
LSE estimation for 2 sinusoids with 1 at a fixed frequency 

 

This document addresses the estimation of two concurrent sinusoids with very close frequencies using 

a fixed window size, with the frequency of one fixed at a given value. The estimation follows the 

frequency-domain LSE scheme, i.e. maximizing the projection of signal spectrum X onto the subspace 

spanned from the two windowed sinusoid spectra, i.e. W1 and W2(f), where f is the unknown frequency. 

Consider the following decompositions of a signal X: 
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The LSE solution of (1) is given by orthogonal project as 
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According to (3), the LSE estimate is obtained by finding frequency f that maximizes 
22

)()( ff Wλ . 

In many cases 
2

)( fW  can be regarded as constant so that only 
2

)( fλ  needs to be maximized. 

Generally speaking in (2) W1 and W2 are independent vectors and therefore not orthogonal to each 

other. To find a LSE solution we need the following orthogonalization: 
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after which the LSE problem is solved using the following orthogonal projections: 
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The decomposition is given by 

 
2212

1

12

212211

,
WW

W

WW
VWrX µµµµµ +












 ><
−=+=−  (6) 

Since W1 is fixed, the LSE estimate is obtained by finding frequency f that maximizes 
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Unlike W1 or W2, the norm of V2 heavily depends on f , so 
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)()( ff Vµ  must be maximized as a 

whole. We write 
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To maximize y regarding f (which affects y through W2(f)), we need to calculates its 1
st
- and 2

nd
- order 

derivatives. That is 
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But we know that  
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where r1 and W1 are fixed. Derivatives of u can be calculated directly using [1]. To calculate the 

derivatives of v, we write 
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Obviously the derivatives of w can be calculated directly using [1]. Then we may proceed with  
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under the adequate assumption that 
2

2
W  remain constant regarding variable f.  

If W1 and W2 are both spectra of unit amplitude zero-central-phase windowed sinusoids using the 

same window function from the cosine family, then w can be directly calculated from the two 

frequencies. To show this we write 
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Notice that (14) is no other than the DC component of a zero-central-phase complex sinusoid of 

frequency f1-f2 bins under window w
2
. Now w show that if w is from the cosine window family, then so 

does w
2
. Let w be 
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then we have 
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Substituting m for l+k we get 
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where d defined by 
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is the convolution of c with itself. For example, the Hann window has c=(1, 2, 1)/4 and d=(1, 4, 6, 2, 

1)/16. Using (17) and Eq. 3 of [1] we get 
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Calculation of w and its derivatives following the thread below: 
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*Symmetry 

We can show that the decomposition onto W1 and W2 is symmetrical in the sense that  
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and that 
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However, these are too much for calculating the values with.  

 

 


