
Calculation of biorthogonal spline wavelet filters 

Wen X. 

 

The spline wavelets are calculated using perfect reconstruction filters (h, g) and ( h
~

, g~ ), so that 
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where p and p~  are the same parity, ε=1 for p even and 1 for p odd, and 
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so that the perfect reconstruction condition 2)(
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The length of h is p+1, of h
~

is p+2 p~ -1. When p is even, h and h
~

 are symmetric regarding 0. 
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To calculate h
~

, first we calculate an h1 corresponding to
p~
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so that 
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When p is odd, h and h
~

 are symmetric regarding 0.5, and 
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Then h
~

is then calculated as h1*h2. In the end ( ) )1(
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*Practical issues on deriving the filter pairs 

 

All the four filters have the same length parity, i.e. all even or all odd. Odd parity corresponds to even 

values of p and p~ , with the filters h and h
~

 being symmetric regarding 0, so that neither the forward 

transform nor the backward reconstruction introduces a time shift. g and g~  are obtained by multiplying  

h
~

 and  h with alternate sign sequence …-1, 1, -1, 1, …, so that the symmetric centres h(0) and )0(
~
h  

are always multiplied with +1. However, there must be a ±1 time shift to transfer (-1)
n
h(n) to )(~ ng , or 

)(
~

)1( nhn−  to g(n). To keep a zero time shift, we make one -1 and the other +1 (actually nothing stops 

us using ±3, or ±5, etc., but never use something like ±2, ±4) . So that one of g and g~  is symmetric 

regarding 1, the other is symmetric regarding -1. This is summarized as follows, where l is the length of 

h and g~ , hl=(l-1)/2, L is the length of h
~

 and g, hL=(L-1)/2, so that 

p and p~  are even; 

l=p+1 is odd; 

L=p+2 p~ -1 is odd; 

hl=p/2, hL=p/2+ p~ -1 is odd samples from hl. 

 

filter first point last point centre  

h -hl hl 0  

h
~

 -hL hL 0  

g -hL+1 hL+1 1 )1(
~

)1()( 1 khkg k −−= −  

g~  -hl-1 hl-1 -1 )1()1()(~ 1 khkg k −−−= −−  

 

 

On the other hand, even parity corresponds to odd values of p and p~ , with the filters h and h
~

 being 

symmetric regarding -0.5. However, this implies the combination of h and h
~

 introduces a time shift of 

1. To correct this, we right shift one of them, say h
~

, so that it is symmetric regarding 0.5, to make the 

combined time shift zero. g and g~  are obtained by multiplying  )(
~
nh −  and  h(-n) with alternate sign 

sequence …-1, 1, -1, 1, …, so that h(0) and )0(
~
h , after the shift operation, are both multiplied by +1. g 

is anti-symmetric regarding -0.5, g~  is anti-symmetric regarding 0.5. This is summerized as follows, 

where l is the length of h and g~ , hl=l/2, L is the length of h
~

 and g, hL=L/2, so that 

p and p~  are odd; 

l=p+1 is even; 

L=p+2 p~ -1 is even; 

hl=(p+1)/2, hL=(p-1)/2+ p~  is even samples from hl. 

 

filter first point last point centre  

h -hl hl-1 -0.5  

h
~

 -hL+1 hL 0.5  

g -hL hL-1 -0.5 )(
~

)1()( khkg k −−=  

g~  -hl+1 hl 0.5 )()1()(~ khkg k −−=  

 

We are free to shift h by δh, h
~

 by –δh, g by δg and g~  by –δg to get another shifted set of filters, as 

long as δh+δg is even. In general, if the total shift applied to h and h
~

 equals that applied to g and g~ , 

and the total shift applied to h and g is even, then the whole system makes a time shifting unit. In 

particular, if we use all the filters as if starting from 0, the whole system introduces a time shift of 

p+ p~ -1, regardless of the parity of p.  

 

To test the correctness of the filters, we see if  
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The conditions can be tested in a way as if all the filters start from zero, thanks to the alignments and 

parities. 

 


