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This essay discusses theoretical and computational issues on estimating sinusoidal parameters from 

discrete spectrum, typically obtained using FFT. There had been plenty of discussions on this topic in 

[Keiler & Marchand 02] and those cited in this paper. [Rodet 97] gives an outline of using the cross-

correlation with the window spectrum for sinusoid measurement. In this essay we start from a least-

square-error criterion to reach at a method similar to the latter, and extend it to the measurement of 

multiple sinusoids. 

1. Spectrum of a pure complex sinusoid. 

Call the signal s(n), window function w(n), window size N, f0=1/N. We write the window function as 

the sum of complex sinusoids: 
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because using this expression for window function it’s straightforward to write its Fourier transform. 

Most window function we use are real and symmetric. Accordingly the coefficients are real and 

symmetric as well.  

Let the windowed discrete Fourier transform of s be x(k): 
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Let s be a complex sinusoid with digital frequency f and central phase angle (phase at N/2) φ, hence 

initial phase angle φ-Nπf: 
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Doing the Fourier transform we get 
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The phase factor exp(jφ) disappears when φ=0, i.e. the sinusoid is symmetrically located in the window. 

The imaginary term disappears when 0=∑
m

mc . This condition is satisfied by those window functions 

that satisfies w(0)=0, such as the Hann window. In this case 
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where the N-point discrete sinc function  
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Sa(0, N)=N, Sa(k,N)k=±1, ±2, ±3…=0. 
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Define  
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We have 
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)'(~ fx f  is a family of real functions well-defined on the whole real axis, with )'(~)'(~
0 ffxfx f −= .  

Define  
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as the continuous Fourier transform of the discrete window function. Then the windowed DFT of the 

complex sinusoid can be written as 
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(-1)
k
 can be removed by shifting the window centre to 0, i.e. doing the Fourier transform by 

accumulating from –N/2 to N/2-1 instead of from 0 to N-1. In this case the spectrum is 
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2. Estimation of a single sinusoid 

Denote the measured spectrum, centred at 0 (multiplied by (-1)
k
), Z(k)=X(k)+jY(k). Denote the a 

sampled version of h translated by f, i.e. the centred spectrum of a sinusoid with frequency f and central 

phase 0, Hf(k). Hf(k)=h(kf0-f). A sinusoid-plus-residual model is 

rHjYXZ ff +=+= λ  

where )exp( ϕλ jAf = , A being the amplitude and φ the central phase angle. 

To minimize r by its Euclidian norm, we get 
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It’s easy to show that 
2

fH  does not depend on f, i.e. 
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If the window function is a low-pass one, which is true with all usual windows, the inner products can 

be calculated locally without losing accuracy.  

To minimize 
2

r  w.r.t. frequency, we find the f̂  that maximizes 
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Amplitudes and phase angles can be calculated as the absolute value and phase angle of 
f̂

λ . 

2.1 Estimating sinusoid frequency from multiple frames 

Let the frame index be m. We have  
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We wish to minimize the square error 
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3. Estimation of multiple sinusoids 

Let the L complex sinusoids have frequencies f1, f2, …, fL, amplitude-phase pairs expressed as complex 

sequence λ1, λ2, λ3, …, λL, where λl=Alexp(jφl), Al being the amplitude of the l
th

  sinusoid, and φl the 

phase angle. Then the discrete windowed Fourier transform can be written as 
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Denote the measured spectrum, centred at 0 (multiplied by (-1)
k
), Z(k)=X(k)+jY(k). The sinusoid 

model can be written as  
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Therefore the minimization of 
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r , w.r.t. the frequencies, is equivalent to maximizing ΛΛ RH  or 

CRC H 1− . We can further write ],...,,[ 21 LHHH=H , then 
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This implies that the number of observations, i.e. size of Z, should be larger than the number of 

sinusoids to give any meaningful estimation. When the two numbers equal, the LSE estimation will 

always give zero-error result. 



It’s also easy to show that the correlation function <Hi, Hj> depends solely on the frequency difference 

fi-fj. Then we can simply calculate >< − ji ffHH ,0  instead. 

4. Calculation of the discrete sinc function and its derivatives 

To find the optimal frequency of a sinusoid in the least-square-error sense, one needs to calculate the 

sinc function defined as a periodical function with period 2N and 














≠<<−

=−

=

= −

0,,
)/sin(

sin

,)1(

0,

),( 1

xNxN
Nx

x

NxN

xN

NxSa N

π
π

, 

as well as its 1
st
- and 2

nd
-order derivatives. 1

st
-order derivative is necessary when using gradient 

method of optimization, and 2
nd

-order derivative is necessary when using Newton or conjugate gradient 

methods. We calculate only for |x|<<N. 

The sinc function can be calculated by 
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The 1
st
-order derivative of the sinc function is periodical with 2N and 













≠<<−
−

==

=
0,,

sin

cossin
1

cossin

or    0,0

),(

2

xNxN

N

x

N

x
x

N
x

N

x

Nxx

NxSa'

π

π
ππ

π

π
 

When x is close to zero, x
N

x
π

π
cossin  is the magnitude of πx/N yet the difference as the numerator is 

the magnitude of (πx)
3
/3N, therefore doing the subtraction will suffer from precision problem. We use 

the Taylor form of the difference 
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The 2
nd

-order derivative of the sinc function is periodical with 2N and 
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Again, when x becomes small than a threshold, say 1e-5, we use 
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there is no need to take special care of precision for this subtraction. The complete routine is 
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5. Implementation issue 

In this section the frequency f is given in bins. 

5.1 Calculating λf 

We localise the spectral band used for estimating λf at (f-b, f+b), where b is an integer. Let K1=ceil(f-b) 

and K2=floor(f+b). We use the spectral band {xk | K1≤k≤K2}. When f is an integer itself, it contains 

2b+1 points, otherwise it contains 2b points. We write 
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We have the real and imaginary parts 
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Let l=k-m. We rewrite the above using l and k as indices can get   
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5.2 Calculating derivatives of λf 
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Accordingly the derivative of the real and imaginary parts are given as 
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Again, using l=k-m, define )( lfSdsal N

a −′= , we get the ready-to-calculate form 
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Then we can write 
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The real and imaginary parts are then given as 
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In the end we can calculate  
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|)(| ′fλ  is needed when using gradient or secant method to search for the maximum, and |)(| ′′fλ  is 

needed for Newton method. It’s most efficient to calculate the values at the same time, in a way they 

can share the intermediate variables rx and ix. 

 

5.3 Calculating XXy HHH HHHH 1)( −=  

We have these basic ideas of calculation cost: 

The matrix multiplication AN×MBM×K takes N×M×K multiplications; 

The inversion of AN×N takes N(N-1)
2
 multiplications; 

The number additions involved are similar to the number of multiplications.  

We write the formula above with matrix dimensions: 

1

1

1 )())(()( ×××
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××××= NNM

H
MMMNNM

H

MNN

H XXy HHHH  

To calculate y directly we need to do the following: 

Calculating HH
H , M(M+1)N/2 multiplications by virtue of symmetry; 

Calculating 1)( −HHH , M(M-1)
2
 multiplications; 

Calculating 1)( −HHH H , NM
2
 multiplications; 

Calculating HH HHHH 1)( − , MN(N+1)/2 multiplications, by virtue of symmetry; 

Calculating HHHX HHHH 1)( − , N
2
 multiplications; 

Calculating y, N multiplications. 

The direct calculation takes (1/2)MN
2
+(3/2)M

2
N+MN+M(M-1)

2
+N(N+1) multiplications. However, 

there is another way of doing the calculation. Let HHLL
HH = , where L is a lower triangular matrix of 

M×M. Then  

2
11111 )()()()( XXXXXXXy HHHHHHHHHHH HLHLHLHLLHHHHH −−−−− ==== . 

Related calculation costs are: 

The Choleski factorization of symmetric AN×N takes (N+4)N(N-1)/6 multiplications and N square-root 

operations; 

The inversion of a lower triangular LN×N takes N(N+1)(N+2)/6 multiplications; 

The multiplication of a matrix HN×M a lower triangular LM×M takes NM(M+1)/2 multiplications. 

To calculate y in this way, we need to do the following: 

Calculating HH
H , M(M+1)N/2 multiplications by virtue of symmetry; 

Calculating L , M(M-1)(M+4)/6 multiplications and M square-root operations; 



Calculating 1−
L , M(M+1)(M+2)/6 multiplications; 

Calculating 1−
HL , NM(M+1)/2 multiplications; 

Calculating XH)( 1−HL , MN multiplications; 

Calculating y, M multiplications. 

This Choleski factorization method takes M
2
N+2MN+(1/3)M(M+1)(M+2) multiplications and M 

square-roots.  

For example, to use six bins to resolve two sinusoids, we have N=6 and M=2. The direct calculation of 

y requires 128 multiplications, while the factorization method only needs 56 multiplications with 2 

square-roots. 

 

 



Frequency and amplitude variation problem 

 

In sinusoid modeling the residue is often used to evaluate modeling quality. In the stationary signal 

case the residue should be made small as possible, while in the noisy signal case the residue should be 

as “noisy” as possible, i.e. with as little periodical components.  

The least-square-error method for sinusoid modeling is based on the constant-frequency and constant-

amplitude hypothesis, i.e. it assumes the sinusoids to be stationary during the time window used to 

measure the amplitude, frequency and phase angle at the frame centre. The synthesizing part on the 

other hand, assumes a linear amplitude change and a quadratic frequency change between measured 

points.  

Due to the use of interpolation and the difference between the analyzer and synthesizer models, even 

when the incoming signal is exactly a sinusoid combination, we still have an error in sinusoid modeling: 

which we regard as the combination of an analyzer and a synthesizer error. The synthesizer error comes 

from the interpolation process, which is only a 1
st
-order approximation, and the analyzer error comes 

from the measurement themselves. To show the significance of both, we calculate the synthesizer error 

and the combined error in time domain for complex sinusoids. 

We run tests on the following signals: 

1) a complex sinusoid with constant frequency and amplitude; 

2) complex sinusoids with constant frequencies but exponentially amplitudes; 

3) complex sinusoids with sinusoid modulated frequencies and constant amplitudes; 

4) complex sinusoids with sinusoid modulated frequencies and exponential amplitudes. 

We set the frame offset to a half of the frame width N.  

The sinusoid is expressed as 
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where λ, am, fm and φm are introduced as amplitude and frequency variation parameters. The amplitude 

becomes λ times its value after each frame. The instantaneous frequency is given by 

)2cos()( 0 mmm nfafnf ϕπ ++= . 

Maximal frequency modulation am happens where fmn+φm/2π is an integer; maximal frequency change 

rate 2πamfm happens where 2fmn+φm/π is an odd integer. In theory, only linear amplitude or linear or 

quadratic frequency do not have synthesizer error, and all other types of amplitude or frequency 

variation bring synthesizer error. All types of amplitude/frequency variation bring analyzer error. 

Accordingly all tests 2) ~ 4) have the two error types. 

In the test we use N=1024. 10 frames are used for each sinusoid, so we have a total number of 

512*11=5632 data points and sinusoidal parameters are measured at 10 points located at 512, 1024, …, 

5120. Residue is measured between the first and last measure points, i.e. 512 and 5120. The point-wise 

residue at each point is normalized by the instantaneous amplitude at that point, i.e. 
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where )(ˆ ns  denotes the resynthesized signal and )(ˆ nr  the normalized residue. A summarized error is 

calculated as the energy of the normalized residue: 
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nre
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)(ˆ  

The sum is taken over the interval 512≤n<5120. 

In the LSE process sinusoids are located using Newton algorithm with frequency accuracy set to 10
-8

 

Fourier bins. Two signals are synthesized for each test: one from the measured sinusoidal parameters, 

the other from the true parameters. A combined error is calculated by comparing the first signal with 



the input, and a the synthesizer error is calculated by comparing the second. For all tests we use 6 bins 

find a sinusoid, windowed by Hann function. 

Test 1: Single sinusoid with constant frequency and amplitude 

As we are looking at complex sinusoids, we assume the phase angle does not affect modeling accuracy. 

In fact, since a multiplier of exp(jφ) always remain as the same in the spectrum, it will add exactly φ to 

the phase estimation result and have no effect on amplitude or frequency. A similar result applies to the 

frequency: as a frequency difference of k/N, where N is the window width and k an integer, always 

shifts the spectrum by k bins without any other effects, it will add exactly k bins to the frequency 

estimation result and have no effect on amplitude or phase angle. Non-multiples of 1/N difference in 

frequency may alter the case a little, and only a little, due to continuity. Figure 1 shows the result. 1(a) 

gives the modeling error as a function of frequency, and 1(c) a function of phase angle, where 

frequency is sampled between 0.05 and 0.45 at constant interval 0.01, while phase angle is sampled 

between 0 and 3 at a constant interval 0.2. 

Figure 1 Modeling error of a complex sinusoid with constant parameters 

From Figure 1a we see that the error depends on the frequency in an oscillating manner. However, the 

frequency of this oscillation, theoretically 1/1024, is too small to be revealed with so few frequency 

points. Figure 1bshows a small part of the e-f relation curve sampled at interval 0.0001, which correctly 

reveals the error oscillating frequency 1/1024. The error is related to the effect of using a limited 

number of bins for finding the peak. Not surprisingly, it is zero when the frequency is a multiple of 

1/1024, in which case the spectrum is zero for sidelobes. Figure 1c testifies the independency of 

modeling error on the signal phase for frequency point 0.05. Above all, the modeling error remains 

below 5×10
-5

, implying an SNR above 80dB. This means the modeling is accurate for constant-

frequency-and-amplitude sinusoids. Nonetheless, we depicted the pure synthesizer error in another 

colour, which remains zero. 

Test 2: Single sinusoid with constant frequency and exponential amplitude 

In this test the parameter λ varies between 1/5 and 5, i.e. the amplitude can vary up to five times 

between consecutive frame centres. Figure 2a evaluates the combined error, in red, and the synthesizer 

error, in dark green. The same result is given in logarithmic scale in Figure 2b. The synthesizer error in 

this test is comparable to half the combined error in energy. Figure 2c testifies the quasi-independency 

of the error on frequency, with its deviation regarding frequency depicted in dark green. 

Figure 2 Modeling error of a sinusoid with constant frequency and exponential amplitude 

a b c 

a b c 



Test 3: Single sinusoid with sinusoid modulated frequency and constant amplitude 
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Use of stiff string model for harmonic sinusoid modelling 

The stiff string model is given by 

)1(1 2
0 −+= mBmffm  

where B is a small value, typically 0<B<0.001. Given B and the fundamental f1=f0, all partial 

frequencies are determined.  

The search for partial frequencies have been formulated as maximizing a function y=y(f1, f2, …, fM), 

where fk is the frequency of the k
th

 partial. In particular, we assume y can written as 
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while the frequencies satisfies some harmonic constraints. Using the stiff string model, this is 
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We look for f0 and B that maximize y(f0, B). To do this we calculate the derivatives of y regarding the 

arguments. The calculation of dym/dfm and d
2
ym/dfm

2
 has already be discussed in the previous parts.  
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The second derivatives: 
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Spectrum truncation problem of the method 

In practice the inner product of a sinusoid pattern and the signal spectrum is always calculated using a 

narrow band centred at the sinusoid frequency. That is, 
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kfHkXf Hλ , where the sinusoid frequency f is given in bins. 

We denote the half band width as B, and let  BfK −=1 ,  BfK +=2 ,   }{BBB += . We look at 

the continuity of λ(f) at point fa=k0+{B}, where k0 is an integer, hence   BkBfa −=− 0 , 

  }{20 BBkBfa ++=+ . First let {B}<0.5. 
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The continuity of λ(f) at fa implies that H(B+1)=0. However, we already know that the zeroes of H(f) 

are integers larger than M or smaller than –M, where M is a window design parameter (for rectangular 

window M=0, Hann and Hamming windows M=1, etc.) Therefore for λ(f) to be continuity at fa, B must 

be an integer no smaller than M. Similarly we can show that for {B}=0.5 or 0.5<{B}<1, λ(f) will not be 

continuous at fa.  

Now let B be an integer, }{0 fkf += . Then }{0 fBkBf +−=− , }{0 fBkBf ++=+ . If {f}≠0, 

there exist a 0<C<min({f}, 1-{f}), then for ∀δf, 0<δf<C, we have 
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kffHkXff δδλ H . The left continuity of λ(f) is equivalent to H(B+1)=0, the 

right continuity of λ(f) is equivalent to H(-B-1)=0. Therefore if B is an integer and B≥M, then the 

truncated inner product λ(f) is continuous regarding f. 

Now we look at the first derivative of λ(f) regarding f. Apparently 

∑
=

− −=
2

1

)(')()('
2

K

Kk

kfHkXf Hλ .  If {f}≠0, we have 

∑
=

− −+=+
2

1

)(')()('
2

K

Kk

kffHkXff δδλ H , ∑
=

− −−=−
2

1

)(')()('
2

K

Kk

kffHkXff δδλ H . The continuity 

of λ’(f) is obvious. Now let {f}=0. We have  

∑
++

−=

− −+=+
1

2 )(')()('

Bf

Bfk

kffHkXff δδλ H , ∑
+

−−=

− −−=−
Bf

Bfk

kffHkXff
1

2 )(')()(' δδλ H  

Therefore we have the left derivative ∑
+

−−=

−
− −=

Bf

Bfk

kfHkXf
1

2 )(')()(' Hλ , 



and the right derivative ∑
++

−=

−
+ −=

1
2 )(')()('

Bf

Bfk

kfHkXf Hλ , and 

( )
( ))1()1()1('

)1(')1()1(')1()(')('

2

2

−−++++−=

+−−−−−++=−
−

−
−+

BfXBfXBH

BHBfXBHBfXff

H

Hλλ
 

where we have used the symmetry of H(x), i.e. H’(-x)=-H’(x). Therefore λ(f) is differentialble when f 

is not an integer, and one-sided differentiable when f is an integer, where the right derivative 

departs from the left one by an offset proportional to )1()1( −−+++ BfXBfX . This means that 

all searching methods using derivatives are valid only piece-wise. Special care shall be taken when the 

frequency jumps from one side of an integer to the other side. 

1. Using a fixed interval 

One way to bypass the continuity problem is to use a fixed band for all frequencies instead of centring 

the band at every frequency. (Implemented as HxPeak(…)). The band centre is usually located at a 

local discrete maximum of λ(f) when a moving band centre is used, say fa. That is,  

|)(||)(| ∆−> aa ff λλ , |)(||)(| ∆+> aa ff λλ , where ∆ is the sampling interval for peak picking. We 

then use the band  BfK a −=1 ,  BfK a +=2  for finding the frequency, amplitude, etc. We write 
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valid interval and starting point for peak searching, it is necessary to relocate the discrete local 

maximum of )( f
afλ . However, although a maximum is guaranteed to exist, it makes little sense if it is 

far from fa.  



Fixed frequencies with amplitudes or phase angles 

For a given number of sinusoids with known frequencies the general LSE solution is described as 

follows. 

Let WN×M=[w1, w2, …, wM] be a matrix composed of vectors wm which are complex spectra of constant 

sinusoids shifted by the individual frequencies, x be the observed spectrum and λ=(λ1, …, λM)
T
 is the 

amplitude-phase factors of the M sinusoids. Then the residue is given as 
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2

r , is known as the orthogonality principle, i.e. r 

being orthogonal to all the M vectors w1, …, wM, or in matrix form 

0H =rW , 

i.e. 
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This yields the LSE estimates of λ: 
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This is a linear equation, so that if an increment δx is applied to x, the corresponding increment in λ is 

given by 
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In the case where the least square criterion is only an approximation, i.e. the true residue being only 

close to least square, δx can also be regarded as the difference between the true and least square 

residues. Then δλ becomes the different between the ground truth and least square estimate. If the L
2
 

norm of true residue is (1+η) times that of the least square residue, then the true residue can be as far as 

(2+η) times the least square residue, so that δλ m can be up to Jm(2+η)||w||
-1

 times the amplitude of the 

least square residue. 

In the following we get λ=(λ1, …, λM)
T∈R

M
 be the vector of amplitudes of the M sinusoids, and 

φ=(φ1,…, φM)
T∈R

M
 be the phase angles. We are interested in finding the LS estimate of φ given λ, or 

the LS estimate of λ given φ. For convenience we define ),,,( 21 Mjjjj eeediage
ϕϕϕ

L=φ . The residue is 

now rewritten as 
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After some maths we get 
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The pairs of terms in these equations are obviously conjugates. The LS estimate of φ given fixed λ is 

obtained when )()diag( H λWxWλ φφ jj eej −−  is purely imaginary, or  

aλWWxWrW φφ jj ee =−= HHH , a∈R
M

. ( aλrxrr THT −= ) 

The LS estimate of λ given φ is obtained when )(H λWxW φφ jj ee −−  is purely imaginary, or 

bλWWxWrW φφ jj jee =−= HHH , b∈R
M

. ( bλrxrr THT j−= ) 

In the unconstrained case these two must hold together, so that a=b=0, in which case the orthogonality 

principle holds. 


