
Bela - Bug #1333
rt_printf and audio glitches
2015-07-15 09:37 PM - Giulio Moro

Status: Closed Start date: 2015-07-15
Priority: Low Due date:
Assignee: % Done: 0%
Category: Estimated time: 0.00 hour
Target version:
Description

 rt_printf() and audio glitches
When printing to the console in BeagleRT you should always use the Xenomai functions rt_printf() and rt_sprintf() instead of their
corresponding printf()/sprintf(). This improves performances quite a lot as this way they are handled directly by Xenomai and there is
no need to switch back to the Linux kernel and then back again to Xenomai.
Despite this, sometimes glitches in the audio can still be heard when using rt_printf() in the audio thread. This is especially true when
printing long strings and/or the number of frames per block is very small.
For instance, the code below will cause a click in the audio for each rt_printf when run with ./BeagleRT -p 1 (2 sample long audio
blocks)
The code is printing a long string on purpose. Shorter strings will cause less issues, but will still occasionaly cause glitches. I use a
trick to force the compiler not to optimize out the CPU cycles I am wasting on purpose!
If you take out the for loop with the 24 sinewaves, performances will improve, but you will still have some clicks from time to time:
this means that glitches do NOT occur ONLY when the system is overloaded to full CPU usage.

A solution to this is not to put rt_printf() statements in the audio thread if you really need to run your code with a frame size of two
samples (-p 1). If you run the program with larger block sizes you will probably not encounter any issues. In case you need your code
to run with a small block size and print to the console, the best option is to have the rt_printf() statements executed in a separate
thread with low priority. You can use BeagleRT's AuxiliaryTask for this (which builds on Xenomai's threading infrastructure) and
schedule an auxiliary task with low priority whenever you need to print.

int gCount=0;
void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
 uint16_t *matrixIn, uint16_t *matrixOut)
{
 for(int n = 0; n < numAudioFrames; n++) {
 float out = 0.8f * sinf(gPhase);
 float out2=0.1;
 for(int i=0; i<24; i++){
 out2=sinf(out2+gPhase); //Waste some CPU cycles. We need to prevent the compiler from optimizing this, so
we always reuse the previous output as an input ...
 }
 out = 0.8f * sinf(gPhase);
 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
 if(gPhase > 2.0 * M_PI)
 gPhase -= 2.0 * M_PI;

 audioOut[n * gNumAudioChannels] = out;
 audioOut[n * gNumAudioChannels + 1] = out2/1000000000 + out; //and here we "mix in" some of out2 so the
compiler does not optimize it out
 gCount++;
 if(0==(gCount&32767))
 rt_printf("%d abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz\n",gCount);
 }
}

History
#1 - 2016-06-25 08:38 PM - Giulio Moro
- Status changed from New to Closed

2024-04-11 1/2

Just keep in mind that CPU time is finite and printing takes time, regardless of the fact that it is handled by xenomai or kernel. So just don't overdo it.

2024-04-11 2/2

