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This essay discusses theoretical and computational issues on estimating sinusoidal parameters from
discrete spectrum, typically obtained using FFT. There had been plenty of discussions on this topic in
[Keiler & Marchand 02] and those cited in this paper. [Rodet 97] gives an outline of using the cross-
correlation with the window spectrum for sinusoid measurement. In this essay we start from a least-
square-error criterion to reach at a method similar to the latter, and extend it to the measurement of
multiple sinusoids.

1. Spectrum of a pure complex sinusoid.

Call the signal s(n), window function w(n), window size N, f0=1/N. We write the window function as
the sum of complex sinusoids:

w(n) = Zcm exp(j2mmnf 0)

because using this expression for window function it’s straightforward to write its Fourier transform.
Most window function we use are real and symmetric. Accordingly the coefficients are real and
symmetric as well.

Let the windowed discrete Fourier transform of s be x(k):
N-1
x(k) =" s(n)w(n) exp(~ j27knf 0)
n=0
Let s be a complex sinusoid with digital frequency f and central phase angle (phase at N/2) ¢, hence
initial phase angle ¢-N=f:
8o (n) =exp(jQ2rfn+¢—Nzf))
Doing the Fourier transform we get

x,,(k)=sin Naf -exp(jo)- ¢, (cot 7(f — (k —m) £0)— j1)

The phase factor exp(jo) disappears when =0, i.e. the sinusoid is symmetrically located in the window.

The imaginary term disappears when Z ¢,, =0. This condition is satisfied by those window functions

m

that satisfies w(0)=0, such as the Hann window. In this case

x,,(k)=exp(jp)-sin Nzf - Y c,, cot (f —(k—m)[0)

Singular points of cot() always meet zeroes of sinNzf: we can write
sin Naf
sin z(f —kf 0)

cos(f —kf0) = (=) Sa(N(f ~kf0), N)

sin Nzf cot 7(f —kf 0) = cosz(f —kf0)

_ (1) sin Nz(f —kf0)
sin z(f — kf 0)

where the N-point discrete sinc function

sin 7zx

Sa(x, N) Zm

Sa(O, N):N, Sa(kﬂN)lFt], +2, i3m:O'

Hence

X, o (k) = exp(jp)-(=D* Y ¢, (=1)" Sa(N(f = (k =m) f0,N) cos z(f = (k —m) f0)



Define

Ef (kf0) = (-D* X0 (k)
We have

T, (0)= ¢, (~1)" Sa(N(f O~ mf 0~ f,N)cos w(kf 0—mf 0~ f)

X,(f") is a family of real functions well-defined on the whole real axis, with X, (") =X, (f'-f).

Define

h(f) =%, (/") =D ¢, (=1)" Sa(N(f"=mf 0, N) cos z( f'~mf 0)

as the continuous Fourier transform of the discrete window function. Then the windowed DFT of the
complex sinusoid can be written as

Xy, (k) =exp(j@)- (=D* -h(kf 0~ f)

(-1)* can be removed by shifting the window centre to 0, i.e. doing the Fourier transform by
accumulating from —N/2 to N/2-1 instead of from 0 to N-1. In this case the spectrum is

exp(j@)h(kf0— f)
2. Estimation of a single sinusoid

Denote the measured spectrum, centred at 0 (multiplied by (-1)"), Z(k)=X(k)+jY (k). Denote the a
sampled version of / translated by f, i.e. the centred spectrum of a sinusoid with frequency f and central
phase 0, Hi(k). H{k)=h(kf0-f). A sinusoid-plus-residual model is

Z=X+jY=A,H,+r
where 4, = Aexp(j@), A being the amplitude and ¢ the central phase angle.

To minimize r by its Euclidian norm, we get

_<Z,Hf >:<X,Hf >+j<Y,Hf >

-
Jez Jez

and
20 =[ | Ve |+
It’s easy to show that "H/ "2 does not depend on f, i.e. ”Hf "2 = ||H||2 . In fact we have

" =l =V 2

If the window function is a low-pass one, which is true with all usual windows, the inner products can
be calculated locally without losing accuracy.

To minimize ||r||2 w.r.t. frequency, we find the f that maximizes |< Z,H, >|2 .
Amplitudes and phase angles can be calculated as the absolute value and phase angle of 4 i

2.1 Estimating sinusoid frequency from multiple frames
Let the frame index be m. We have

Z,= lm,fo +7,

We wish to minimize the square error



err =3Il = Xz st
m m

For a given f'the above is minimized by setting

- <Z,.H;>
’ (s
Then
lull =12, = |

err =3l = TNzl =Xl [ = kol el X< 2,1, >

o . 2
To minimize err we maximize Z|< Z,.H, >| =><Z,.H;><H,;Z,>
m m

3. Estimation of multiple sinusoids

Let the L complex sinusoids have frequencies fj, f, ..., fi, amplitude-phase pairs expressed as complex
sequence Aq, Ay, A3, ..., Ar, Where A=Aexp(jo;), A being the amplitude of the 1™ sinusoid, and ¢, the
phase angle. Then the discrete windowed Fourier transform can be written as

Z AH (k)
1

Denote the measured spectrum, centred at 0 (multiplied by -1, Z(k)=X(k)+jY (k). The sinusoid
model can be written as

Z=X+jY=Y L,H +r
i

. o 2
where H, is a short form of H , . To minimize ||r|| we get

<Z,H/ >=Y A, <H, H >1=12..,L

Let C, = Z’Hk>’n/:W<H”Hj>,

L <
|
then we have
C, = Z/I,rlk ,or C=RA.
1
Then
|2 =[] A" R+ ol =] R €+
Therefore the minimization of ||r||2 , w.r.t. the frequencies, is equivalent to maximizing A” RA or
CH”R7'C . We can further write H = [H,H,,...,H,], then
C=H"Z/|H| ,R=H"H/|H|,and C"R™'C =Z"HMH"H)"'H"Z /|H]| . We have
|z|" =z"z = z"HE"B) "B Z + |||
This implies that the number of observations, i.e. size of Z, should be larger than the number of

sinusoids to give any meaningful estimation. When the two numbers equal, the LSE estimation will
always give zero-error result.



It’s also easy to show that the correlation function <H;, H> depends solely on the frequency difference
fi-fi. Then we can simply calculate < H,, H ,_, > instead.

4. Calculation of the discrete sinc function and its derivatives

To find the optimal frequency of a sinusoid in the least-square-error sense, one needs to calculate the
sinc function defined as a periodical function with period 2N and

N, x=0

Sa(x, N)={N-=D"" x=N ,
.Sli, —N<x<N,x#0
sin(zxx/ N)

as well as its 1¥- and 2™-order derivatives. 1-order derivative is necessary when using gradient
method of optimization, and 2"-order derivative is necessary when using Newton or conjugate gradient
methods. We calculate only for [x|<<N.

The sinc function can be calculated by

If ¢/ N =0,Sa(x,N)= N,
else Sa(x, N)=—2"2
sin(zxx / N)

The 1%-order derivative of the sinc function is periodical with 2N and
0, x=0or x=N

sin@coszzx—isinﬂxcosﬁ
Sa'(x,N)= N N N N<x<N, x#0

. o X
sin” —
N

When x is close to zero, schosm is the magnitude of zx/N yet the difference as the numerator is

the magnitude of (mx)*/3N, therefore doing the subtraction will suffer from precision problem. We use
the Taylor form of the difference

. X 1 . X
sin — cos /¢ —— sin /xx cos —
N N N

[l (3] s o) ok 25 o 5

O (o i (B ey sy )
2L Lol

3N N

3
When x becomes smaller than a threshold, say le-6, we use — (7317;\)] (1 —%j instead of

. I . pad . L
smﬁcosmc ——sinmxcos— for calculating Sa’. The complete routine is



if /N=0,8a'(x,N)=0;

3
e1seifx<1E—6,Sa'(x,N)=—7(2L)(1—L2j
3Nsin“(mx/ N) N
elseSa'(x, N)=r sin@coszzx—isinmccosﬂ sin?| &
N N N N

The 2™-order derivative of the sinc function is periodical with 2N and

Nﬁz( 1 ]
- l-——1|, x
3 N?

2
Sa"(x,N) = N;T [1—%}(—1)”, x=N

7’ .o o) . 1 2 o\ . 1 . b0
—— | sin’| — |sin —1+—2 ——cos| — | sin—cosmx——sinmxcos— ||, —N<x<N,x#0
sin” (¢ / N) N N N N N N N

0

3
Again, when x becomes small than a threshold, say 1e-5, we use —% (1 —%] instead of

. 1 . . . . 1 .
sin > cos v ——sin o cos = for calculating Sa’’. sin’ (%] sin mc(— 1+ Fj and the difference

.o ) . 1 2 o\ . mx 1 . X .
sin”| — |sinzx| —14+— [——cos| — | sin—cos x ——sin zx cos— | are the same magnitude so
N N N N N N N

there is no need to take special care of precision for this subtraction. The complete routine is

3 N*?

2 3
elseif x < 1E ~5, 54’ (x, N) =— (2("") cos(ﬂj—sinz[%jsinmll—%]

2
if 7/ N =0, 8a'(x, N) =~ 22 (1_L}

sin®(m/ N)| 3N? N
7’ e 1 2 m m 1 m
else Sa'(x, N) = ——— sin’ (—j sin mc(— 1+ —zj -—— cos(—j(sin — COS /;x —— Sin 7x cos —j
sin” (mx/ N) N N N N N N N

5. Implementation issue
In this section the frequency f'is given in bins.
5.1 Calculating Ar

We localise the spectral band used for estimating Ay at (f-b, f+b), where b is an integer. Let K,=ceil(f-b)
and K,=floor(ftb). We use the spectral band {x;| K1<k<K2}. When f'is an integer itself, it contains
2b+1 points, otherwise it contains 2b points. We write



_ 72
A, =H " <X,H, >

K,
=H?Y x,H, (k)

k=K,

= H Y x (D By~ ffy)

k=K,

Fo=(-1)"x,

= CHY R (- )

k=K,

:H’Zifk
=4+ L)

We have the real and imaginary parts

M

Si\/ (m —k+ f)ejﬂ(m*/”f)ﬁ)

cm
M

A.(f) =H’2§: icmSaN(m—k+f)(fr(k)COSﬂ(m—k+f)fo ~X,(k)sinz(m—k+ 1) f,)

k=K, m=—M

K, M

A)=H?D Y e, SV m—k+ f)F (K)sinz(m—k+ f)f, + X, (k) cos z(m —k + f) ;)
k=K, m=—M

Let I=k-m. We rewrite the above using / and & as indices can get

K,+M  min(K, l+M)

AN)=H? D Y SN -DE ()cosa(f -1 f, % (K)sinz(f 1) f,)

1=K,~M k=max(K,,[-M)

K, +M min(K,,[+M) min(K,,[+M)
=H? Y SY(f =D cosa(f=Dfy Do K (k) =sina(f=Dfy D e Kk
1=K,-M k=max(K,,I-M) k=max(K,,I-M)

and

Ky+M  min(K,,[+M)

AO=H?Y e SN -DFEE)sinz(f D) f, + % (k)cosz(f =) f,)

1=K,—M k=max(K,,[-M)

K,+M min(K, /+M) min(K, /+M) :
=H? ) ) (f—l)(sinﬂ(f—l)fo DX (k) +cosx(f =) f; ch,x,(k)]
I1=K,-M k=max(K,,[-M) k=max(K,,[-M)

So for each /, we calculate
sal =SY(f -1)

sil =sinz(f —1)f,

col =cosz(f =1)f,

min(K,,l+M)
k
xrl= Y e (<) x.(k)
k=max(K,,I-M)
min(K,,[+M)
. k
xil= Y e (1) x (k)
k=max(K,,/[-M)
rx = col - xrl —sil - xil

ix = sil - xrl + col - xil

Then
K,+M
A(f)=H? Y sal-rx
1=K,-M

K, +M

A(f)=H" > sal-ix

1=K,-M



In particular,

| A=A+ 47

5.2 Calculating derivatives of A,
Since

K, M )
—uy Z XSY (m—k+ f)e D
k=K, m=

We have

KZ M , Y , r
2 =H2Y Y e TS =k + )T D L jap SN =+ f)el R0 )

k=K ,m=—M
K, M T .
2 ~ N Jm=kf)
=H?Y Y e, 58N (m—k+ fle " i

k=K,m=—M
Accordingly the derivative of the real and imaginary parts are given as
V4

A(f)=H" Z Z c S;N(m—k+f)($,(k)cos%(m—k+f)—§i(k)sin%(m—k+f)j—w/li(f)

k=K, m=—M

S = H’QZ Z ¢ S;N(m—k+f)(fr(k)sin%(m—k+f)+fi(k)cos%(m—k+f)j+%/1r(f)

k=K, m=—

Again, using /=k-m, define dsal =S." (f —1), we get the ready-to-calculate form

K +M K,+M
A(f)=H" stal =T (f)=H? Y (dsaﬁrx—isal-ixj
1=K,~M N I1=K,~-M N
Ko+ M K,+M T
A(f)=H" dsal -ix + —A(f)=H" (dsal -ix +—sal - rxj
=i 2 n=t” 2, N

Then we can write

)' AN AN A+ A

A=A+ 47 =
[A(N)] ( A N//LQJHLz )

The 2™-order derivative

L] M . .
A =H2Y Y e TSI =kt e 4 S ket )R )1 jaf 4

k=K, m=—M
5 oy j%(m—km ,
=H Z Zc XS (m—k+ f)e Af g A
k=K, m=—

The real and imaginary parts are then given as

2(f)=H ZZ S:N(m—k+f)(i<k)cos%(m—k+f>—%,-(k)sin%(m—k+f)j—2§/1;<f)+;—iuf)

k=K, m=—

A)=H ZZ S;’N(m—k+f)(f,(k)sin%(m—k+f)+fi(k)cos%(m—k+f)j+%ﬂ:(f)+;—zﬂi(f)

k=K, m=—

Again, using /=k-m, define ddsal = S"" (f —1), we get the ready-to-calculate form




K,+M 2

ANf)=H" desal - rx __ﬂ./lil(f) +;_22/1r(f)

1=K,-M N
A(f)=H"> KziMdsal w2 e (f)
i l:KrM N r N2 i

In the end we can calculate

(T3 AN ARG A A AR A ARG+ D =AY
|/1(f)|:( ,LZMI_Z) _AA sz(; A (ALA+4 )3: AL+ A, (|r>l(f§|,) (AN1)
» +,. (’1,24-/1,.2)

| A(f)| is needed when using gradient or secant method to search for the maximum, and | A(f)|" is

needed for Newton method. It’s most efficient to calculate the values at the same time, in a way they
can share the intermediate variables 7x and ix.

5.3 Calculating y = X"HH"H)'H" X

We have these basic ideas of calculation cost:

The matrix multiplication Ax«vBwmxk takes NxMxK multiplications;

The inversion of Axxy takes N(N-l)2 multiplications;

The number additions involved are similar to the number of multiplications.

We write the formula above with matrix dimensions:

Y= (X oy H iy (H) oy B ) ™ nar (H) 0 X g

To calculate y directly we need to do the following:

Calculating H”H , M(M+1)N/2 multiplications by virtue of symmetry;
Calculating (H”H)™", M(M-1)? multiplications;

Calculating H(H”H)™', NM? multiplications;

Calculating HH”H)"H” , MN(N+1)/2 multiplications, by virtue of symmetry;
Calculating X “H(H"H)""H” , N’ multiplications;

Calculating y, N multiplications.

The direct calculation takes (1/2)MN*+(3/2)M’*N+MN+M(M-1)*+N(N+1) multiplications. However,

there is another way of doing the calculation. Let L”L = H”H , where L is a lower triangular matrix of
MxM. Then

y=X"HMH"H)"H" X = X"HL"L)"'"H" X = X"HL"(L")"H" X = "(L")”H”X”z.

Related calculation costs are:

The Choleski factorization of symmetric An.y takes (N+4)N(N-1)/6 multiplications and N square-root
operations;

The inversion of a lower triangular Ly takes N(N+1)(N+2)/6 multiplications;
The multiplication of a matrix Hy.y a lower triangular Ly takes NM(M+1)/2 multiplications.

To calculate y in this way, we need to do the following:

Calculating H” H, M(M+1)N/2 multiplications by virtue of symmetry;
Calculating L , M(M-1)(M+4)/6 multiplications and M square-root operations;




Calculating L™, M(M+1)(M+2)/6 multiplications;
Calculating HL™' , NM(M+1)/2 multiplications;
Calculating (HL™)” X , MN multiplications;

Calculating y, M multiplications.

This Choleski factorization method takes M’N+2MN-+(1/3)M(M+1)(M+2) multiplications and M
square-roots.

For example, to use six bins to resolve two sinusoids, we have N=6 and M=2. The direct calculation of
y requires 128 multiplications, while the factorization method only needs 56 multiplications with 2
square-roots.




Frequency and amplitude variation problem

In sinusoid modeling the residue is often used to evaluate modeling quality. In the stationary signal
case the residue should be made small as possible, while in the noisy signal case the residue should be
as “noisy” as possible, i.e. with as little periodical components.

The least-square-error method for sinusoid modeling is based on the constant-frequency and constant-
amplitude hypothesis, i.e. it assumes the sinusoids to be stationary during the time window used to
measure the amplitude, frequency and phase angle at the frame centre. The synthesizing part on the
other hand, assumes a linear amplitude change and a quadratic frequency change between measured
points.

Due to the use of interpolation and the difference between the analyzer and synthesizer models, even
when the incoming signal is exactly a sinusoid combination, we still have an error in sinusoid modeling:
which we regard as the combination of an analyzer and a synthesizer error. The synthesizer error comes
from the interpolation process, which is only a 1¥-order approximation, and the analyzer error comes
from the measurement themselves. To show the significance of both, we calculate the synthesizer error
and the combined error in time domain for complex sinusoids.

We run tests on the following signals:

1) a complex sinusoid with constant frequency and amplitude;

2) complex sinusoids with constant frequencies but exponentially amplitudes;

3) complex sinusoids with sinusoid modulated frequencies and constant amplitudes;

4) complex sinusoids with sinusoid modulated frequencies and exponential amplitudes.
We set the frame offset to a half of the frame width N.

The sinusoid is expressed as

2log A
( g

) a, . a, .
s(n) = a, -exp n)-exp(j (9, —f—Sln P T 270 +f—Sln(27y’ w1+ 9,)))

m m

where 4, a,,, fn and @, are introduced as amplitude and frequency variation parameters. The amplitude
becomes A times its value after each frame. The instantaneous frequency is given by

f(m)=f,+a,cosnf, n+o,).

Maximal frequency modulation a,, happens where f,n+¢,/2n is an integer; maximal frequency change
rate 2ma,fy, happens where 2f,n+¢,/n is an odd integer. In theory, only linear amplitude or linear or
quadratic frequency do not have synthesizer error, and all other types of amplitude or frequency
variation bring synthesizer error. All types of amplitude/frequency variation bring analyzer error.
Accordingly all tests 2) ~ 4) have the two error types.

In the test we use N=1024. 10 frames are used for each sinusoid, so we have a total number of
512*11=5632 data points and sinusoidal parameters are measured at 10 points located at 512, 1024, ...,
5120. Residue is measured between the first and last measure points, i.e. 512 and 5120. The point-wise
residue at each point is normalized by the instantaneous amplitude at that point, i.e.

§(n) - s(n)

a(n)

where §(n) denotes the resynthesized signal and 7(n) the normalized residue. A summarized error is

F(n) =

>

calculated as the energy of the normalized residue:

e= Z:;ﬁ(n)2

n

The sum is taken over the interval 512<n<5120.

In the LSE process sinusoids are located using Newton algorithm with frequency accuracy set to 107
Fourier bins. Two signals are synthesized for each test: one from the measured sinusoidal parameters,
the other from the true parameters. A combined error is calculated by comparing the first signal with



the input, and a the synthesizer error is calculated by comparing the second. For all tests we use 6 bins
find a sinusoid, windowed by Hann function.

Test 1: Single sinusoid with constant frequency and amplitude

As we are looking at complex sinusoids, we assume the phase angle does not affect modeling accuracy.
In fact, since a multiplier of exp(jo) always remain as the same in the spectrum, it will add exactly ¢ to
the phase estimation result and have no effect on amplitude or frequency. A similar result applies to the
frequency: as a frequency difference of /N, where N is the window width and k an integer, always
shifts the spectrum by k bins without any other effects, it will add exactly k bins to the frequency
estimation result and have no effect on amplitude or phase angle. Non-multiples of 1/N difference in
frequency may alter the case a little, and only a little, due to continuity. Figure 1 shows the result. 1(a)
gives the modeling error as a function of frequency, and 1(c) a function of phase angle, where
frequency is sampled between 0.05 and 0.45 at constant interval 0.01, while phase angle is sampled
between 0 and 3 at a constant interval 0.2.
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Figure 1 Modeling error of a complex sinusoid with constant parameters

From Figure 1a we see that the error depends on the frequency in an oscillating manner. However, the
frequency of this oscillation, theoretically 1/1024, is too small to be revealed with so few frequency
points. Figure 1bshows a small part of the e-f relation curve sampled at interval 0.0001, which correctly
reveals the error oscillating frequency 1/1024. The error is related to the effect of using a limited
number of bins for finding the peak. Not surprisingly, it is zero when the frequency is a multiple of
1/1024, in which case the spectrum is zero for sidelobes. Figure lc testifies the independency of
modeling error on the signal phase for frequency point 0.05. Above all, the modeling error remains
below 5x10°, implying an SNR above 80dB. This means the modeling is accurate for constant-
frequency-and-amplitude sinusoids. Nonetheless, we depicted the pure synthesizer error in another
colour, which remains zero.

Test 2: Single sinusoid with constant frequency and exponential amplitude

In this test the parameter A varies between 1/5 and 5, i.e. the amplitude can vary up to five times
between consecutive frame centres. Figure 2a evaluates the combined error, in red, and the synthesizer
error, in dark green. The same result is given in logarithmic scale in Figure 2b. The synthesizer error in
this test is comparable to half the combined error in energy. Figure 2c testifies the quasi-independency
of the error on frequency, with its deviation regarding frequency depicted in dark green.
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Figure 2 Modeling error of a sinusoid with constant frequency and exponential amplitude



Test 3: Single sinusoid with sinusoid modulated frequency and constant amplitude

Sinusoids with
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Use of stiff string model for harmonic sinusoid modelling

The stiff string model is given by

£ =mfgy1+ B(m* —1)

where B is a small value, typically 0<B<0.001. Given B and the fundamental f=f;, all partial
frequencies are determined.

The search for partial frequencies have been formulated as maximizing a function y=y(fl, 12, ..., fy),
where f; is the frequency of the k™ partial. In particular, we assume y can written as

M

m=1
while the frequencies satisfies some harmonic constraints. Using the stiff string model, this is
M
y(fOsB) = Zym(fm(fODB))
m=1

We look for f; and B that maximize y(f;, B). To do this we calculate the derivatives of y regarding the
arguments. The calculation of dy,./df,, and d*y,,/df;, has already be discussed in the previous parts.

The first derivatives:

D [ 2y W mfy(m’ 1)
= 1+B -1, Lt =—————
o * B’ -, o8 21+ B(m* —1)

D y Yy
afo Zdym afo Zdym OB

The second derivatives:

azym =0 azym _ azym _ m(m2 _1) _Lay_m
oy’ " 0f0B  0BY, 2\/1 +B(m*-1) Jo 9B ’
azym _ mfo(m2 ~1)° _ m* -1 W
oB? 2(1+ B(m*-1)) 0B

4( 1+ B(m* —1))3

3y fdzym(afmJ dy,, 3*f,,
oy =2\ o) d, o
Cy S d, ( j Dy O
oB* = df,’ df,, oB*

Oy _ 0y 50 a0 Uy Uy Dy O
of,0B  0Bofy = daf,2 of, 0B  df, of,0B



Spectrum truncation problem of the method

In practice the inner product of a sinusoid pattern and the signal spectrum is always calculated using a
narrow band centred at the sinusoid frequency. That is,

KZ
A(f) = H™ ZX(k)H(f — k), where the sinusoid frequency fis given in bins.
k=K,
We denote the half band width as B, and let X, = |_f - BJ, K, = ’_f + B-|, B= \_BJ+ {B}. We look at
the continuity of A(f) at point f,=ko+{B}, where k is an integer, hence f, —B =1k, — LBJ ,
f, +B=ky+|B|+2{B} . First let {B}<0.5.

kL8] kL5
MfL)=H? Y X(OH(f, =k, Af, -F)=H> > X()H(f, - —k). Therefore
k=k,—| B] k=k,-| B -1
kL8]
ML) =M S -3 =H" ZLXJ(]‘)(H“" —k)=H(f, =& = k)~ X (k| B]-DH(B-F +1) |.
k=k,—| B

The continuity of A(f) at £, implies that H(B+1)=0. However, we already know that the zeroes of H(f)
are integers larger than M or smaller than —M, where M is a window design parameter (for rectangular
window M=0, Hann and Hamming windows M=1, etc.) Therefore for A(f) to be continuity at f;,, B must
be an integer no smaller than M. Similarly we can show that for {B}=0.5 or 0.5<{B}<1, A(f) will not be
continuous at f;,.

Now let B be an integer, f =k, +{f}. Then f—B=ky—B+{f}, f+B=ky+B+{f}. If {f}#0,
there exist a 0<C<min({f}, 1-{f}), then for ¥V &f, 0<5/<C, we have

ko +B+1 ko +B+1
AN)=H F XBH( ~k), Af-F)=H" Y XRH( - -k,
k=k,—B k=k,—B
ky+B+1
A(f+of) = H™ ZX(k)H(f + ¢f — k) . The continuity of A(f) is obvious. If {f}=0, we have
k=k,—B
k,+B k,+B
Af)=H? DY XMH(f-k), A(f-F)=H> DY XMH(f-F -k),
k=k,~B k=k,—B-1
ky+B+1
A(f+) = H ZX(k)H(f+@’—k). The left continuity of A(f) is equivalent to H(B+1)=0, the
k=k,—B

right continuity of A(f) is equivalent to H(-B-1)=0. Therefore if B is an integer and B>M, then the
truncated inner product A(f) is continuous regarding f.

Now we look at the first derivative of A(f) regarding f. Apparently

KZ
A(f)=H7 Y X(k)H'(f - k). If {f}0, we have

k=K,

K, K,
A(f+3)=H2 D XUOH (f+F —k), A'(f-5)=H D X(k)H'(f - —k) . The continuity

k=K, k=K,
of A’(f) is obvious. Now let {f}=0. We have
f+B+1 f+B
A+ =H Y X0OH (f+d k)., A(f-F)=H? Y X(H'(f - —k)
k=f-B k=f-B-1
f+B

Therefore we have the left derivative A_'(f)=H" ZX (kHH'(f -k),
k=f-B-1



f+B+l1
and the right derivative 4,'(f)=H? ) X(k)H'(f -k),and
k=f-B

A=) =H2(X(f +B+DH'(-B-1)~X(f ~B-DH'(B +1))
=—H 2H'B+D)X(f+B+)+X(f-B-1))

where we have used the symmetry of H(x), i.e. H’(-x)=-H’(x). Therefore A(f) is differentialble when f
is not an integer, and one-sided differentiable when f is an integer, where the right derivative
departs from the left one by an offset proportional to X(f + B+1)+ X(f —B—1). This means that
all searching methods using derivatives are valid only piece-wise. Special care shall be taken when the
frequency jumps from one side of an integer to the other side.

1. Using a fixed interval

One way to bypass the continuity problem is to use a fixed band for all frequencies instead of centring
the band at every frequency. (Implemented as HxPeak(...)). The band centre is usually located at a
local discrete maximum of A(f) when a moving band centre is used, say f,. That is,

[ A P A, = D) |, | ACf,) Pl A, +A) |, where A is the sampling interval for peak picking. We

then use the band K| = L Ja —BJ , K, = ( Ja +B—| for finding the frequency, amplitude, etc. We write

[f,+B]
Ar ()= H ZX(k)H(f —k) , apparently A, (f,)=A(f,). However, we cannot guarantee that
- k=L7.-5] )
| As ()P As (fa =D or [Ap (f,) P A7 (fo +A)| although they are highly probable. To find a

valid interval and starting point for peak searching, it is necessary to relocate the discrete local
maximum of A, (/) . However, although a maximum is guaranteed to exist, it makes little sense if it is

far from f,.



Fixed frequencies with amplitudes or phase angles

For a given number of sinusoids with known frequencies the general LSE solution is described as
follows.

Let Wy =[W1, Wa, ..., W] be a matrix composed of vectors w,, which are complex spectra of constant
sinusoids shifted by the individual frequencies, x be the observed spectrum and A=(Ay, ..., Ay)" is the
amplitude-phase factors of the M sinusoids. Then the residue is given as

r:x—z/imwm =x—- Wi

The condition for minimizing the square error, i.e. ||r||2 , is known as the orthogonality principle, i.e. r

being orthogonal to all the M vectors wy, ..., Wy, or in matrix form
Wir=0,
ie.

Wix-W'Wi =0
This yields the LSE estimates of A:
L=(W'W)'whx

This is a linear equation, so that if an increment dx is applied to x, the corresponding increment in A is
given by

Sh=(W'W)" W'
We define

} /2
UMxN:[”z‘j]:HWH'(WHW) W, I = @/u;/) ’

where |jw]| is the L? norm of the spectrum of the window function w. We have

1/2
s||w||‘[zu;,.zoscfj o o
J J

In the case where the least square criterion is only an approximation, i.e. the true residue being only
close to least square, 6x can also be regarded as the difference between the true and least square
residues. Then 8 becomes the different between the ground truth and least square estimate. If the L
norm of true residue is (1+n) times that of the least square residue, then the true residue can be as far as
(2+n) times the least square residue, so that 81 ,, can be up to J,(2+n)|[w||" times the amplitude of the
least square residue.

-1
o, :”W” Z”mj&f ’ |&m
j

In the following we get A=(4y, ..., /IM)TERM be the vector of amplitudes of the M sinusoids, and
0=(¢1,..., 1) ER be the phase angles. We are interested in finding the LS estimate of ¢ given A, or

the LS estimate of A given @. For convenience we define e’® = diag(e’”,e’**,---,e’?) . The residue is
now rewritten as

r=x- Zﬂme"/’”’wm =x— We’%L
m

To find the necessary conditions that minimizes r''r for given A or @ we use the equation

de'r  ar™ . dr"
= r+——r,

dx dx dx

and

T H T H
A _gew, I et M diag)e W, I — diag(ye oW
d\ dh do do

After some maths we get



H
—d;kr — W (X =W h) —e P W (x - We "))
dr''r
de
The pairs of terms in these equations are obviously conjugates. The LS estimate of ¢ given fixed A is
obtained when jdiag(h)e /*W" (x — We’*1L) is purely imaginary, or

=—jdiag(M)e”® W' (x" = W'e/*L) + j diag(h)e *W" (x — We’*2)
Jdiag Jdiag

WHr = W - WHWe L =e/®a, g €R. (r'r=x"r-1"a)
The LS estimate of A given @ is obtained when e /*W" (x — We’?1) is purely imaginary, or
W'r = Wix - WHWe/®) = je®b ,bERY. (r'r=x"r- 20"b)

In the unconstrained case these two must hold together, so that a=b=0, in which case the orthogonality
principle holds.



