or mixed |
|
| 173 |
[inputSignal sampleRate]=wavread(fileName); |
|
| 174 |
dt=1/sampleRate; |
|
| 175 |
inputSignal=inputSignal(:,1); |
|
| 176 |
targetRMS=20e-6*10^(leveldBSPL/20); |
|
| 177 |
rms=(mean(inputSignal.^2))^0.5; |
|
| 178 |
amp=targetRMS/rms; |
|
| 179 |
inputSignal=inputSignal*amp; |
|
| 180 |
end |
|
| 181 |
|
|
| 182 |
wavplay(inputSignal, sampleRate) |
|
| 183 |
|
|
| 184 |
%% run the model |
|
| 185 |
|
|
| 186 |
fprintf('\n')
|
|
| 187 |
disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)]) |
|
| 188 |
disp([num2str(numChannels) ' channel model: ' AN_spikesOrProbability]) |
|
| 189 |
disp('Computing ...')
|
|
| 190 |
|
|
| 191 |
MAP1_14(inputSignal, sampleRate, BFlist, ... |
|
| 192 |
MAPparamsName, AN_spikesOrProbability, paramChanges); |
|
| 193 |
|
|
| 194 |
|
|
| 195 |
%% The model run is now complete. Now display the results |
|
| 196 |
% display the AN response |
|
| 197 |
UTIL_showMAP(showMapOptions) |
|
| 198 |
|
|
| 199 |
% compute ACF |
|
| 200 |
switch AN_spikesOrProbability |
|
| 201 |
case 'probability' |
|
| 202 |
% use only HSR fibers |
|
| 203 |
inputToACF=ANprobRateOutput(end-length(savedBFlist)+1:end,:); |
|
| 204 |
otherwise |
|
| 205 |
inputToACF=ANoutput; |
|
| 206 |
dt=dtSpikes; |
|
| 207 |
end |
|
| 208 |
|
|
| 209 |
disp ('computing ACF...')
|
|
| 210 |
|
|
| 211 |
% read paramChanges to get new filteredSACFParams |
|
| 212 |
for i=1:length(paramChanges) |
|
| 213 |
eval(paramChanges{i});
|
|
| 214 |
end |
|
| 215 |
|
|
| 216 |
[P BFlist SACF]= filteredSACF(inputToACF, dt, savedBFlist, filteredSACFParams); |
|
| 217 |
disp(' ACF done.')
|
|
| 218 |
|
|
| 219 |
%% plot original waveform on summary/smoothed ACF plot |
|
| 220 |
figure(96), clf |
|
| 221 |
subplot(3,1,3) |
|
| 222 |
t=dt*(1:length(savedInputSignal)); |
|
| 223 |
plot(t,savedInputSignal, 'k') |
|
| 224 |
xlim([0 t(end)]) |
|
| 225 |
title(['stimulus: ' num2str(leveldBSPL, '%4.0f') ' dB SPL']); |
|
| 226 |
|
|
| 227 |
% plot SACF |
|
| 228 |
figure(96) |
|
| 229 |
subplot(2,1,1) |
|
| 230 |
imagesc(P) |
|
| 231 |
colormap bone |
|
| 232 |
ylabel('periodicities (Hz)'), xlabel('time (s)')
|
|
| 233 |
title(['smoothed SACF. (periodicity x time)']) |
|
| 234 |
% y-axis specifies pitches (1/lags) |
|
| 235 |
% Force MATLAB to show the lowest pitch |
|
| 236 |
postedYvalues=[1 get(gca,'ytick')]; set(gca,'ytick',postedYvalues) |
|
| 237 |
pitches=1./filteredSACFParams.lags; |
|
| 238 |
set(gca,'ytickLabel', round(pitches(postedYvalues))) |
|
| 239 |
% x-axis is time at which P is samples |
|
| 240 |
[nCH nTimes]=size(P); |
|
| 241 |
t=dt:dt:dt*nTimes; |
|
| 242 |
tt=get(gca,'xtick'); |
|
| 243 |
set(gca,'xtickLabel', round(100*t(tt))/100) |
|
| 244 |
|
|
| 245 |
%% On a new figure show a cascade of SACFs |
|
| 246 |
figure(89), clf |
|
| 247 |
% select 100 samples; |
|
| 248 |
[r c]=size(SACF); |
|
| 249 |
step=round(c/100); |
|
| 250 |
idx=step:step:c; |
|
| 251 |
|
|
| 252 |
UTIL_cascadePlot(SACF(:,idx)', 1./pitches) |
|
| 253 |
|
|
| 254 |
xlabel('lag (s)'), ylabel('time pointer -->')
|
|
| 255 |
title(' SACF summary over time')
|
|
| 256 |
yValues=get(gca,'yTick'); |
|
| 257 |
set(gca,'yTickLabel', num2str(yValues'*100)) |
|
| 258 |
|
|
| 259 |
path(restorePath) |
|
| 260 |
|
|
Also available in: Unified diff