LSE estimation for 2 sinusoids with 1 at a fixed frequency

This document addresses the estimation of two concurrent sinusoids with very close frequencies using
a fixed window size, with the frequency of one fixed at a given value. The estimation follows the
frequency-domain LSE scheme, i.e. maximizing the projection of signal spectrum X onto the subspace
spanned from the two windowed sinusoid spectra, i.e. W and Wy(f), where fis the unknown frequency.

Consider the following decompositions of a signal X:
X=AW(f)+r (1)
X=AW, +L,W,(f)+r (2)
The LSE solution of (1) is given by orthogonal project as
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According to (3), the LSE estimate is obtained by finding frequency f that maximizes |ﬂ( f )|2||W( f )||2 .

In many cases ||W( f )||2 can be regarded as constant so that only |ﬂ( f )|2 needs to be maximized.

Generally speaking in (2) W, and W, are independent vectors and therefore not orthogonal to each
other. To find a LSE solution we need the following orthogonalization:
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after which the LSE problem is solved using the following orthogonal projections:
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The decomposition is given by
1

Since W is fixed, the LSE estimate is obtained by finding frequency /that maximizes |u,(f )|Z||V2 f )||2 )
Unlike W, or W5, the norm of V; heavily depends on f, so |u,(f )|Z||V2 (f )||2 must be maximized as a

whole. We write
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To maximize y regarding f (which affects y through W(f)), we need to calculates its 1%- and 2"- order
derivatives. That is
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But we know that
w=|<r, W, >, v= W[ =W |k w. W, 5[ (11)

where r; and W are fixed. Derivatives of u can be calculated directly using [1]. To calculate the
derivatives of v, we write
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Obviously the derivatives of w can be calculated directly using [1]. Then we may proceed with

L L IR N et
of oo ot oot

under the adequate assumption that ||W2 ||2 remain constant regarding variable f.
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If W, and W, are both spectra of unit amplitude zero-central-phase windowed sinusoids using the
same window function from the cosine family, then w can be directly calculated from the two
frequencies. To show this we write
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Notice that (14) is no other than the DC component of a zero-central-phase complex sinusoid of
frequency f;-f; bins under window w”. Now w show that if w is from the cosine window family, then so
does w”. Let w be
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then we have
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Substituting m for /+k we get
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where d defined by
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is the convolution of ¢ with itself. For example, the Hann window has ¢=(1, 2, 1)/4 and d=(1, 4, 6, 2,
1)/16. Using (17) and Eq. 3 of [1] we get
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Calculation of w and its derivatives following the thread below:
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where S, =S(fi-fitm) S, =@/ (fi-Lform) S, =@ DS (S~ Lorm)
Q, .=xlfi-fi+tm), o, ,=Q, [N. Derivatives regarding f; are easily given as
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*Symmetry
We can show that the decomposition onto W; and W, is symmetrical in the sense that
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However, these are too much for calculating the values with.



