Mercurial > hg > x
diff fft.cpp @ 1:6422640a802f
first upload
author | Wen X <xue.wen@elec.qmul.ac.uk> |
---|---|
date | Tue, 05 Oct 2010 10:45:57 +0100 |
parents | |
children | fc19d45615d1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fft.cpp Tue Oct 05 10:45:57 2010 +0100 @@ -0,0 +1,1159 @@ +//--------------------------------------------------------------------------- + +#include <mem.h> +#include <stdlib.h> +#include "fft.h" + +//--------------------------------------------------------------------------- +/* + function Atan2: (0, 0)-safe atan2 + + Returns 0 is x=y=0, atan2(x,y) otherwise. +*/ +double Atan2(double y, double x) +{ + if (x==0 && y==0) return 0; + else return atan2(y, x); +}//Atan2 + +/* + function BitInv: inverse bit order of Value within an $Order-bit expression. + + In: integer Value smaller than 2^Order + + Returns an integer whose lowest Order bits are the lowest Order bits of Value in reverse order. +*/ +int BitInv(int Value, int Order) +{ + int Result; + Result=0; + for (int i=0;i<Order;i++) + { + Result=(Result<<1)+(Value&0x00000001); + Value=Value>>1; + } + return Result; +}//BitInv + +/* + function SetTwiddleFactors: fill w[N/2] with twiddle factors used in N-point complex FFT. + + In: N + Out: array w[N/2] containing twiddle factors + + No return value. +*/ +void SetTwiddleFactors(int N, cdouble* w) +{ + double ep=-M_PI*2/N; + for (int i=0; i<N/2; i++) + { + double tmp=ep*i; + w[i].x=cos(tmp), w[i].y=sin(tmp); + } +}//SetTwiddleFactors + +//--------------------------------------------------------------------------- +/* + function CFFTCbii: basic complex DIF-FFT module, applied after bit-inversed ordering of inputs + + In: Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + X[Wid]: complex waveform + Out: X[Wid]: complex spectrum + + No return value. +*/ +void CFFTCbii(int Order, cdouble* W, cdouble* X) +{ + int i, j, k, ElemsPerGroup, Groups, X0, X1, X2; + cdouble Temp; + for (i=0; i<Order; i++) + { + ElemsPerGroup=1<<i; + Groups=1<<(Order-i-1); + X0=0; + for (j=0; j<Groups; j++) + { + for (k=0; k<ElemsPerGroup; k++) + { + int kGroups=k*Groups; + X1=X0+k; + X2=X1+ElemsPerGroup; + //X(X2)<-X(X2)*W + Temp.x=X[X2].x*W[kGroups].x-X[X2].y*W[kGroups].y, + X[X2].y=X[X2].x*W[kGroups].y+X[X2].y*W[kGroups].x; + X[X2].x=Temp.x; + Temp.x=X[X1].x+X[X2].x, Temp.y=X[X1].y+X[X2].y; + X[X2].x=X[X1].x-X[X2].x, X[X2].y=X[X1].y-X[X2].y; + X[X1]=Temp; + } + X0+=ElemsPerGroup*2; + } + } +}//CFFTCbii + +/* + function CFFTC: in-place complex FFT + + In: Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + X[Wid]: complex waveform + bitinv[Wid]: bit-inversion table + Out: X[Wid]: complex spectrum + + No return value. +*/ +void CFFTC(int Order, cdouble* W, cdouble* X, int* bitinv) +{ + int N=1<<Order, i, jj; + cdouble Temp; + int* bitinv1=bitinv; + if (!bitinv) bitinv=CreateBitInvTable(Order); + for (i=1; i<N-1; i++) + { + jj=bitinv[i]; + if (i<jj) + { + Temp=X[i]; + X[i]=X[jj]; + X[jj]=Temp; + } + } + if (!bitinv1) free(bitinv); + CFFTCbii(Order, W, X); +}//CFFTC + +/* + function CFFTC: complex FFT + + In: Input[Wid]: complex waveform + Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + bitinv[Wid]: bit-inversion table + Out:X[Wid]: complex spectrum + Amp[Wid]: amplitude spectrum + Arg[Wid]: phase spectrum + + No return value. +*/ +void CFFTC(cdouble* Input, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* bitinv) +{ + int i, N=1<<Order; + + if (X!=Input) memcpy(X, Input, sizeof(cdouble)*N); + CFFTC(Order, W, X, bitinv); + + if (Amp) for (i=0; i<N; i++) Amp[i]=sqrt(X[i].x*X[i].x+X[i].y*X[i].y); + if (Arg) for (i=0; i<N; i++) Arg[i]=Atan2(X[i].y, X[i].x); +}//CFFTC + +//--------------------------------------------------------------------------- +/* + function CIFFTCbii: basic complex IFFT module, applied after bit-inversed ordering of inputs + + In: Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + X[Wid]: complex spectrum + Out: X[Wid]: complex waveform + + No return value. +*/ +void CIFFTCbii(int Order, cdouble* W, cdouble* X) +{ + int N=1<<Order, i, j, k, Groups, ElemsPerGroup, X0, X1, X2; + cdouble Temp; + + for (i=0; i<Order; i++) + { + ElemsPerGroup=1<<i; + Groups=1<<(Order-i-1); + X0=0; + for (j=0; j<Groups; j++) + { + for (k=0; k<ElemsPerGroup; k++) + { + int kGroups=k*Groups; + X1=X0+k; + X2=X1+ElemsPerGroup; + Temp.x=X[X2].x*W[kGroups].x+X[X2].y*W[kGroups].y, + X[X2].y=-X[X2].x*W[kGroups].y+X[X2].y*W[kGroups].x; + X[X2].x=Temp.x; + Temp.x=X[X1].x+X[X2].x, Temp.y=X[X1].y+X[X2].y; + X[X2].x=X[X1].x-X[X2].x, X[X2].y=X[X1].y-X[X2].y; + X[X1]=Temp; + } + X0=X0+ElemsPerGroup*2; + } + } + for (i=0; i<N; i++) + { + X[i].x/=N; + X[i].y/=N; + } +}//CIFFTCbii + +/* + function CIFFTC: in-place complex IFFT + + In: Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + X[Wid]: complex spectrum + bitinv[Wid]: bit-inversion table + Out: X[Wid]: complex waveform + + No return value. +*/ +void CIFFTC(int Order, cdouble* W, cdouble* X, int* bitinv) +{ + int N=1<<Order, i, jj, *bitinv1=bitinv; + cdouble Temp; + if (!bitinv) bitinv=CreateBitInvTable(Order); + for (i=1; i<N-1; i++) + { + jj=bitinv[i]; + if (i<jj) + { + Temp=X[i]; + X[i]=X[jj]; + X[jj]=Temp; + } + } + if (!bitinv1) free(bitinv); + CIFFTCbii(Order, W, X); +}//CIFFTC + +/* + function CIFFTC: complex IFFT + + In: Input[Wid]: complex spectrum + Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + bitinv[Wid]: bit-inversion table + Out:X[Wid]: complex waveform + + No return value. +*/ +void CIFFTC(cdouble* Input, int Order, cdouble* W, cdouble* X, int* bitinv) +{ + int N=1<<Order; + if (X!=Input) memcpy(X, Input, sizeof(cdouble)*N); + if (bitinv) CIFFTC(Order, W, X, bitinv); + else CIFFTC(Order, W, X); +}//CIFFTC + +//--------------------------------------------------------------------------- +/* + function CIFFTR: complex-to-real IFFT + + In: Input[Wid/2+1]: complex spectrum, imaginary parts of Input[0] and Input[Wid/2] are ignored + Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + hbitinv[Wid/2]: half bit-inversion table + Out:X[Wid]: real waveform + + No return value. +*/ +void CIFFTR(cdouble* Input, int Order, cdouble* W, double* X, int* hbitinv) +{ + int N=1<<Order, i, j, k, Groups, ElemsPerGroup, X0, X1, X2, *hbitinv1=hbitinv; + cdouble Temp; + + Order--; N/=2; + if (!hbitinv) hbitinv=CreateBitInvTable(Order); + + cdouble* Xc=(cdouble*)X; + + Xc[0].y=0.5*(Input[0].x-Input[N].x); + Xc[0].x=0.5*(Input[0].x+Input[N].x); + for (int i=1; i<N/2; i++) + { + double frp=Input[i].x+Input[N-i].x, frn=Input[i].x-Input[N-i].x, + fip=Input[i].y+Input[N-i].y, fin=Input[i].y-Input[N-i].y; + Xc[i].x=0.5*(frp+frn*W[i].y-fip*W[i].x); + Xc[i].y=0.5*(fin+frn*W[i].x+fip*W[i].y); + Xc[N-i].x=0.5*(frp-frn*W[i].y+fip*W[i].x); + Xc[N-i].y=0.5*(-fin+frn*W[i].x+fip*W[i].y); + } + Xc[N/2].x=Input[N/2].x; + Xc[N/2].y=-Input[N/2].y; + + ElemsPerGroup=1<<Order; + Groups=1; + + for (i=0; i<Order; i++) + { + ElemsPerGroup/=2; + X0=0; + for (j=0; j<Groups; j++) + { + int kGroups=hbitinv[j]; + for (k=0; k<ElemsPerGroup; k++) + { + X1=X0+k; + X2=X1+ElemsPerGroup; + Temp.x=Xc[X2].x*W[kGroups].x+Xc[X2].y*W[kGroups].y, + Xc[X2].y=-Xc[X2].x*W[kGroups].y+Xc[X2].y*W[kGroups].x; + Xc[X2].x=Temp.x; + Temp.x=Xc[X1].x+Xc[X2].x, Temp.y=Xc[X1].y+Xc[X2].y; + Xc[X2].x=Xc[X1].x-Xc[X2].x, Xc[X2].y=Xc[X1].y-Xc[X2].y; + Xc[X1].x=Temp.x, Xc[X1].y=Temp.y; + } + X0=X0+(ElemsPerGroup<<1); + } + Groups*=2; + } + + for (i=0; i<N; i++) + { + int jj=hbitinv[i]; + if (i<jj) + { + Temp=Xc[i]; + Xc[i]=Xc[jj]; + Xc[jj]=Temp; + } + } + double norm=1.0/N;; + N*=2; + for (int i=0; i<N; i++) X[i]*=norm; + if (!hbitinv1) free(hbitinv); +}//CIFFTR + +//--------------------------------------------------------------------------- +/* + function CreateBitInvTable: creates a table of bit-inversed integers + + In: Order: interger, equals log2(size of table) + + Returns a pointer to a newly allocated array containing the table. The returned pointer must be freed + using free(), NOT delete[]. +*/ +int* CreateBitInvTable(int Order) +{ + int N=1<<Order; + int* result=(int*)malloc(sizeof(int)*N); + for (int i=0; i<N; i++) result[i]=BitInv(i, Order); + return result; +}//CreateBitInvTable + + +//--------------------------------------------------------------------------- +/* + function RFFTC_ual: unaligned real-to-complex FFT + + In: Input[Wid]: real waveform + Order; integer, equals log2(Wid) + W[Wid/2]: twiddle factors + hbitinv[Wid/2]: half bit-inversion table + Out:X[Wid}: complex spectrum + Amp[Wid]: amplitude spectrum + Arg[Wid]: phase spetrum + + No return value. +*/ +void RFFTC_ual(double* Input, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* hbitinv) +{ + int N=1<<Order, i, j, k, *hbitinv1=hbitinv, Groups, ElemsPerGroup, X0, X1, X2; + cdouble Temp, zp, zn; + + N/=2; Order--; + + //Input being NULL implies external initialization of X. This is used by RFFTCW but is not + //recommended for external use. + if (Input) + { + if (!hbitinv) hbitinv=CreateBitInvTable(Order); + + if (Input==(double*)X) + { + //Input being identical to X is not recommended for external use. + for (int i=0; i<N; i++) + { + int bi=hbitinv[i]; + if (i<bi) {cdouble tmp=X[i]; X[i]=X[bi]; X[bi]=tmp;} + } + } + else + { + for (i=0; i<N; i++) X[i]=((cdouble*)Input)[hbitinv[i]]; + } + if (!hbitinv1) free(hbitinv); + } + + for (i=0; i<Order; i++) + { + ElemsPerGroup=1<<i; + Groups=1<<(Order-i-1); + X0=0; + for (j=0; j<Groups; j++) + { + for (k=0; k<ElemsPerGroup; k++) + { + X1=X0+k; + X2=X1+ElemsPerGroup; + int kGroups=k*2*Groups; + Temp.x=X[X2].x*W[kGroups].x-X[X2].y*W[kGroups].y, + X[X2].y=X[X2].x*W[kGroups].y+X[X2].y*W[kGroups].x; + X[X2].x=Temp.x; + Temp.x=X[X1].x+X[X2].x, Temp.y=X[X1].y+X[X2].y; + X[X2].x=X[X1].x-X[X2].x, X[X2].y=X[X1].y-X[X2].y; + X[X1]=Temp; + } + X0=X0+(ElemsPerGroup<<1); + } + } + zp.x=X[0].x+X[0].y, zn.x=X[0].x-X[0].y; + X[0].x=zp.x; + X[0].y=0; + X[N].x=zn.x; + X[N].y=0; + for (int k=1; k<N/2; k++) + { + zp.x=X[k].x+X[N-k].x, zn.x=X[k].x-X[N-k].x, + zp.y=X[k].y+X[N-k].y, zn.y=X[k].y-X[N-k].y; + X[k].x=0.5*(zp.x+W[k].y*zn.x+W[k].x*zp.y); + X[k].y=0.5*(zn.y-W[k].x*zn.x+W[k].y*zp.y); + X[N-k].x=0.5*(zp.x-W[k].y*zn.x-W[k].x*zp.y); + X[N-k].y=0.5*(-zn.y-W[k].x*zn.x+W[k].y*zp.y); + } + //X[N/2].x=X[N/2].x; + X[N/2].y=-X[N/2].y; + N*=2; + + for (int k=N/2+1; k<N; k++) X[k].x=X[N-k].x, X[k].y=-X[N-k].y; + if (Amp) for (i=0; i<N; i++) Amp[i]=sqrt(X[i].x*X[i].x+X[i].y*X[i].y); + if (Arg) for (i=0; i<N; i++) Arg[i]=Atan2(X[i].x, X[i].y); +}//RFFTC_ual + +//--------------------------------------------------------------------------- +/* + function RFFTCW: real-to-complex FFT with window + + In: Input[Wid]: real waveform + Window[Wid]: window function + Order; integer, equals log2(Wid) + W[Wid/2]: twiddle factors + hbitinv[Wid/2]: half bit-inversion table + Out:X[Wid}: complex spectrum + Amp[Wid]: amplitude spectrum + Arg[Wid]: phase spetrum + + No return value. +*/ +void RFFTCW(double* Input, double* Window, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* hbitinv) +{ + int N=1<<Order, *hbitinv1=hbitinv; + if (!hbitinv) hbitinv=CreateBitInvTable(Order-1); + N/=2; + + if (Input==(double*)X) + { //so that X[n].x IS Input[2n], X[n].y IS Input[2n+1] + for (int n=0; n<N; n++) + { + int bi=hbitinv[n], n2=n+n, bi2=bi+bi; + if (n<bi) + { + double tmp=X[n].x*Window[n2]; X[n].x=X[bi].x*Window[bi2]; X[bi].x=tmp; + tmp=X[n].y*Window[n2+1]; X[n].y=X[bi].y*Window[bi2+1]; X[bi].y=tmp; + } + else if (n==bi) + { //so that X[n].x IS Input[bi] + X[n].x*=Window[bi2], X[n].y*=Window[bi2+1]; + } + } + } + else + { + for (int n=0; n<N; n++) + { + int bi=hbitinv[n], bi2=bi+bi; X[n].x=Input[bi2]*Window[bi2], X[n].y=Input[bi2+1]*Window[bi2+1]; + } + } + + RFFTC_ual(0, Amp, Arg, Order, W, X, hbitinv); + if (!hbitinv1) free(hbitinv); +}//RFFTCW + +/* + function RFFTCW: real-to-complex FFT with window + + In: Input[Wid]: real waveform as _int16 array + Window[Wid]: window function + Order; integer, equals log2(Wid) + W[Wid/2]: twiddle factors + hbitinv[Wid/2]: half bit-inversion table + Out:X[Wid}: complex spectrum + Amp[Wid]: amplitude spectrum + Arg[Wid]: phase spetrum + + No return value. +*/ +void RFFTCW(__int16* Input, double* Window, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* hbitinv) +{ + int N=1<<Order, *hbitinv1=hbitinv; + + N/=2; + if (!hbitinv) hbitinv=CreateBitInvTable(Order-1); + for (int n=0; n<N; n++) + { + int bi=hbitinv[n], bi2=bi+bi; X[n].x=Input[bi2]*Window[bi2], X[n].y=Input[bi2+1]*Window[bi2+1]; + } + + RFFTC_ual(0, Amp, Arg, Order, W, X, hbitinv); + if (!hbitinv1) free(hbitinv); +}//RFFTCW + +//--------------------------------------------------------------------------- +/* + function CFFTCW: complex FFT with window + + In: Window[Wid]: window function + Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + X[Wid]: complex waveform + bitinv[Wid]: bit-inversion table + Out:X[Wid], complex spectrum + + No return value. +*/ +void CFFTCW(double* Window, int Order, cdouble* W, cdouble* X, int* bitinv) +{ + int N=1<<Order; + for (int i=0; i<N; i++) X[i].x*=Window[i], X[i].y*=Window[i]; + CFFTC(Order, W, X, bitinv); +}//CFFTCW + +/* + function CFFTCW: complex FFT with window + + In: Input[Wid]: complex waveform + Window[Wid]: window function + Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + X[Wid]: complex waveform + bitinv[Wid]: bit-inversion table + Out:X[Wid], complex spectrum + Amp[Wid], amplitude spectrum + Arg[Wid], phase spectrum + + No return value. +*/ +void CFFTCW(cdouble* Input, double* Window, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* bitinv) +{ + int N=1<<Order; + for (int i=0; i<N; i++) X[i].x=Input[i].x*Window[i], X[i].y=Input[i].y*Window[i]; + CFFTC(X, Amp, Arg, Order, W, X, bitinv); +}//CFFTCW + +//--------------------------------------------------------------------------- +/* + function RDCT1: fast DCT1 implemented using FFT. DCT-I has the time scale 0.5-sample shifted from the DFT. + + In: Input[Wid]: real waveform + Order: integer, equals log2(Wid) + qW[Wid/8]: quarter table of twiddle factors + qX[Wid/4]: quarter FFT data buffer + qbitinv[Wid/4]: quarter bit-inversion table + Out:Output[Wid]: DCT-I of Input. + + No return value. Content of qW is destroyed on return. On calling the fft buffers should be allocated + to size 0.25*Wid. +*/ +void RDCT1(double* Input, double* Output, int Order, cdouble* qW, cdouble* qX, int* qbitinv) +{ + const double lmd0=sqrt(0.5); + if (Order==0) + { + Output[0]=Input[0]*lmd0; + return; + } + if (Order==1) + { + double tmp1=(Input[0]+Input[1])*lmd0; + Output[1]=(Input[0]-Input[1])*lmd0; + Output[0]=tmp1; + return; + } + int order=Order-1, N=1<<(Order-1), C=1; + bool createbitinv=!qbitinv; + if (createbitinv) qbitinv=CreateBitInvTable(Order-2); + double *even=(double*)malloc8(sizeof(double)*N*2); + double *odd=&even[N]; + //data pass from Input to Output, combined with the first sequence split + for (int i=0, N2=N*2; i<N; i++) + { + even[i]=Input[i]+Input[N2-1-i]; + odd[i]=Input[i]-Input[N2-1-i]; + } + for (int i=0; i<N; i++) Output[i*2]=even[i], Output[i*2+1]=odd[i]; + while (order>1) + { + //N=2^order, 4|N, 2|hN + //keep subsequence 0, 2C, 4C, ... 2(N-1)C + //process sequence C, 3C, ..., (2N-1)C only + //RDCT4 routine + int hN=N/2, N2=N*2; + for (int i=0; i<hN; i++) + { + double b=Output[(2*(2*i)+1)*C], c=Output[(2*(N-1-2*i)+1)*C], theta=-(i+0.25)*M_PI/N; + double co=cos(theta), si=sin(theta); + qX[i].x=b*co-c*si, qX[i].y=c*co+b*si; + } + CFFTC(order-1, qW, qX, qbitinv); + for (int i=0; i<hN; i++) + { + double gr=qX[i].x, gi=qX[i].y, theta=-i*M_PI/N; + double co=cos(theta), si=sin(theta); + Output[(4*i+1)*C]=gr*co-gi*si; + Output[(N2-4*i-1)*C]=-gr*si-gi*co; + } + N=(N>>1); + C=(C<<1); + for (int i=1; i<N/4; i++) + qW[i]=qW[i*2]; + for (int i=1; i<N/2; i++) + qbitinv[i]=qbitinv[i*2]; + + //splitting subsequence 0, 2C, 4C, ..., 2(N-1)C + for (int i=0, N2=N*2; i<N; i++) + { + even[i]=Output[i*C]+Output[(N2-1-i)*C]; + odd[i]=Output[i*C]-Output[(N2-1-i)*C]; + } + for (int i=0; i<N; i++) + { + Output[2*i*C]=even[i]; + Output[(2*i+1)*C]=odd[i]; + } + order--; + } + //order==1 + //use C and 3C in DCT4 + //use 0 and 2C in DCT1 + double c1=cos(M_PI/8), c2=cos(3*M_PI/8); + double tmp1=c1*Output[C]+c2*Output[3*C]; + Output[3*C]=c2*Output[C]-c1*Output[3*C]; + Output[C]=tmp1; + tmp1=Output[0]+Output[2*C]; + Output[2*C]=(Output[0]-Output[2*C])*lmd0; + Output[0]=tmp1*lmd0; + + if (createbitinv) free(qbitinv); + free8(even); +}//RDCT1 + +//--------------------------------------------------------------------------- +/* + function RDCT4: fast DCT4 implemented using FFT. DCT-IV has both the time and frequency scales + 0.5-sample or 0.5-bin shifted from DFT. + + In: Input[Wid]: real waveform + Order: integer, equals log2(Wid) + hW[Wid/4]: half table of twiddle factors + hX[Wid/2]: hal FFT data buffer + hbitinv[Wid/2]: half bit-inversion table + Out:Output[Wid]: DCT-IV of Input. + + No return value. Content of hW not affected. On calling the fft buffers should be allocated to size + 0.5*Wid. +*/ +void RDCT4(double* Input, double* Output, int Order, cdouble* hW, cdouble* hX, int* hbitinv) +{ + if (Order==0) + { + Output[0]=Input[0]/sqrt(2); + return; + } + if (Order==1) + { + double c1=cos(M_PI/8), c2=cos(3*M_PI/8); + double tmp1=c1*Input[0]+c2*Input[1]; + Output[1]=c2*Input[0]-c1*Input[1]; + Output[0]=tmp1; + return; + } + int N=1<<Order, hN=N/2; + for (int i=0; i<hN; i++) + { + double b=Input[2*i], c=Input[N-1-i*2], theta=-(i+0.25)*M_PI/N; + double co=cos(theta), si=sin(theta); + hX[i].x=b*co-c*si, hX[i].y=c*co+b*si; + } + CFFTC(Order-1, hW, hX, hbitinv); + for (int i=0; i<hN; i++) + { + double gr=hX[i].x, gi=hX[i].y, theta=-i*M_PI/N; + double co=cos(theta), si=sin(theta); + Output[2*i]=gr*co-gi*si; + Output[N-1-2*i]=-gr*si-gi*co; + } +}//RDCT4 + +//--------------------------------------------------------------------------- +/* + function RIDCT1: fast IDCT1 implemented using FFT. + + In: Input[Wid]: DCT-I of some real waveform. + Order: integer, equals log2(Wid) + qW[Wid/8]: quarter table of twiddle factors + qX[Wid/4]: quarter FFT data buffer + qbitinv[Wid/4]: quarter bit-inversion table + Out:Output[Wid]: IDCT-I of Input. + + No return value. Content of qW is destroyed on return. On calling the fft buffers should be allocated + to size 0.25*Wid. +*/ +void RIDCT1(double* Input, double* Output, int Order, cdouble* qW, cdouble* qX, int* qbitinv) +{ + const double lmd0=sqrt(0.5); + if (Order==0) + { + Output[0]=Input[0]/lmd0; + return; + } + if (Order==1) + { + double tmp1=(Input[0]+Input[1])*lmd0; + Output[1]=(Input[0]-Input[1])*lmd0; + Output[0]=tmp1; + return; + } + int order=Order-1, N=1<<(Order-1), C=1; + bool createbitinv=!qbitinv; + if (createbitinv) qbitinv=CreateBitInvTable(Order-2); + double *even=(double*)malloc8(sizeof(double)*N*2); + double *odd=&even[N]; + + while (order>0) + { + //N=2^order, 4|N, 2|hN + //keep subsequence 0, 2C, 4C, ... 2(N-1)C + //process sequence C, 3C, ..., (2N-1)C only + //data pass from Input + for (int i=0; i<N; i++) + { + odd[i]=Input[(i*2+1)*C]; + } + + //IDCT4 routine + //RIDCT4(odd, odd, order, qW, qX, qbitinv); + + if (order==1) + { + double c1=cos(M_PI/8), c2=cos(3*M_PI/8); + double tmp1=c1*odd[0]+c2*odd[1]; + odd[1]=c2*odd[0]-c1*odd[1]; + odd[0]=tmp1; + } + else + { + int hN=N/2; + for (int i=0; i<hN; i++) + { + double b=odd[2*i], c=odd[N-1-i*2], theta=-(i+0.25)*M_PI/N; + double co=cos(theta), si=sin(theta); + qX[i].x=b*co-c*si, qX[i].y=c*co+b*si; + } + CFFTC(order-1, qW, qX, qbitinv); + double i2N=2.0/N; + for (int i=0; i<hN; i++) + { + double gr=qX[i].x, gi=qX[i].y, theta=-i*M_PI/N; + double co=cos(theta), si=sin(theta); + odd[2*i]=(gr*co-gi*si)*i2N; + odd[N-1-2*i]=(-gr*si-gi*co)*i2N; + } + } + + order--; + N=(N>>1); + C=(C<<1); + for (int i=1; i<N/4; i++) + qW[i]=qW[i*2]; + for (int i=1; i<N/2; i++) + qbitinv[i]=qbitinv[i*2]; + + odd=&even[N]; + } + //order==0 + even[0]=Input[0]; + even[1]=Input[C]; + double tmp1=(even[0]+even[1])*lmd0; + Output[1]=(even[0]-even[1])*lmd0; + Output[0]=tmp1; + order++; + + while (order<Order) + { + N=(N<<1); + odd=&even[N]; + for (int i=0; i<N; i++) + { + Output[N*2-1-i]=(Output[i]-odd[i])/2; + Output[i]=(Output[i]+odd[i])/2; + } + order++; + } + + if (createbitinv) free(qbitinv); + free8(even); +}//RIDCT1 + +//--------------------------------------------------------------------------- +/* + function RIDCT4: fast IDCT4 implemented using FFT. + + In: Input[Wid]: DCT-IV of some real waveform + Order: integer, equals log2(Wid) + hW[Wid/4]: half table of twiddle factors + hX[Wid/2]: hal FFT data buffer + hbitinv[Wid/2]: half bit-inversion table + Out:Output[Wid]: IDCT-IV of Input. + + No return value. Content of hW not affected. On calling the fft buffers should be allocated to size + 0.5*Wid. +*/ +void RIDCT4(double* Input, double* Output, int Order, cdouble* hW, cdouble* hX, int* hbitinv) +{ + if (Order==0) + { + Output[0]=Input[0]*sqrt(2); + return; + } + if (Order==1) + { + double c1=cos(M_PI/8), c2=cos(3*M_PI/8); + double tmp1=c1*Input[0]+c2*Input[1]; + Output[1]=c2*Input[0]-c1*Input[1]; + Output[0]=tmp1; + return; + } + int N=1<<Order, hN=N/2; + for (int i=0; i<hN; i++) + { + double b=Input[2*i], c=Input[N-1-i*2], theta=-(i+0.25)*M_PI/N; + double co=cos(theta), si=sin(theta); + hX[i].x=b*co-c*si, hX[i].y=c*co+b*si; + } + CFFTC(Order-1, hW, hX, hbitinv); + double i2N=2.0/N; + for (int i=0; i<hN; i++) + { + double gr=hX[i].x, gi=hX[i].y, theta=-i*M_PI/N; + double co=cos(theta), si=sin(theta); + Output[2*i]=(gr*co-gi*si)*i2N; + Output[N-1-2*i]=(-gr*si-gi*co)*i2N; + } +}//RIDCT4 + +//--------------------------------------------------------------------------- +/* + function RLCT: real local cosine transform of equal frame widths Wid=2^Order + + In: data[Count]: real waveform + Order: integer, equals log2(Wid), Wid being the cosine atom size + g[wid]: lap window, designed so that g[k] increases from 0 to 1 and g[k]^2+g[wid-1-k]^2=1 + example: wid=4, g[k]=sin(pi*(k+0.5)/8). + Out:spec[Fr][Wid]: the local cosine transform + + No return value. +*/ +void RLCT(double** spec, double* data, int Count, int Order, int wid, double* g) +{ + int Wid=1<<Order, Fr=Count/Wid, hwid=wid/2; + int* hbitinv=CreateBitInvTable(Order-1); + cdouble *hx=(cdouble*)malloc8(sizeof(cdouble)*Wid*3/4), *hw=(cdouble*)&hx[Wid/2]; + double norm=sqrt(2.0/Wid); + SetTwiddleFactors(Wid/2, hw); + + for (int fr=0; fr<Fr; fr++) + { + if (fr==0) + { + memcpy(spec[fr], data, sizeof(double)*(Wid-hwid)); + for (int i=0, k=Wid+hwid-1, l=Wid-hwid; i<hwid; i++, k--, l++) + spec[fr][l]=data[l]*g[wid-1-i]-data[k]*g[i]; + } + else if (fr==Fr-1) + { + for (int i=hwid, j=fr*Wid, k=fr*Wid-1, l=0; i<wid; i++, j++, k--, l++) + spec[fr][l]=data[k]*g[wid-1-i]+data[j]*g[i]; + memcpy(&spec[fr][hwid], &data[fr*Wid+hwid], sizeof(double)*(Wid-hwid)); + } + else + { + for (int i=hwid, j=fr*Wid, k=fr*Wid-1, l=0; i<wid; i++, j++, k--, l++) + spec[fr][l]=data[k]*g[wid-1-i]+data[j]*g[i]; + if (Wid>wid) memcpy(&spec[fr][hwid], &data[fr*Wid+hwid], sizeof(double)*(Wid-wid)); + for (int i=0, j=(fr+1)*Wid-hwid, k=(fr+1)*Wid+hwid-1, l=Wid-hwid; i<hwid; i++, j++, k--, l++) + spec[fr][l]=data[j]*g[wid-1-i]-data[k]*g[i]; + } + } + for (int fr=0; fr<Fr; fr++) + { + if (fr==Fr-1) + { + for (int i=1; i<Wid/4; i++) hw[i]=hw[2*i], hbitinv[i]=hbitinv[2*i]; + RDCT1(spec[fr], spec[fr], Order, hw, hx, hbitinv); + } + else + RDCT4(spec[fr], spec[fr], Order, hw, hx, hbitinv); + +////The following line can be removed if the corresponding line in RILCT(...) is removed + for (int i=0; i<Wid; i++) spec[fr][i]*=norm; + } + free(hbitinv); + free8(hx); +}//RLCT + +//--------------------------------------------------------------------------- +/* + function RILCT: inverse local cosine transform of equal frame widths Wid=2^Order + + In: spec[Fr][Wid]: the local cosine transform + Order: integer, equals log2(Wid), Wid being the cosine atom size + g[wid]: lap window, designed so that g[k] increases from 0 to 1 and g[k]^2+g[wid-1-k]^2=1. + example: wid=4, g[k]=sin(pi*(k+0.5)/8). + Out:data[Count]: real waveform + + No return value. +*/ +void RILCT(double* data, double** spec, int Fr, int Order, int wid, double* g) +{ + int Wid=1<<Order, Count=Fr*Wid, hwid=wid/2, *hbitinv=CreateBitInvTable(Order-1); + cdouble *hx=(cdouble*)malloc8(sizeof(cdouble)*Wid*3/4), *hw=&hx[Wid/2]; + double norm=sqrt(Wid/2.0); + SetTwiddleFactors(Wid/2, hw); + + for (int fr=0; fr<Fr; fr++) + { + if (fr==Fr-1) + { + for (int i=1; i<Wid/4; i++) hw[i]=hw[2*i], hbitinv[i]=hbitinv[i*2]; + RIDCT1(spec[fr], &data[fr*Wid], Order, hw, hx, hbitinv); + } + else + RIDCT4(spec[fr], &data[fr*Wid], Order, hw, hx, hbitinv); + } + //unfolding + for (int fr=1; fr<Fr; fr++) + { + double* h=&data[fr*Wid]; + for (int i=0; i<hwid; i++) + { + double a=h[i], b=h[-1-i], c=g[i+hwid], d=g[hwid-1-i]; + h[i]=a*c-b*d, h[-i-1]=b*c+a*d; + } + } + + free8(hx); +////The following line can be removed if the corresponding line in RLCT(...) is removed + for (int i=0; i<Count; i++) data[i]*=norm; +}//RILCT + +//--------------------------------------------------------------------------- +/* + function CMFTC: radix-2 complex multiresolution Fourier transform + + In: x[Wid]: complex waveform + Order: integer, equals log2(Wid) + W[Wid/2]: twiddle factors + Out:X[Order+1][Wid]: multiresolution FT of x. X[0] is the same as x itself. + + No return value. + + Further reading: Wen X. and M. Sandler, "Calculation of radix-2 discrete multiresolution Fourier + transform," Signal Processing, vol.87 no.10, 2007, pp.2455-2460. +*/ +void CMFTC(cdouble* x, int Order, cdouble** X, cdouble* W) +{ + X[0]=x; + for (int n=1, L=1<<(Order-1), M=2; n<=Order; n++, L>>=1, M<<=1) + { + cdouble *Xn=X[n], *Xp=X[n-1]; + for (int l=0; l<L; l++) + { + cdouble* lX=&Xn[l*M]; + for (int m=0; m<M/2; m++) + { + lX[m].x=Xp[l*M+m].x+Xp[l*M+M/2+m].x; + lX[m].y=Xp[l*M+m].y+Xp[l*M+M/2+m].y; + double tmpr=x[l*M+m].x-x[l*M+M/2+m].x, tmpi=x[l*M+m].y-x[l*M+M/2+m].y; + int iw=m*L; + double wr=W[iw].x, wi=W[iw].y; + lX[M/2+m].x=tmpr*wr-tmpi*wi; + lX[M/2+m].y=tmpr*wi+tmpi*wr; + } + if (n==1) {} + else if (n==2) //two-point DFT + { + cdouble *aX=&X[n][l*M+M/2]; + double tmp; + tmp=aX[0].x+aX[1].x; aX[1].x=aX[0].x-aX[1].x; aX[0].x=tmp; + tmp=aX[0].y+aX[1].y; aX[1].y=aX[0].y-aX[1].y; aX[0].y=tmp; + } + else if (n==3) //4-point DFT + { + cdouble *aX=&X[n][l*M+M/2]; + double tmp, tmp2; + tmp=aX[0].x+aX[2].x; aX[2].x=aX[0].x-aX[2].x; aX[0].x=tmp; + tmp=aX[0].y+aX[2].y; aX[2].y=aX[0].y-aX[2].y; aX[0].y=tmp; + tmp=aX[1].y+aX[3].y; tmp2=aX[1].y-aX[3].y; aX[1].y=tmp; + tmp=aX[3].x-aX[1].x; aX[1].x+=aX[3].x; aX[3].x=tmp2; aX[3].y=tmp; + tmp=aX[0].x+aX[1].x; aX[1].x=aX[0].x-aX[1].x; aX[0].x=tmp; + tmp=aX[0].y+aX[1].y; aX[1].y=aX[0].y-aX[1].y; aX[0].y=tmp; + tmp=aX[2].x+aX[3].x; aX[3].x=aX[2].x-aX[3].x; aX[2].x=tmp; + tmp=aX[2].y+aX[3].y; aX[3].y=aX[2].y-aX[3].y; aX[2].y=tmp; + } + else //n>3 + { + cdouble *aX=&X[n][l*M+M/2]; + for (int an=1, aL=1, aM=M/2; an<n; aL*=2, aM/=2, an++) + { + for (int al=0; al<aL; al++) + for (int am=0; am<aM/2; am++) + { + int iw=am*2*aL*L; + cdouble *lX=&aX[al*aM]; + double x1r=lX[am].x, x1i=lX[am].y, + x2r=lX[aM/2+am].x, x2i=lX[aM/2+am].y; + lX[am].x=x1r+x2r, lX[am].y=x1i+x2i; + x1r=x1r-x2r, x1i=x1i-x2i; + lX[aM/2+am].x=x1r*W[iw].x-x1i*W[iw].y, + lX[aM/2+am].y=x1r*W[iw].y+x1i*W[iw].x; + } + } + } + } + } +}//CMFTC + + +//--------------------------------------------------------------------------- +/* + Old versions no longer in use. For reference only. +*/ +void RFFTC_ual_old(double* Input, double *Amp, double *Arg, int Order, cdouble* W, double* XR, double* XI, int* bitinv) +{ + int N=1<<Order, i, j, jj, k, *bitinv1=bitinv, Groups, ElemsPerGroup, X0, X1, X2; + cdouble Temp, zp, zn; + + if (!bitinv) bitinv=CreateBitInvTable(Order); + if (XR!=Input) for (i=0; i<N; i++) XR[i]=Input[bitinv[i]]; + else for (i=0; i<N; i++) {jj=bitinv[i]; if (i<jj) {Temp.x=XR[i]; XR[i]=XR[jj]; XR[jj]=Temp.x;}} + N/=2; + double* XII=&XR[N]; + Order--; + if (!bitinv1) free(bitinv); + for (i=0; i<Order; i++) + { + ElemsPerGroup=1<<i; + Groups=1<<(Order-i-1); + X0=0; + for (j=0; j<Groups; j++) + { + for (k=0; k<ElemsPerGroup; k++) + { + X1=X0+k; + X2=X1+ElemsPerGroup; + int kGroups=k*2*Groups; + Temp.x=XR[X2]*W[kGroups].x-XII[X2]*W[kGroups].y, + XII[X2]=XR[X2]*W[kGroups].y+XII[X2]*W[kGroups].x; + XR[X2]=Temp.x; + Temp.x=XR[X1]+XR[X2], Temp.y=XII[X1]+XII[X2]; + XR[X2]=XR[X1]-XR[X2], XII[X2]=XII[X1]-XII[X2]; + XR[X1]=Temp.x, XII[X1]=Temp.y; + } + X0=X0+(ElemsPerGroup<<1); + } + } + zp.x=XR[0]+XII[0], zn.x=XR[0]-XII[0]; + XR[0]=zp.x; + XI[0]=0; + XR[N]=zn.x; + XI[N]=0; + for (int k=1; k<N/2; k++) + { + zp.x=XR[k]+XR[N-k], zn.x=XR[k]-XR[N-k], + zp.y=XII[k]+XII[N-k], zn.y=XII[k]-XII[N-k]; + XR[k]=0.5*(zp.x+W[k].y*zn.x+W[k].x*zp.y); + XI[k]=0.5*(zn.y-W[k].x*zn.x+W[k].y*zp.y); + XR[N-k]=0.5*(zp.x-W[k].y*zn.x-W[k].x*zp.y); + XI[N-k]=0.5*(-zn.y-W[k].x*zn.x+W[k].y*zp.y); + } + XR[N/2]=XR[N/2]; + XI[N/2]=-XII[N/2]; + N*=2; + + for (int k=N/2+1; k<N; k++) XR[k]=XR[N-k], XI[k]=-XI[N-k]; + if (Amp) for (i=0; i<N; i++) Amp[i]=sqrt(XR[i]*XR[i]+XI[i]*XI[i]); + if (Arg) for (i=0; i<N; i++) Arg[i]=Atan2(XI[i], XR[i]); +}//RFFTC_ual_old + +void CIFFTR_old(cdouble* Input, int Order, cdouble* W, double* X, int* bitinv) +{ + int N=1<<Order, i, j, k, Groups, ElemsPerGroup, X0, X1, X2, *bitinv1=bitinv; + cdouble Temp; + if (!bitinv) bitinv=CreateBitInvTable(Order); + + Order--; + N/=2; + double* XII=&X[N]; + + X[0]=0.5*(Input[0].x+Input[N].x); + XII[0]=0.5*(Input[0].x-Input[N].x); + for (int i=1; i<N/2; i++) + { + double frp=Input[i].x+Input[N-i].x, frn=Input[i].x-Input[N-i].x, + fip=Input[i].y+Input[N-i].y, fin=Input[i].y-Input[N-i].y; + X[i]=0.5*(frp+frn*W[i].y-fip*W[i].x); + XII[i]=0.5*(fin+frn*W[i].x+fip*W[i].y); + X[N-i]=0.5*(frp-frn*W[i].y+fip*W[i].x); + XII[N-i]=0.5*(-fin+frn*W[i].x+fip*W[i].y); + } + X[N/2]=Input[N/2].x; + XII[N/2]=-Input[N/2].y; + + ElemsPerGroup=1<<Order; + Groups=1; + + for (i=0; i<Order; i++) + { + ElemsPerGroup/=2; + X0=0; + for (j=0; j<Groups; j++) + { + int kGroups=bitinv[j]/2; + for (k=0; k<ElemsPerGroup; k++) + { + X1=X0+k; + X2=X1+ElemsPerGroup; + Temp.x=X[X2]*W[kGroups].x+XII[X2]*W[kGroups].y, + XII[X2]=-X[X2]*W[kGroups].y+XII[X2]*W[kGroups].x; + X[X2]=Temp.x; + Temp.x=X[X1]+X[X2], Temp.y=XII[X1]+XII[X2]; + X[X2]=X[X1]-X[X2], XII[X2]=XII[X1]-XII[X2]; + X[X1]=Temp.x, XII[X1]=Temp.y; + } + X0=X0+(ElemsPerGroup<<1); + } + Groups*=2; + } + + N*=2; + Order++; + for (i=0; i<N; i++) + { + int jj=bitinv[i]; + if (i<jj) + { + Temp.x=X[i]; + X[i]=X[jj]; + X[jj]=Temp.x; + } + } + for (int i=0; i<N; i++) X[i]/=(N/2); + if (!bitinv1) free(bitinv); +}//RFFTC_ual_old +