Revision 38:c2204b18f4a2 parameterStore
| parameterStore/MAPparamsNormal.m | ||
|---|---|---|
| 25 | 25 |
method.segmentDuration=efferentDelay; |
| 26 | 26 |
|
| 27 | 27 |
if nargin<3, showParams=0; end |
| 28 |
if nargin<2, sampleRate=50000; end
|
|
| 28 |
if nargin<2, sampleRate=44100; end
|
|
| 29 | 29 |
if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default |
| 30 | 30 |
lowestBF=250; highestBF= 8000; numChannels=21; |
| 31 | 31 |
% 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000 |
| ... | ... | |
| 52 | 52 |
|
| 53 | 53 |
% highpass stapes filter |
| 54 | 54 |
% Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL) |
| 55 |
OMEParams.OMEstapesLPcutoff= 1000;
|
|
| 55 |
OMEParams.OMEstapesHPcutoff= 1000;
|
|
| 56 | 56 |
OMEParams.stapesScalar= 45e-9; |
| 57 | 57 |
|
| 58 | 58 |
% Acoustic reflex: maximum attenuation should be around 25 dB (Price, 1966) |
| 59 | 59 |
% i.e. a minimum ratio of 0.056. |
| 60 | 60 |
% 'spikes' model: AR based on brainstem spiking activity (LSR) |
| 61 |
OMEParams.rateToAttenuationFactor=0.008; % * N(all ICspikes) |
|
| 62 |
% OMEParams.rateToAttenuationFactor=0; % i.e. no AR |
|
| 63 |
|
|
| 61 |
OMEParams.rateToAttenuationFactor=0.05; % * N(all ICspikes) |
|
| 64 | 62 |
% 'probability model': Ar based on AN firing probabilities (LSR) |
| 65 |
OMEParams.rateToAttenuationFactorProb=0.006; % * N(all ANrates) |
|
| 66 |
% OMEParams.rateToAttenuationFactorProb=0; % i.e. no AR |
|
| 63 |
OMEParams.rateToAttenuationFactorProb=0.02; % * N(all ANrates) |
|
| 67 | 64 |
|
| 68 | 65 |
% asymptote should be around 100-200 ms |
| 69 | 66 |
OMEParams.ARtau=.250; % AR smoothing function 250 ms fits Hung and Dallos |
| ... | ... | |
| 77 | 74 |
|
| 78 | 75 |
% *** DRNL nonlinear path |
| 79 | 76 |
% broken stick compression |
| 80 |
DRNLParams.a=5e4; % DRNL.a=0 means no OHCs (no nonlinear path)
|
|
| 77 |
DRNLParams.a=2e4; % DRNL.a=0 means no OHCs (no nonlinear path)
|
|
| 81 | 78 |
DRNLParams.c=.2; % compression exponent |
| 82 |
DRNLParams.CtBMdB = 10; %Compression threshold dB re 10e-9 m displacement
|
|
| 79 |
DRNLParams.ctBMdB = 10; %Compression threshold dB re 10e-9 m displacement
|
|
| 83 | 80 |
|
| 84 | 81 |
% filters |
| 85 | 82 |
DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters |
| 86 | 83 |
DRNLParams.nonlinCFs=BFlist; |
| 87 |
p=0.2895; q=250; % human (% p=0.14; q=366; % cat)
|
|
| 88 |
DRNLParams.nlBWs= p * BFlist + q;
|
|
| 89 |
DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only
|
|
| 84 |
DRNLParams.p=0.2895; DRNLParams.q=250; % save p and q for printing only
|
|
| 85 |
% p=0.2895; q=250; % human (% p=0.14; q=366; % cat)
|
|
| 86 |
DRNLParams.nlBWs= DRNLParams.p * BFlist + DRNLParams.q;
|
|
| 90 | 87 |
|
| 91 | 88 |
% *** DRNL linear path: |
| 92 |
DRNLParams.g=200; % linear path gain factor
|
|
| 89 |
DRNLParams.g=100; % linear path gain factor
|
|
| 93 | 90 |
DRNLParams.linOrder=3; % order of linear gammatone filters |
| 94 | 91 |
% linCF is not necessarily the same as nonlinCF |
| 95 | 92 |
minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz |
| ... | ... | |
| 100 | 97 |
|
| 101 | 98 |
% *** DRNL MOC efferents |
| 102 | 99 |
DRNLParams.MOCdelay = efferentDelay; % must be < segment length! |
| 103 |
DRNLParams.minMOCattenuationdB=-30;
|
|
| 100 |
DRNLParams.minMOCattenuationdB=-35;
|
|
| 104 | 101 |
|
| 105 | 102 |
% 'spikes' model: MOC based on brainstem spiking activity (HSR) |
| 106 |
DRNLParams.MOCtau =.025; % smoothing for MOC |
|
| 107 |
DRNLParams.rateToAttenuationFactor = .00635; % strength of MOC
|
|
| 108 |
% DRNLParams.rateToAttenuationFactor = 0; % strength of MOC
|
|
| 103 |
DRNLParams.MOCtau =.0285; % smoothing for MOC
|
|
| 104 |
DRNLParams.rateToAttenuationFactor = .03; % strength of MOC
|
|
| 105 |
DRNLParams.rateToAttenuationFactor = .0055; % strength of MOC
|
|
| 109 | 106 |
|
| 110 |
% 'probability' model: MOC based on AN spiking activity (HSR)
|
|
| 107 |
% 'probability' model: MOC based on AN probability (HSR)
|
|
| 111 | 108 |
DRNLParams.MOCtauProb =.285; % smoothing for MOC |
| 112 |
DRNLParams.rateToAttenuationFactorProb = 0.0075; % strength of MOC |
|
| 113 |
% DRNLParams.rateToAttenuationFactorProb = .0; % strength of MOC |
|
| 114 |
DRNLParams.MOCrateThresholdProb =50; % spikes/s probability only |
|
| 109 |
DRNLParams.rateToAttenuationFactorProb = 0.007; % strength of MOC |
|
| 110 |
DRNLParams.MOCrateThresholdProb =67; % spikes/s probability only |
|
| 115 | 111 |
|
| 116 | 112 |
|
| 117 | 113 |
%% #4 IHC_cilia_RPParams |
| 118 |
IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity
|
|
| 119 |
IHC_cilia_RPParams.C= 0.03; % 0.1 scalar (C_cilia )
|
|
| 114 |
IHC_cilia_RPParams.tc= 0.00012; % 0.0003 Shamma
|
|
| 115 |
IHC_cilia_RPParams.C= 0.08; % 0.1 scalar (C_cilia )
|
|
| 120 | 116 |
IHC_cilia_RPParams.u0= 5e-9; |
| 121 | 117 |
IHC_cilia_RPParams.s0= 30e-9; |
| 122 | 118 |
IHC_cilia_RPParams.u1= 1e-9; |
| ... | ... | |
| 148 | 144 |
% reminder: changing z has a strong effect on HF thresholds (like Et) |
| 149 | 145 |
IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate |
| 150 | 146 |
|
| 151 |
LSRtauCa=40e-6; HSRtauCa=80e-6; % seconds |
|
| 147 |
LSRtauCa=30e-6; HSRtauCa=80e-6; % seconds |
|
| 148 |
% LSRtauCa=40e-6; HSRtauCa=90e-6; % seconds |
|
| 152 | 149 |
% IHCpreSynapseParams.tauCa= [15e-6 80e-6]; %LSR and HSR fiber |
| 153 | 150 |
IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber |
| 154 | 151 |
|
| ... | ... | |
| 159 | 156 |
% absolute refractory period. Relative refractory period is the same. |
| 160 | 157 |
AN_IHCsynapseParams.refractory_period= 0.00075; |
| 161 | 158 |
AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike |
| 162 |
AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes. |
|
| 159 |
AN_IHCsynapseParams.spikesTargetSampleRate=10000; |
|
| 160 |
% AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes. |
|
| 163 | 161 |
|
| 164 | 162 |
% c=kym/(y(l+r)+kl) (spontaneous rate) |
| 165 | 163 |
% c=(approx) ym/l (saturated rate) |
| ... | ... | |
| 205 | 203 |
MacGregorMultiParams.fibersPerNeuron=10; % N input fibers |
| 206 | 204 |
|
| 207 | 205 |
MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter |
| 208 |
MacGregorMultiParams.currentPerSpike=35e-9; % *per spike
|
|
| 206 |
MacGregorMultiParams.currentPerSpike=28e-9; % *per spike
|
|
| 209 | 207 |
% MacGregorMultiParams.currentPerSpike=30e-9; % *per spike |
| 210 | 208 |
|
| 211 | 209 |
MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens) |
| ... | ... | |
| 226 | 224 |
MacGregorParams.type = 'chopper cell'; |
| 227 | 225 |
MacGregorParams.fibersPerNeuron=10; % N input fibers |
| 228 | 226 |
MacGregorParams.dendriteLPfreq=100; % dendritic filter |
| 229 |
MacGregorParams.currentPerSpike=120e-9;% *(A) per spike |
|
| 230 | 227 |
MacGregorParams.currentPerSpike=40e-9;% *(A) per spike |
| 231 | 228 |
|
| 232 | 229 |
MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens) |
| ... | ... | |
| 246 | 243 |
% MacGregorParams.saveAllData=0; |
| 247 | 244 |
|
| 248 | 245 |
%% #9 filteredSACF |
| 249 |
minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags |
|
| 250 |
pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches)); |
|
| 251 |
filteredSACFParams.lags=1./pitches; % autocorrelation lags vector |
|
| 252 |
filteredSACFParams.acfTau= .003; % time constant of running ACF |
|
| 253 |
filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF |
|
| 254 |
filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs |
|
| 255 |
filteredSACFParams.plotACFs=0; % special plot (see code) |
|
| 256 |
% filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags |
|
| 257 |
filteredSACFParams.lagsProcedure= 'useAllLags'; |
|
| 258 |
% filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights'; |
|
| 259 |
% filteredSACFParams.lagsProcedure= 'omitShortLags'; |
|
| 260 |
filteredSACFParams.criterionForOmittingLags=3; |
|
| 246 |
% identify periodicities to be logged |
|
| 247 |
minPitch= 80; maxPitch= 500; numPitches=50; |
|
| 248 |
maxLag=1/minPitch; minLag=1/maxPitch; |
|
| 249 |
lags= linspace(minLag, maxLag, numPitches); |
|
| 250 |
pitches=10.^ linspace(log10(minPitch), log10(maxPitch),numPitches); |
|
| 251 |
pitches=fliplr(pitches); |
|
| 252 |
% convert to lags for ACF |
|
| 253 |
filteredSACFParams.lags=lags; % autocorrelation lags vector |
|
| 254 |
filteredSACFParams.acfTau= .003; % time constant of running ACF |
|
| 255 |
filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF |
|
| 256 |
% request plot of within-channel ACFs at fixed intervals in time |
|
| 257 |
filteredSACFParams.plotACFs=1; |
|
| 258 |
filteredSACFParams.plotACFsInterval=0.002; |
|
| 259 |
filteredSACFParams.plotMoviePauses=.1; |
|
| 260 |
|
|
| 261 |
filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags |
|
| 262 |
filteredSACFParams.lagsProcedure= 'useAllLags'; |
|
| 263 |
% 'useAllLags' or 'omitShortLags' |
|
| 264 |
filteredSACFParams.criterionForOmittingLags=3; |
|
| 265 |
|
|
| 261 | 266 |
|
| 262 | 267 |
% checks |
| 263 | 268 |
if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron |
| ... | ... | |
| 269 | 274 |
% paramChanges |
| 270 | 275 |
if nargin>3 && ~isempty(paramChanges) |
| 271 | 276 |
if ~iscellstr(paramChanges) |
| 272 |
error(['paramChanges error: paramChanges not a cell array'])
|
|
| 277 |
error('paramChanges error: paramChanges not a cell array')
|
|
| 273 | 278 |
end |
| 274 | 279 |
|
| 275 | 280 |
nChanges=length(paramChanges); |
| parameterStore/MAPparamsOHCloss.m | ||
|---|---|---|
| 1 |
function method=MAPparamsOHCloss ... |
|
| 2 |
(BFlist, sampleRate, showParams, paramChanges) |
|
| 3 |
% MAPparamsOHCloss.m is a parameter file, similar in all respects to |
|
| 4 |
% MAPparamsNormal except that the parameter 'DRNLParams.a' is set to zero. |
|
| 5 |
% |
|
| 6 |
% MAPparams<> establishes a complete set of MAP parameters |
|
| 7 |
% Parameter file names must be of the form <MAPparams><name> |
|
| 8 |
% |
|
| 9 |
% Input arguments |
|
| 10 |
% BFlist (optional) specifies the desired list of channel BFs |
|
| 11 |
% otherwise defaults set below |
|
| 12 |
% sampleRate (optional), default is 50000. |
|
| 13 |
% showParams (optional) =1 prints out the complete set of parameters |
|
| 14 |
% Output argument |
|
| 15 |
% method passes a miscelleny of values |
|
| 16 |
% the use of 'method' is being phased out. use globals |
|
| 17 |
|
|
| 18 |
global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams |
|
| 19 |
global IHCpreSynapseParams AN_IHCsynapseParams |
|
| 20 |
global MacGregorParams MacGregorMultiParams filteredSACFParams |
|
| 21 |
global experiment % used only by calls from multiThreshold |
|
| 22 |
% global IHC_VResp_VivoParams |
|
| 23 |
|
|
| 24 |
currentFile=mfilename; % i.e. the name of this mfile |
|
| 25 |
method.parameterSource=currentFile(10:end); % for the record |
|
| 26 |
|
|
| 27 |
efferentDelay=0.010; |
|
| 28 |
method.segmentDuration=efferentDelay; |
|
| 29 |
|
|
| 30 |
if nargin<3, showParams=0; end |
|
| 31 |
if nargin<2, sampleRate=44100; end |
|
| 32 |
if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default |
|
| 33 |
lowestBF=250; highestBF= 8000; numChannels=21; |
|
| 34 |
% 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000 |
|
| 35 |
BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels)); |
|
| 36 |
end |
|
| 37 |
% BFlist=1000; % single channel option |
|
| 38 |
|
|
| 39 |
% preserve for backward campatibility |
|
| 40 |
method.nonlinCF=BFlist; |
|
| 41 |
method.dt=1/sampleRate; |
|
| 42 |
|
|
| 43 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
| 44 |
% set model parameters |
|
| 45 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
| 46 |
|
|
| 47 |
%% #1 inputStimulus |
|
| 48 |
inputStimulusParams=[]; |
|
| 49 |
inputStimulusParams.sampleRate= sampleRate; |
|
| 50 |
|
|
| 51 |
%% #2 outerMiddleEar |
|
| 52 |
OMEParams=[]; % clear the structure first |
|
| 53 |
% outer ear resonances band pass filter [gain lp order hp] |
|
| 54 |
OMEParams.externalResonanceFilters= [ 10 1 1000 4000]; |
|
| 55 |
|
|
| 56 |
% highpass stapes filter |
|
| 57 |
% Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL) |
|
| 58 |
OMEParams.OMEstapesHPcutoff= 1000; |
|
| 59 |
OMEParams.stapesScalar= 45e-9; |
|
| 60 |
|
|
| 61 |
% Acoustic reflex: maximum attenuation should be around 25 dB (Price, 1966) |
|
| 62 |
% i.e. a minimum ratio of 0.056. |
|
| 63 |
% 'spikes' model: AR based on brainstem spiking activity (LSR) |
|
| 64 |
OMEParams.rateToAttenuationFactor=0.05; % * N(all ICspikes) |
|
| 65 |
% 'probability model': Ar based on AN firing probabilities (LSR) |
|
| 66 |
OMEParams.rateToAttenuationFactorProb=0.02; % * N(all ANrates) |
|
| 67 |
|
|
| 68 |
% asymptote should be around 100-200 ms |
|
| 69 |
OMEParams.ARtau=.250; % AR smoothing function 250 ms fits Hung and Dallos |
|
| 70 |
% delay must be longer than the segment length |
|
| 71 |
OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency |
|
| 72 |
OMEParams.ARrateThreshold=40; |
|
| 73 |
|
|
| 74 |
%% #3 DRNL |
|
| 75 |
DRNLParams=[]; % clear the structure first |
|
| 76 |
% DRNLParams.BFlist=BFlist; |
|
| 77 |
|
|
| 78 |
% *** DRNL nonlinear path |
|
| 79 |
% broken stick compression |
|
| 80 |
% DRNLParams.a=2e4; % normal value (commented out) |
|
| 81 |
DRNLParams.a=0; % DRNL.a=0 means no OHCs (no nonlinear path) |
|
| 82 |
DRNLParams.c=.2; % compression exponent |
|
| 83 |
DRNLParams.ctBMdB = 10; %Compression threshold dB re 10e-9 m displacement |
|
| 84 |
|
|
| 85 |
% filters |
|
| 86 |
DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters |
|
| 87 |
DRNLParams.nonlinCFs=BFlist; |
|
| 88 |
DRNLParams.p=0.2895; DRNLParams.q=250; % save p and q for printing only |
|
| 89 |
% p=0.2895; q=250; % human (% p=0.14; q=366; % cat) |
|
| 90 |
DRNLParams.nlBWs= DRNLParams.p * BFlist + DRNLParams.q; |
|
| 91 |
|
|
| 92 |
% *** DRNL linear path: |
|
| 93 |
DRNLParams.g=100; % linear path gain factor |
|
| 94 |
DRNLParams.linOrder=3; % order of linear gammatone filters |
|
| 95 |
% linCF is not necessarily the same as nonlinCF |
|
| 96 |
minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz |
|
| 97 |
DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist; |
|
| 98 |
% bandwidths (linear) |
|
| 99 |
minLinBW=100; coeffLinBW=0.6531; |
|
| 100 |
DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters |
|
| 101 |
|
|
| 102 |
% *** DRNL MOC efferents |
|
| 103 |
DRNLParams.MOCdelay = efferentDelay; % must be < segment length! |
|
| 104 |
DRNLParams.minMOCattenuationdB=-35; |
|
| 105 |
|
|
| 106 |
% 'spikes' model: MOC based on brainstem spiking activity (HSR) |
|
| 107 |
DRNLParams.MOCtau =.0285; % smoothing for MOC |
|
| 108 |
DRNLParams.rateToAttenuationFactor = .03; % strength of MOC |
|
| 109 |
DRNLParams.rateToAttenuationFactor = .0055; % strength of MOC |
|
| 110 |
|
|
| 111 |
% 'probability' model: MOC based on AN probability (HSR) |
|
| 112 |
DRNLParams.MOCtauProb =.285; % smoothing for MOC |
|
| 113 |
DRNLParams.rateToAttenuationFactorProb = 0.007; % strength of MOC |
|
| 114 |
DRNLParams.MOCrateThresholdProb =67; % spikes/s probability only |
|
| 115 |
|
|
| 116 |
|
|
| 117 |
%% #4 IHC_cilia_RPParams |
|
| 118 |
IHC_cilia_RPParams.tc= 0.00012; % 0.0003 Shamma |
|
| 119 |
IHC_cilia_RPParams.C= 0.08; % 0.1 scalar (C_cilia ) |
|
| 120 |
IHC_cilia_RPParams.u0= 5e-9; |
|
| 121 |
IHC_cilia_RPParams.s0= 30e-9; |
|
| 122 |
IHC_cilia_RPParams.u1= 1e-9; |
|
| 123 |
IHC_cilia_RPParams.s1= 1e-9; |
|
| 124 |
|
|
| 125 |
IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens) |
|
| 126 |
IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance |
|
| 127 |
IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance |
|
| 128 |
|
|
| 129 |
% #5 IHC_RP |
|
| 130 |
IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F) |
|
| 131 |
% IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F) |
|
| 132 |
IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V) |
|
| 133 |
|
|
| 134 |
IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S) |
|
| 135 |
IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential |
|
| 136 |
IHC_cilia_RPParams.Rpc= 0.04; % combined resistances |
|
| 137 |
|
|
| 138 |
|
|
| 139 |
%% #5 IHCpreSynapse |
|
| 140 |
IHCpreSynapseParams=[]; |
|
| 141 |
IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance |
|
| 142 |
% IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance |
|
| 143 |
IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential |
|
| 144 |
IHCpreSynapseParams.beta= 400; % determine Ca channel opening |
|
| 145 |
IHCpreSynapseParams.gamma= 100; % determine Ca channel opening |
|
| 146 |
IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms |
|
| 147 |
IHCpreSynapseParams.power= 3; |
|
| 148 |
% reminder: changing z has a strong effect on HF thresholds (like Et) |
|
| 149 |
IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate |
|
| 150 |
|
|
| 151 |
LSRtauCa=30e-6; HSRtauCa=80e-6; % seconds |
|
| 152 |
% LSRtauCa=40e-6; HSRtauCa=90e-6; % seconds |
|
| 153 |
% IHCpreSynapseParams.tauCa= [15e-6 80e-6]; %LSR and HSR fiber |
|
| 154 |
IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber |
|
| 155 |
|
|
| 156 |
%% #6 AN_IHCsynapse |
|
| 157 |
AN_IHCsynapseParams=[]; % clear the structure first |
|
| 158 |
% number of AN fibers at each BF (used only for spike generation) |
|
| 159 |
AN_IHCsynapseParams.numFibers= 100; |
|
| 160 |
% absolute refractory period. Relative refractory period is the same. |
|
| 161 |
AN_IHCsynapseParams.refractory_period= 0.00075; |
|
| 162 |
AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike |
|
| 163 |
AN_IHCsynapseParams.spikesTargetSampleRate=10000; |
|
| 164 |
% AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes. |
|
| 165 |
|
|
| 166 |
% c=kym/(y(l+r)+kl) (spontaneous rate) |
|
| 167 |
% c=(approx) ym/l (saturated rate) |
|
| 168 |
AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse |
|
| 169 |
AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate |
|
| 170 |
AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate |
|
| 171 |
|
|
| 172 |
AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store |
|
| 173 |
AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store |
|
| 174 |
|
|
| 175 |
% reduce l to increase saturated rate |
|
| 176 |
AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft |
|
| 177 |
AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft |
|
| 178 |
|
|
| 179 |
AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell |
|
| 180 |
% AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell |
|
| 181 |
|
|
| 182 |
|
|
| 183 |
%% #7 MacGregorMulti (first order brainstem neurons) |
|
| 184 |
MacGregorMultiParams=[]; |
|
| 185 |
MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose |
|
| 186 |
switch MacGregorMultiType |
|
| 187 |
case 'primary-like' |
|
| 188 |
MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF |
|
| 189 |
MacGregorMultiParams.type = 'primary-like cell'; |
|
| 190 |
MacGregorMultiParams.fibersPerNeuron=4; % N input fibers |
|
| 191 |
MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter |
|
| 192 |
MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike |
|
| 193 |
MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens) |
|
| 194 |
MacGregorMultiParams.tauM=5e-4; % membrane time constant (s) |
|
| 195 |
MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) |
|
| 196 |
MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S |
|
| 197 |
MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s) |
|
| 198 |
MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) |
|
| 199 |
MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V) |
|
| 200 |
MacGregorMultiParams.tauTh= 0.015; % variable threshold tau |
|
| 201 |
MacGregorMultiParams.Er=-0.06; % resting potential (V) |
|
| 202 |
MacGregorMultiParams.Eb=0.06; % spike height (V) |
|
| 203 |
|
|
| 204 |
case 'chopper' |
|
| 205 |
MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF |
|
| 206 |
MacGregorMultiParams.type = 'chopper cell'; |
|
| 207 |
MacGregorMultiParams.fibersPerNeuron=10; % N input fibers |
|
| 208 |
|
|
| 209 |
MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter |
|
| 210 |
MacGregorMultiParams.currentPerSpike=28e-9; % *per spike |
|
| 211 |
% MacGregorMultiParams.currentPerSpike=30e-9; % *per spike |
|
| 212 |
|
|
| 213 |
MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens) |
|
| 214 |
MacGregorMultiParams.tauM=0.002; % membrane time constant (s) |
|
| 215 |
MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) |
|
| 216 |
MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S |
|
| 217 |
MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s) |
|
| 218 |
MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) |
|
| 219 |
MacGregorMultiParams.c= 0; % threshold shift on spike, (V) |
|
| 220 |
MacGregorMultiParams.tauTh= 0.02; % variable threshold tau |
|
| 221 |
MacGregorMultiParams.Er=-0.06; % resting potential (V) |
|
| 222 |
MacGregorMultiParams.Eb=0.06; % spike height (V) |
|
| 223 |
MacGregorMultiParams.PSTHbinWidth= 1e-4; |
|
| 224 |
end |
|
| 225 |
|
|
| 226 |
%% #8 MacGregor (second-order neuron). Only one per channel |
|
| 227 |
MacGregorParams=[]; % clear the structure first |
|
| 228 |
MacGregorParams.type = 'chopper cell'; |
|
| 229 |
MacGregorParams.fibersPerNeuron=10; % N input fibers |
|
| 230 |
MacGregorParams.dendriteLPfreq=100; % dendritic filter |
|
| 231 |
MacGregorParams.currentPerSpike=40e-9;% *(A) per spike |
|
| 232 |
|
|
| 233 |
MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens) |
|
| 234 |
MacGregorParams.tauM=0.002; % membrane time constant (s) |
|
| 235 |
MacGregorParams.Ek=-0.01; % K+ eq. potential (V) |
|
| 236 |
MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S |
|
| 237 |
MacGregorParams.tauGk= 0.0012; % K+ conductance tau (s) |
|
| 238 |
MacGregorParams.Th0= 0.01; % equilibrium threshold (V) |
|
| 239 |
MacGregorParams.c= 0; % threshold shift on spike, (V) |
|
| 240 |
MacGregorParams.tauTh= 0.02; % variable threshold tau |
|
| 241 |
MacGregorParams.Er=-0.06; % resting potential (V) |
|
| 242 |
MacGregorParams.Eb=0.06; % spike height (V) |
|
| 243 |
MacGregorParams.debugging=0; % (special) |
|
| 244 |
% wideband accepts input from all channels (of same fiber type) |
|
| 245 |
% use wideband to create inhibitory units |
|
| 246 |
MacGregorParams.wideband=0; % special for wideband units |
|
| 247 |
% MacGregorParams.saveAllData=0; |
|
| 248 |
|
|
| 249 |
%% #9 filteredSACF |
|
| 250 |
minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags |
|
| 251 |
pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches)); |
|
| 252 |
filteredSACFParams.lags=1./pitches; % autocorrelation lags vector |
|
| 253 |
filteredSACFParams.acfTau= .003; % time constant of running ACF |
|
| 254 |
filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF |
|
| 255 |
filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs |
|
| 256 |
filteredSACFParams.plotACFs=0; % special plot (see code) |
|
| 257 |
% filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags |
|
| 258 |
filteredSACFParams.lagsProcedure= 'useAllLags'; |
|
| 259 |
% filteredSACFParams.lagsProcedure= 'omitShortLags'; |
|
| 260 |
filteredSACFParams.criterionForOmittingLags=3; |
|
| 261 |
|
|
| 262 |
% checks |
|
| 263 |
if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron |
|
| 264 |
error('MacGregorMulti: too few input fibers for input to MacG unit')
|
|
| 265 |
end |
|
| 266 |
|
|
| 267 |
|
|
| 268 |
%% now accept last minute parameter changes required by the calling program |
|
| 269 |
% paramChanges |
|
| 270 |
if nargin>3 && ~isempty(paramChanges) |
|
| 271 |
if ~iscellstr(paramChanges) |
|
| 272 |
error('paramChanges error: paramChanges not a cell array')
|
|
| 273 |
end |
|
| 274 |
|
|
| 275 |
nChanges=length(paramChanges); |
|
| 276 |
for idx=1:nChanges |
|
| 277 |
x=paramChanges{idx};
|
|
| 278 |
x=deblank(x); |
|
| 279 |
if ~isempty(x) |
|
| 280 |
if ~strcmp(x(end),';') |
|
| 281 |
error(['paramChanges error (terminate with semicolon) ' x]) |
|
| 282 |
end |
|
| 283 |
st=strtrim(x(1:strfind(x,'.')-1)); |
|
| 284 |
fld=strtrim(x(strfind(x,'.')+1:strfind(x,'=')-1)); |
|
| 285 |
value=x(strfind(x,'=')+1:end); |
|
| 286 |
if isempty(st) || isempty(fld) || isempty(value) |
|
| 287 |
error(['paramChanges error:' x]) |
|
| 288 |
end |
|
| 289 |
|
|
| 290 |
x1=eval(['isstruct(' st ')']);
|
|
| 291 |
cmd=['isfield(' st ',''' fld ''')'];
|
|
| 292 |
x2=eval(cmd); |
|
| 293 |
if ~(x1*x2) |
|
| 294 |
error(['paramChanges error:' x]) |
|
| 295 |
end |
|
| 296 |
end |
|
| 297 |
|
|
| 298 |
% no problems so go ahead |
|
| 299 |
eval(paramChanges{idx})
|
|
| 300 |
end |
|
| 301 |
end |
|
| 302 |
|
|
| 303 |
|
|
| 304 |
%% write all parameters to the command window |
|
| 305 |
% showParams is currently set at the top of htis function |
|
| 306 |
if showParams |
|
| 307 |
fprintf('\n %%%%%%%%\n')
|
|
| 308 |
fprintf('\n%s\n', method.parameterSource)
|
|
| 309 |
fprintf('\n')
|
|
| 310 |
nm=UTIL_paramsList(whos); |
|
| 311 |
for i=1:length(nm) |
|
| 312 |
% eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
|
|
| 313 |
if ~strcmp(nm(i), 'method') |
|
| 314 |
eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
|
|
| 315 |
end |
|
| 316 |
end |
|
| 317 |
|
|
| 318 |
% highlight parameter changes made locally |
|
| 319 |
if nargin>3 && ~isempty(paramChanges) |
|
| 320 |
fprintf('\n Local parameter changes:\n')
|
|
| 321 |
for i=1:length(paramChanges) |
|
| 322 |
disp(paramChanges{i})
|
|
| 323 |
end |
|
| 324 |
end |
|
| 325 |
end |
|
| 326 |
|
|
| 327 |
% for backward compatibility |
|
| 328 |
experiment.comparisonData=[]; |
|
| parameterStore/MAPparamsPL.m | ||
|---|---|---|
| 1 |
function method=MAPparamsPL ... |
|
| 2 |
(BFlist, sampleRate, showParams, paramChanges) |
|
| 3 |
% MAPparamsPL.m is a parameter file, similar in all respects to |
|
| 4 |
% MAPparamsNormal except that a primary-like' neuron is used at the |
|
| 5 |
% level of the cochlear nuclues (rather than a chopper cell). |
|
| 6 |
% |
|
| 7 |
% MAPparams<> establishes a complete set of MAP parameters |
|
| 8 |
% Parameter file names must be of the form <MAPparams><name> |
|
| 9 |
% |
|
| 10 |
% Input arguments |
|
| 11 |
% BFlist (optional) specifies the desired list of channel BFs |
|
| 12 |
% otherwise defaults set below |
|
| 13 |
% sampleRate (optional), default is 50000. |
|
| 14 |
% showParams (optional) =1 prints out the complete set of parameters |
|
| 15 |
% Output argument |
|
| 16 |
% method passes a miscelleny of values |
|
| 17 |
% the use of 'method' is being phased out. use globals |
|
| 18 |
|
|
| 19 |
global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams |
|
| 20 |
global IHCpreSynapseParams AN_IHCsynapseParams |
|
| 21 |
global MacGregorParams MacGregorMultiParams filteredSACFParams |
|
| 22 |
global experiment % used only by calls from multiThreshold |
|
| 23 |
% global IHC_VResp_VivoParams |
|
| 24 |
|
|
| 25 |
currentFile=mfilename; % i.e. the name of this mfile |
|
| 26 |
method.parameterSource=currentFile(10:end); % for the record |
|
| 27 |
|
|
| 28 |
efferentDelay=0.010; |
|
| 29 |
method.segmentDuration=efferentDelay; |
|
| 30 |
|
|
| 31 |
if nargin<3, showParams=0; end |
|
| 32 |
if nargin<2, sampleRate=50000; end |
|
| 33 |
if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default |
|
| 34 |
lowestBF=250; highestBF= 8000; numChannels=21; |
|
| 35 |
% 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000 |
|
| 36 |
BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels)); |
|
| 37 |
end |
|
| 38 |
% BFlist=1000; % single channel option |
|
| 39 |
|
|
| 40 |
% preserve for backward campatibility |
|
| 41 |
method.nonlinCF=BFlist; |
|
| 42 |
method.dt=1/sampleRate; |
|
| 43 |
|
|
| 44 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
| 45 |
% set model parameters |
|
| 46 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
| 47 |
|
|
| 48 |
%% #1 inputStimulus |
|
| 49 |
inputStimulusParams=[]; |
|
| 50 |
inputStimulusParams.sampleRate= sampleRate; |
|
| 51 |
|
|
| 52 |
%% #2 outerMiddleEar |
|
| 53 |
OMEParams=[]; % clear the structure first |
|
| 54 |
% outer ear resonances band pass filter [gain lp order hp] |
|
| 55 |
OMEParams.externalResonanceFilters= [ 10 1 1000 4000]; |
|
| 56 |
|
|
| 57 |
% highpass stapes filter |
|
| 58 |
% Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL) |
|
| 59 |
OMEParams.OMEstapesHPcutoff= 1000; |
|
| 60 |
OMEParams.stapesScalar= 45e-9; |
|
| 61 |
|
|
| 62 |
% Acoustic reflex: maximum attenuation should be around 25 dB (Price, 1966) |
|
| 63 |
% i.e. a minimum ratio of 0.056. |
|
| 64 |
% 'spikes' model: AR based on brainstem spiking activity (LSR) |
|
| 65 |
OMEParams.rateToAttenuationFactor=0.05; % * N(all ICspikes) |
|
| 66 |
% 'probability model': Ar based on AN firing probabilities (LSR) |
|
| 67 |
OMEParams.rateToAttenuationFactorProb=0.02; % * N(all ANrates) |
|
| 68 |
|
|
| 69 |
% asymptote should be around 100-200 ms |
|
| 70 |
OMEParams.ARtau=.250; % AR smoothing function 250 ms fits Hung and Dallos |
|
| 71 |
% delay must be longer than the segment length |
|
| 72 |
OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency |
|
| 73 |
OMEParams.ARrateThreshold=40; |
|
| 74 |
|
|
| 75 |
%% #3 DRNL |
|
| 76 |
DRNLParams=[]; % clear the structure first |
|
| 77 |
% DRNLParams.BFlist=BFlist; |
|
| 78 |
|
|
| 79 |
% *** DRNL nonlinear path |
|
| 80 |
% broken stick compression |
|
| 81 |
DRNLParams.a=2e4; % DRNL.a=0 means no OHCs (no nonlinear path) |
|
| 82 |
DRNLParams.c=.2; % compression exponent |
|
| 83 |
DRNLParams.ctBMdB = 10; %Compression threshold dB re 10e-9 m displacement |
|
| 84 |
|
|
| 85 |
% filters |
|
| 86 |
DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters |
|
| 87 |
DRNLParams.nonlinCFs=BFlist; |
|
| 88 |
DRNLParams.p=0.2895; DRNLParams.q=250; % save p and q for printing only |
|
| 89 |
% p=0.2895; q=250; % human (% p=0.14; q=366; % cat) |
|
| 90 |
DRNLParams.nlBWs= DRNLParams.p * BFlist + DRNLParams.q; |
|
| 91 |
|
|
| 92 |
% *** DRNL linear path: |
|
| 93 |
DRNLParams.g=100; % linear path gain factor |
|
| 94 |
DRNLParams.linOrder=3; % order of linear gammatone filters |
|
| 95 |
% linCF is not necessarily the same as nonlinCF |
|
| 96 |
minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz |
|
| 97 |
DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist; |
|
| 98 |
% bandwidths (linear) |
|
| 99 |
minLinBW=100; coeffLinBW=0.6531; |
|
| 100 |
DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters |
|
| 101 |
|
|
| 102 |
% *** DRNL MOC efferents |
|
| 103 |
DRNLParams.MOCdelay = efferentDelay; % must be < segment length! |
|
| 104 |
DRNLParams.minMOCattenuationdB=-35; |
|
| 105 |
|
|
| 106 |
% 'spikes' model: MOC based on brainstem spiking activity (HSR) |
|
| 107 |
DRNLParams.MOCtau =.0285; % smoothing for MOC |
|
| 108 |
DRNLParams.rateToAttenuationFactor = .03; % strength of MOC |
|
| 109 |
DRNLParams.rateToAttenuationFactor = .0055; % strength of MOC |
|
| 110 |
|
|
| 111 |
% 'probability' model: MOC based on AN probability (HSR) |
|
| 112 |
DRNLParams.MOCtauProb =.285; % smoothing for MOC |
|
| 113 |
DRNLParams.rateToAttenuationFactorProb = 0.007; % strength of MOC |
|
| 114 |
DRNLParams.MOCrateThresholdProb =67; % spikes/s probability only |
|
| 115 |
|
|
| 116 |
|
|
| 117 |
%% #4 IHC_cilia_RPParams |
|
| 118 |
IHC_cilia_RPParams.tc= 0.00012; % 0.0003 Shamma |
|
| 119 |
IHC_cilia_RPParams.C= 0.08; % 0.1 scalar (C_cilia ) |
|
| 120 |
IHC_cilia_RPParams.u0= 5e-9; |
|
| 121 |
IHC_cilia_RPParams.s0= 30e-9; |
|
| 122 |
IHC_cilia_RPParams.u1= 1e-9; |
|
| 123 |
IHC_cilia_RPParams.s1= 1e-9; |
|
| 124 |
|
|
| 125 |
IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens) |
|
| 126 |
IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance |
|
| 127 |
IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance |
|
| 128 |
|
|
| 129 |
% #5 IHC_RP |
|
| 130 |
IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F) |
|
| 131 |
% IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F) |
|
| 132 |
IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V) |
|
| 133 |
|
|
| 134 |
IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S) |
|
| 135 |
IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential |
|
| 136 |
IHC_cilia_RPParams.Rpc= 0.04; % combined resistances |
|
| 137 |
|
|
| 138 |
|
|
| 139 |
%% #5 IHCpreSynapse |
|
| 140 |
IHCpreSynapseParams=[]; |
|
| 141 |
IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance |
|
| 142 |
% IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance |
|
| 143 |
IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential |
|
| 144 |
IHCpreSynapseParams.beta= 400; % determine Ca channel opening |
|
| 145 |
IHCpreSynapseParams.gamma= 100; % determine Ca channel opening |
|
| 146 |
IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms |
|
| 147 |
IHCpreSynapseParams.power= 3; |
|
| 148 |
% reminder: changing z has a strong effect on HF thresholds (like Et) |
|
| 149 |
IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate |
|
| 150 |
|
|
| 151 |
LSRtauCa=30e-6; HSRtauCa=80e-6; % seconds |
|
| 152 |
% LSRtauCa=40e-6; HSRtauCa=90e-6; % seconds |
|
| 153 |
% IHCpreSynapseParams.tauCa= [15e-6 80e-6]; %LSR and HSR fiber |
|
| 154 |
IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber |
|
| 155 |
|
|
| 156 |
%% #6 AN_IHCsynapse |
|
| 157 |
AN_IHCsynapseParams=[]; % clear the structure first |
|
| 158 |
% number of AN fibers at each BF (used only for spike generation) |
|
| 159 |
AN_IHCsynapseParams.numFibers= 100; |
|
| 160 |
% absolute refractory period. Relative refractory period is the same. |
|
| 161 |
AN_IHCsynapseParams.refractory_period= 0.00075; |
|
| 162 |
AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike |
|
| 163 |
AN_IHCsynapseParams.spikesTargetSampleRate=sampleRate; |
|
| 164 |
% AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes. |
|
| 165 |
|
|
| 166 |
% c=kym/(y(l+r)+kl) (spontaneous rate) |
|
| 167 |
% c=(approx) ym/l (saturated rate) |
|
| 168 |
AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse |
|
| 169 |
AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate |
|
| 170 |
AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate |
|
| 171 |
|
|
| 172 |
AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store |
|
| 173 |
AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store |
|
| 174 |
|
|
| 175 |
% reduce l to increase saturated rate |
|
| 176 |
AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft |
|
| 177 |
AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft |
|
| 178 |
|
|
| 179 |
AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell |
|
| 180 |
% AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell |
|
| 181 |
|
|
| 182 |
|
|
| 183 |
%% #7 MacGregorMulti (first order brainstem neurons) |
|
| 184 |
MacGregorMultiParams=[]; |
|
| 185 |
% MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose |
|
| 186 |
MacGregorMultiType='primary-like'; % MacGregorMultiType='primary-like'; %choose |
|
| 187 |
switch MacGregorMultiType |
|
| 188 |
case 'primary-like' |
|
| 189 |
MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF |
|
| 190 |
MacGregorMultiParams.type = 'primary-like cell'; |
|
| 191 |
MacGregorMultiParams.fibersPerNeuron=4; % N input fibers |
|
| 192 |
MacGregorMultiParams.dendriteLPfreq=500; % dendritic filter |
|
| 193 |
MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike |
|
| 194 |
MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens) |
|
| 195 |
MacGregorMultiParams.tauM=5e-4; % membrane time constant (s) |
|
| 196 |
MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) |
|
| 197 |
MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S |
|
| 198 |
MacGregorMultiParams.tauGk= 0.0005; % K+ conductance tau (s) |
|
| 199 |
MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) |
|
| 200 |
MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V) |
|
| 201 |
MacGregorMultiParams.tauTh= 0.015; % variable threshold tau |
|
| 202 |
MacGregorMultiParams.Er=-0.06; % resting potential (V) |
|
| 203 |
MacGregorMultiParams.Eb=0.06; % spike height (V) |
|
| 204 |
|
|
| 205 |
case 'chopper' |
|
| 206 |
MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF |
|
| 207 |
MacGregorMultiParams.type = 'chopper cell'; |
|
| 208 |
MacGregorMultiParams.fibersPerNeuron=10; % N input fibers |
|
| 209 |
|
|
| 210 |
MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter |
|
| 211 |
MacGregorMultiParams.currentPerSpike=28e-9; % *per spike |
|
| 212 |
% MacGregorMultiParams.currentPerSpike=30e-9; % *per spike |
|
| 213 |
|
|
| 214 |
MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens) |
|
| 215 |
MacGregorMultiParams.tauM=0.002; % membrane time constant (s) |
|
| 216 |
MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) |
|
| 217 |
MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S |
|
| 218 |
MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s) |
|
| 219 |
MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) |
|
| 220 |
MacGregorMultiParams.c= 0; % threshold shift on spike, (V) |
|
| 221 |
MacGregorMultiParams.tauTh= 0.02; % variable threshold tau |
|
| 222 |
MacGregorMultiParams.Er=-0.06; % resting potential (V) |
|
| 223 |
MacGregorMultiParams.Eb=0.06; % spike height (V) |
|
| 224 |
MacGregorMultiParams.PSTHbinWidth= 1e-4; |
|
| 225 |
end |
|
| 226 |
|
|
| 227 |
%% #8 MacGregor (second-order neuron). Only one per channel |
|
| 228 |
MacGregorParams=[]; % clear the structure first |
|
| 229 |
MacGregorParams.type = 'chopper cell'; |
|
| 230 |
MacGregorParams.fibersPerNeuron=10; % N input fibers |
|
| 231 |
MacGregorParams.dendriteLPfreq=100; % dendritic filter |
|
| 232 |
MacGregorParams.currentPerSpike=40e-9;% *(A) per spike |
|
| 233 |
|
|
| 234 |
MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens) |
|
| 235 |
MacGregorParams.tauM=0.002; % membrane time constant (s) |
|
| 236 |
MacGregorParams.Ek=-0.01; % K+ eq. potential (V) |
|
| 237 |
MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S |
|
| 238 |
MacGregorParams.tauGk= 0.0012; % K+ conductance tau (s) |
|
| 239 |
MacGregorParams.Th0= 0.01; % equilibrium threshold (V) |
|
| 240 |
MacGregorParams.c= 0; % threshold shift on spike, (V) |
|
| 241 |
MacGregorParams.tauTh= 0.02; % variable threshold tau |
|
| 242 |
MacGregorParams.Er=-0.06; % resting potential (V) |
|
| 243 |
MacGregorParams.Eb=0.06; % spike height (V) |
|
| 244 |
MacGregorParams.debugging=0; % (special) |
|
| 245 |
% wideband accepts input from all channels (of same fiber type) |
|
| 246 |
% use wideband to create inhibitory units |
|
| 247 |
MacGregorParams.wideband=0; % special for wideband units |
|
| 248 |
% MacGregorParams.saveAllData=0; |
|
| 249 |
|
|
| 250 |
%% #9 filteredSACF |
|
| 251 |
minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags |
|
| 252 |
pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches)); |
|
| 253 |
filteredSACFParams.lags=1./pitches; % autocorrelation lags vector |
|
| 254 |
filteredSACFParams.acfTau= .003; % time constant of running ACF |
|
| 255 |
filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF |
|
| 256 |
filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs |
|
| 257 |
filteredSACFParams.plotACFs=0; % special plot (see code) |
|
| 258 |
% filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags |
|
| 259 |
filteredSACFParams.lagsProcedure= 'useAllLags'; |
|
| 260 |
% filteredSACFParams.lagsProcedure= 'omitShortLags'; |
|
| 261 |
filteredSACFParams.criterionForOmittingLags=3; |
|
| 262 |
|
|
| 263 |
% checks |
|
| 264 |
if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron |
|
| 265 |
error('MacGregorMulti: too few input fibers for input to MacG unit')
|
|
| 266 |
end |
|
| 267 |
|
|
| 268 |
|
|
| 269 |
%% now accept last minute parameter changes required by the calling program |
|
| 270 |
% paramChanges |
|
| 271 |
if nargin>3 && ~isempty(paramChanges) |
|
| 272 |
if ~iscellstr(paramChanges) |
|
| 273 |
error('paramChanges error: paramChanges not a cell array')
|
|
| 274 |
end |
|
| 275 |
|
|
| 276 |
nChanges=length(paramChanges); |
|
| 277 |
for idx=1:nChanges |
|
| 278 |
x=paramChanges{idx};
|
|
| 279 |
x=deblank(x); |
|
| 280 |
if ~isempty(x) |
|
| 281 |
if ~strcmp(x(end),';') |
|
| 282 |
error(['paramChanges error (terminate with semicolon) ' x]) |
|
| 283 |
end |
|
| 284 |
st=strtrim(x(1:strfind(x,'.')-1)); |
|
| 285 |
fld=strtrim(x(strfind(x,'.')+1:strfind(x,'=')-1)); |
|
| 286 |
value=x(strfind(x,'=')+1:end); |
|
| 287 |
if isempty(st) || isempty(fld) || isempty(value) |
|
| 288 |
error(['paramChanges error:' x]) |
|
| 289 |
end |
|
| 290 |
|
|
| 291 |
x1=eval(['isstruct(' st ')']);
|
|
| 292 |
cmd=['isfield(' st ',''' fld ''')'];
|
|
| 293 |
x2=eval(cmd); |
|
| 294 |
if ~(x1*x2) |
|
| 295 |
error(['paramChanges error:' x]) |
|
| 296 |
end |
|
| 297 |
end |
|
| 298 |
|
|
| 299 |
% no problems so go ahead |
|
| 300 |
eval(paramChanges{idx})
|
|
| 301 |
end |
|
| 302 |
end |
|
| 303 |
|
|
| 304 |
|
|
| 305 |
%% write all parameters to the command window |
|
| 306 |
% showParams is currently set at the top of htis function |
|
| 307 |
if showParams |
|
| 308 |
fprintf('\n %%%%%%%%\n')
|
|
| 309 |
fprintf('\n%s\n', method.parameterSource)
|
|
| 310 |
fprintf('\n')
|
|
| 311 |
nm=UTIL_paramsList(whos); |
|
| 312 |
for i=1:length(nm) |
|
| 313 |
% eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
|
|
| 314 |
if ~strcmp(nm(i), 'method') |
|
| 315 |
eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
|
|
| 316 |
end |
|
| 317 |
end |
|
| 318 |
|
|
| 319 |
% highlight parameter changes made locally |
|
| 320 |
if nargin>3 && ~isempty(paramChanges) |
|
| 321 |
fprintf('\n Local parameter changes:\n')
|
|
| 322 |
for i=1:length(paramChanges) |
|
| 323 |
disp(paramChanges{i})
|
|
| 324 |
end |
|
| 325 |
end |
|
| 326 |
end |
|
| 327 |
|
|
| 328 |
% for backward compatibility |
|
| 329 |
experiment.comparisonData=[]; |
|
Also available in: Unified diff