To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

The primary repository for this project is hosted at https://github.com/Codasign/york-software-bootcamp-audio-day.git .
This repository is a read-only copy which is updated automatically every hour.

Statistics Download as Zip
| Branch: | Revision:

root / 5-basic-numpy.py @ 4:2b996e1d64da

History | View | Annotate | Download (1.05 KB)

1
import numpy as np
2

    
3

    
4
#################################################
5
############# NUMPY ARRAYS FOR AUDIO? ###########
6
#################################################
7

    
8
# I am a numpy array containing some audio
9
myAudio = np.array([-0.25,0.0,0.25,0.5])
10

    
11
# turn it up!
12
myAudio = myAudio*2.
13

    
14
# great!
15
print myAudio
16

    
17

    
18
# what can we find out about our numpy audio?
19

    
20

    
21
print "Dimensions: ",myAudio.ndim
22

    
23
print "Size of each dimension: ",myAudio.shape
24

    
25
print "Total number of elements: ", myAudio.size # this is product of shape dimensions
26

    
27
print "Data type: ",myAudio.dtype # ...or dtype.name
28

    
29
print "Bytes per element: ",myAudio.itemsize 
30

    
31
print "Second element: ",myAudio[1]
32

    
33
print "All elements up to (but not including) 2: ",myAudio[:2]
34

    
35
print "All elements from index 2 to end: ",myAudio[2:]
36

    
37
print "Abs!: ",np.abs(myAudio)
38

    
39
print "Min: ",np.min(myAudio)
40

    
41
print "Max: ",np.max(myAudio)
42

    
43
print "Sum: ",np.sum(myAudio)
44

    
45
print "Sqrt: ",np.sqrt(9)
46

    
47
print "FFT!: ",np.fft.fft(myAudio)
48

    
49
print "Random!: ",np.random.random(4)
50

    
51
print "Ones: ",np.ones(4)
52

    
53
print "Zeros: ",np.zeros(4)