
Double precision floating point alignment issue

Wen X.

The effect of data alignment on performance is a well-known issue. In particular, for an IA-32 system

the data body are aligned to 4-byte boundaries by default. This means that data units larger than 4 bytes,

such as double-precision floating points, might be misaligned, which can bring substantial penalty on

the throughput of related instructions.

This article addresses the alignment issue of double-precision floating point numbers in C. The solution

provided here also applies to other 8-byte data bodies, and can be extended easily to longer (s.a. 16-

byte) ones.

1. The heap

Dynamic memories are allocated from the heap. When a memory block is allocated from the heap, the

default data alignment depends on the allocation function (such as malloc or new), which is likely to

offer 4-byte alignment in a 32-bit environment. According 8-byte data bodies may be misaligned.

The following malloc8(…) and free8(…) functions, when used instead of malloc(…) and free(…),

guarantee 8-byte alignment of returned pointer.

 void* malloc8(unsigned size)
 {

 char *buffer, *result;

 buffer=(char*)malloc(size+8+sizeof(void*));

 if(!buffer) return(NULL);

 char* tmp=&buffer[sizeof(void*)];

 result=&((char*)((unsigned)tmp&0xFFFFFFF8))[8];

 ((void**)result)[-1]=buffer;

 return(result);

 }

 void free8(void* buffer8)

 {

 free(((void**)buffer8)[-1]);

 }

What this piece of code does is to allocate a slightly larger *buffer, containing enough memory for the

desired block, plus sizeof(void*) to store the buffer pointer itself, and a 8-byte slot for the purpose of

alignment. The returned pointer is then directed to the first 8-byte aligned position that leaves at least

sizeof(void*) bytes before it. The sizeof(void*) bytes immediately before the returned pointer is used to

store the “true” buffer pointer, which is freed when free8(…) is called. The returned pointer cannot be

freed using the normal free(…) function.

2. The stack

Local variables are allocated from the stack intrinsically during the function all. First the arguments are

pushed onto the stack in the order specified by the calling convention (_cdecl, _pascal, etc), then the

call instruction is executed. Local variables are then allocated from where the current stack pointer

(ESP) points at by further deducing ESP. Generally the stack pointer before this deduction is stored to

the base pointer register (EBP), which is then used to refer to all local variables, including arguments as

[EBP+] and normal local variables, including register-passed variables when _fastcall convention is

used, as [EBP-]. In an IA-32 environment ESP is 4-byte aligned by default. Our goal is to align all

local 8-byte data bodies involved in arithmetic, including arguments and local variables.

2.1 Stack alignment by caller function

The following macro pair, applied immediately before and after a function call, aligns the stack point to

an 8-byte boundary.

#define ALIGH_STACK_8 {int alignstack; asm {mov alignstack, esp} \

asm {and esp, 0xFFFFFFF8}

#define RESTORE_STACK asm {mov esp, alignstack} }

ALIGN_STACK_8 stores ESP to a local variable then align ESP to the nearest 8-byte boundary in the

deducing direction. RESTORE_STACK recovers the aligned ESP to its stored value.

ALIGN_STACK_8 guarantees that the first pushed argument is 8-byte aligned. The programmer

maintains the alignment of individual argument by carefully arranging their order, so that the number

of 4-byte bodies pushed before pushing any 8-byte body is always even.

The local variables are generally allocated in the order of declaration, yet there is no 100% guarantee

that all compilers comply to it. However, it is very likely that 8-byte bodies declared together without

any other declarations in between will be aligned among themselves. Their common alignment can

usually be controlled by repositioning a 4-byte variable declaration. (And if this fails we can always

declare one more 4-byte argument to change the stack top of local variables.) If the way the compiler

allocates local variables is known, we can safely count out the declarations to make sure the 8-byte

bodies are aligned. However, an easier way is to simply run the program and check the alignment, and

rearrange the declarations to align the variables if misalignment happens. By doing this we also bypass

the difficulty introduced by possible far calls, which pushes one more pointer executing the call

instruction.

Stack alignment by caller function has minimal impact on the C code, since the alignment is finished

before anything related to the function call happens.

2.2 Stack alignment by callee function

Usually stack alignment are desired only for a limited number functions doing heavy floating-point

computation in double precision, which are called a lot. Although the caller-function-aligns-stack

scheme offers a clean and minimal-impact solution, it requires each function call be enclosed by two

macros. It not only makes the caller code cumbersome, but also leaves an opportunity of alignment

failure due to the forgetfulness of our dear programmer. From the function user’s view it is desirable to

keep stack alignment work invisible. To do this we need something like

int function(int arg1, double arg2, …)

{

ALIGN_I_8

<the function body>

RESTORE_I

return result;

}

The difficulty is that once the function is called, all the local variables, including the arguments, are

accessed through EBP. This implies:

1. The alignment macros must change EBP and ESP to solve misalignment;

2. The same variable may indicate different physical memories inside and outside the macro pair;

3. The arguments cannot be accessed directly from inside the macro pair; local variables whose values

are acquired inside the macro pair cannot be accessed directly from outside the macro pair.

The following macro pair aligns EBP to an 8-byte boundary

#define ALIGH_I_8 {asm {mov ecx, ebp} asm {and ebp, 0xFFFFFFF8} \

asm {sub ecx, ebp} asm {sub esp, ecx} asm {push ecx}

#define RESTORE_I asm {pop ecx} asm {add esp, ecx} asm {add ebp, ecx}}

The stack top stores the amount of shift done to EBP. This value is necessary to access arguments from

the function body, or to access local variables from outside the macro pair (for return value). This type

of cross-access is not only hard to read (probably in assembly), but also slow to execute. Therefore I

suggest this macro pair be used only when there are no or very few such cross-accesses. Otherwise the

caller-aligns-stack method is preferred with the following wrapper:

int function(int arg1, double arg2, …)

{

int result;

ALIGN_STACK_8

result=function_unaligned(int arg1, double arg2, …)

RESTORE_STACK

return result;

}

This wrapper also allows the argument be arranged user-friendly regardless of the alignment issue.

