To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / Induction.cpp @ 23:633ec097fa56
History | View | Annotate | Download (7.29 KB)
| 1 |
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
|---|---|
| 2 |
|
| 3 |
/*
|
| 4 |
Vamp feature extraction plugin for the BeatRoot beat tracker.
|
| 5 |
|
| 6 |
Centre for Digital Music, Queen Mary, University of London.
|
| 7 |
This file copyright 2011 Simon Dixon, Chris Cannam and QMUL.
|
| 8 |
|
| 9 |
This program is free software; you can redistribute it and/or
|
| 10 |
modify it under the terms of the GNU General Public License as
|
| 11 |
published by the Free Software Foundation; either version 2 of the
|
| 12 |
License, or (at your option) any later version. See the file
|
| 13 |
COPYING included with this distribution for more information.
|
| 14 |
*/
|
| 15 |
|
| 16 |
#include "Induction.h" |
| 17 |
|
| 18 |
double Induction::clusterWidth = 0.025; |
| 19 |
double Induction::minIOI = 0.070; |
| 20 |
double Induction::maxIOI = 2.500; |
| 21 |
double Induction::minIBI = 0.3; |
| 22 |
double Induction::maxIBI = 1.0; |
| 23 |
int Induction::topN = 10; |
| 24 |
|
| 25 |
|
| 26 |
AgentList Induction::beatInduction(AgentParameters params, EventList events) {
|
| 27 |
int i, j, b, bestCount;
|
| 28 |
bool submult;
|
| 29 |
int intervals = 0; // number of interval clusters |
| 30 |
vector<int> bestn;// count of high-scoring clusters |
| 31 |
bestn.resize(topN); |
| 32 |
|
| 33 |
double ratio, err;
|
| 34 |
int degree;
|
| 35 |
int maxClusterCount = (int) ceil((maxIOI - minIOI) / clusterWidth); |
| 36 |
vector<double> clusterMean;
|
| 37 |
clusterMean.resize(maxClusterCount); |
| 38 |
vector<int> clusterSize;
|
| 39 |
clusterSize.resize(maxClusterCount); |
| 40 |
vector<int> clusterScore;
|
| 41 |
clusterScore.resize(maxClusterCount); |
| 42 |
|
| 43 |
EventList::iterator ptr1, ptr2; |
| 44 |
Event e1, e2; |
| 45 |
ptr1 = events.begin(); |
| 46 |
while (ptr1 != events.end()) {
|
| 47 |
e1 = *ptr1; |
| 48 |
++ptr1; |
| 49 |
ptr2 = events.begin(); |
| 50 |
e2 = *ptr2; |
| 51 |
++ptr2; |
| 52 |
while (e2 != e1 && ptr2 != events.end()) {
|
| 53 |
e2 = *ptr2; |
| 54 |
++ptr2; |
| 55 |
} |
| 56 |
while (ptr2 != events.end()) {
|
| 57 |
e2 = *ptr2; |
| 58 |
++ptr2; |
| 59 |
double ioi = e2.time - e1.time;
|
| 60 |
if (ioi < minIOI) // skip short intervals |
| 61 |
continue;
|
| 62 |
if (ioi > maxIOI) // ioi too long |
| 63 |
break;
|
| 64 |
for (b = 0; b < intervals; b++) // assign to nearest cluster |
| 65 |
if (fabs(clusterMean[b] - ioi) < clusterWidth) {
|
| 66 |
if ((b < intervals - 1) && ( |
| 67 |
fabs(clusterMean[b+1] - ioi) <
|
| 68 |
fabs(clusterMean[b] - ioi))) |
| 69 |
b++; // next cluster is closer
|
| 70 |
clusterMean[b] = (clusterMean[b] * clusterSize[b] +ioi)/ |
| 71 |
(clusterSize[b] + 1);
|
| 72 |
clusterSize[b]++; |
| 73 |
break;
|
| 74 |
} |
| 75 |
if (b == intervals) { // no suitable cluster; create new one |
| 76 |
if (intervals == maxClusterCount) {
|
| 77 |
// System.err.println("Warning: Too many clusters");
|
| 78 |
continue; // ignore this IOI |
| 79 |
} |
| 80 |
intervals++; |
| 81 |
for ( ; (b>0) && (clusterMean[b-1] > ioi); b--) { |
| 82 |
clusterMean[b] = clusterMean[b-1];
|
| 83 |
clusterSize[b] = clusterSize[b-1];
|
| 84 |
} |
| 85 |
clusterMean[b] = ioi; |
| 86 |
clusterSize[b] = 1;
|
| 87 |
} |
| 88 |
} |
| 89 |
} |
| 90 |
for (b = 0; b < intervals; b++) // merge similar intervals |
| 91 |
// TODO: they are now in order, so don't need the 2nd loop
|
| 92 |
// TODO: check BOTH sides before averaging or upper gps don't work
|
| 93 |
for (i = b+1; i < intervals; i++) |
| 94 |
if (fabs(clusterMean[b] - clusterMean[i]) < clusterWidth) {
|
| 95 |
clusterMean[b] = (clusterMean[b] * clusterSize[b] + |
| 96 |
clusterMean[i] * clusterSize[i]) / |
| 97 |
(clusterSize[b] + clusterSize[i]); |
| 98 |
clusterSize[b] = clusterSize[b] + clusterSize[i]; |
| 99 |
--intervals; |
| 100 |
for (j = i+1; j <= intervals; j++) { |
| 101 |
clusterMean[j-1] = clusterMean[j];
|
| 102 |
clusterSize[j-1] = clusterSize[j];
|
| 103 |
} |
| 104 |
} |
| 105 |
if (intervals == 0) |
| 106 |
return AgentList();
|
| 107 |
for (b = 0; b < intervals; b++) |
| 108 |
clusterScore[b] = 10 * clusterSize[b];
|
| 109 |
bestn[0] = 0; |
| 110 |
bestCount = 1;
|
| 111 |
for (b = 0; b < intervals; b++) |
| 112 |
for (i = 0; i <= bestCount; i++) |
| 113 |
if ((i < topN) && ((i == bestCount) ||
|
| 114 |
(clusterScore[b] > clusterScore[bestn[i]]))){
|
| 115 |
if (bestCount < topN)
|
| 116 |
bestCount++; |
| 117 |
for (j = bestCount - 1; j > i; j--) |
| 118 |
bestn[j] = bestn[j-1];
|
| 119 |
bestn[i] = b; |
| 120 |
break;
|
| 121 |
} |
| 122 |
for (b = 0; b < intervals; b++) // score intervals |
| 123 |
for (i = b+1; i < intervals; i++) { |
| 124 |
ratio = clusterMean[b] / clusterMean[i]; |
| 125 |
submult = ratio < 1;
|
| 126 |
if (submult)
|
| 127 |
degree = (int) nearbyint(1/ratio); |
| 128 |
else
|
| 129 |
degree = (int) nearbyint(ratio);
|
| 130 |
if ((degree >= 2) && (degree <= 8)) { |
| 131 |
if (submult)
|
| 132 |
err = fabs(clusterMean[b]*degree - clusterMean[i]); |
| 133 |
else
|
| 134 |
err = fabs(clusterMean[b] - clusterMean[i]*degree); |
| 135 |
if (err < (submult? clusterWidth : clusterWidth * degree)) {
|
| 136 |
if (degree >= 5) |
| 137 |
degree = 1;
|
| 138 |
else
|
| 139 |
degree = 6 - degree;
|
| 140 |
clusterScore[b] += degree * clusterSize[i]; |
| 141 |
clusterScore[i] += degree * clusterSize[b]; |
| 142 |
} |
| 143 |
} |
| 144 |
} |
| 145 |
|
| 146 |
AgentList a; |
| 147 |
for (int index = 0; index < bestCount; index++) { |
| 148 |
b = bestn[index]; |
| 149 |
// Adjust it, using the size of super- and sub-intervals
|
| 150 |
double newSum = clusterMean[b] * clusterScore[b];
|
| 151 |
int newCount = clusterSize[b];
|
| 152 |
int newWeight = clusterScore[b];
|
| 153 |
for (i = 0; i < intervals; i++) { |
| 154 |
if (i == b)
|
| 155 |
continue;
|
| 156 |
ratio = clusterMean[b] / clusterMean[i]; |
| 157 |
if (ratio < 1) { |
| 158 |
degree = (int) nearbyint(1 / ratio); |
| 159 |
if ((degree >= 2) && (degree <= 8)) { |
| 160 |
err = fabs(clusterMean[b]*degree - clusterMean[i]); |
| 161 |
if (err < clusterWidth) {
|
| 162 |
newSum += clusterMean[i] / degree * clusterScore[i]; |
| 163 |
newCount += clusterSize[i]; |
| 164 |
newWeight += clusterScore[i]; |
| 165 |
} |
| 166 |
} |
| 167 |
} else {
|
| 168 |
degree = (int) nearbyint(ratio);
|
| 169 |
if ((degree >= 2) && (degree <= 8)) { |
| 170 |
err = fabs(clusterMean[b] - degree*clusterMean[i]); |
| 171 |
if (err < clusterWidth * degree) {
|
| 172 |
newSum += clusterMean[i] * degree * clusterScore[i]; |
| 173 |
newCount += clusterSize[i]; |
| 174 |
newWeight += clusterScore[i]; |
| 175 |
} |
| 176 |
} |
| 177 |
} |
| 178 |
} |
| 179 |
double beat = newSum / newWeight;
|
| 180 |
// Scale within range ... hope the grouping isn't ternary :(
|
| 181 |
while (beat < minIBI) // Maximum speed |
| 182 |
beat *= 2.0; |
| 183 |
while (beat > maxIBI) // Minimum speed |
| 184 |
beat /= 2.0; |
| 185 |
if (beat >= minIBI) {
|
| 186 |
a.push_back(new Agent(params, beat));
|
| 187 |
} |
| 188 |
} |
| 189 |
#ifdef DEBUG_BEATROOT
|
| 190 |
std::cerr << "Induction complete, returning " << a.size() << " agent(s)" << std::endl; |
| 191 |
#endif
|
| 192 |
return a;
|
| 193 |
} // beatInduction()
|
| 194 |
|