Calculation of biorthogonal spline wavelet filters
Wen X.

The spline wavelets are calculated using perfect reconstruction filters (h, g) and (7 , ), so that
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where p and p are the same parity, e=1 for p even and 1 for p odd, and
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so that the perfect reconstruction condition 4" (w)h (@) + k' (0 + 7)h (@ + 7) = 2 is met.
Let L(cosw)=1, L(cosw) = P(Sinzgj .
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The length of his p+1, of 4 is p+2 5 -1. When p is even, hand / are symmetric regarding 0.
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To calculate 4 , first we calculate an h; corresponding to V2 exp[cos%j , which is simply
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Then 4 is then calculated as h;*h,. In the end g(n) =(~1)"h(1—-n), g(n)=(~1)"h(1-n).
*Practical issues on deriving the filter pairs

All the four filters have the same length parity, i.e. all even or all odd. Odd parity corresponds to even
values of p and 7, with the filters h and 4 being symmetric regarding 0, so that neither the forward
transform nor the backward reconstruction introduces a time shift. gand g are obtained by multiplying

h and h with alternate sign sequence ...-1, 1, -1, 1, ..., so that the symmetric centres h(0) and h (0)
are always multiplied with +1. However, there must be a +1 time shift to transfer (-1)"h(n) to g(n), or

(=1)" 1 (n) to g(n). To keep a zero time shift, we make one -1 and the other +1 (actually nothing stops
us using £3, or +5, etc., but never use something like £2, +4) . So that one of g and g is symmetric
regarding 1, the other is symmetric regarding -1. This is summarized as follows, where 1 is the length of
hand g, hl=(1-1)/2, L is the length of 7 and g, hL=(L-1)/2, so that

pand p are even;

I=p+1 is odd;

L=p+2 p -1 is odd;

hl=p/2, hL=p/2+ p -1 is odd samples from hl.

filter first point last point centre
h -hl hl 0
N -hL hL 0
g -hL+1 hL+1 1 g()=(=D""h(1-k)
g hi-1 hl-1 ! gk =" h(-1-k)

On the other hand, even parity corresponds to odd values of p and 7, with the filters h and % being
symmetric regarding -0.5. However, this implies the combination of h and 4 introduces a time shift of
1. To correct this, we right shift one of them, say # , so that it is symmetric regarding 0.5, to make the
combined time shift zero. g and g are obtained by multiplying /(-n) and h(-n) with alternate sign
sequence ...-1, 1, -1, 1, ..., so that h(0) and h (0), after the shift operation, are both multiplied by +1. g
is anti-symmetric regarding -0.5, g is anti-symmetric regarding 0.5. This is summerized as follows,

where 1 is the length of h and g, hI=1/2, L is the length of 7 and g, hL=L/2, so that
pand p are odd;

I=p+1 is even;

L=p+2 p-1is even;

hl=(p+1)/2, hL=(p-1)/2+ p is even samples from hl.

filter first point last point centre
h -hl hil-1 -0.5
7 -hL+1 hL 0.5
g -hL hL-1 -0.5 g(k) = (—l)k Z(—k)
g -hl+1 hl 0.5 (k) = (=)* h(=k)

We are free to shift h by 8h, & by —h, g by g and g by —8g to get another shifted set of filters, as

long as dh+8g is even. In general, if the total shift applied to h and % equals that applied to g and & ,

and the total shift applied to h and g is even, then the whole system makes a time shifting unit. In
particular, if we use all the filters as if starting from 0, the whole system introduces a time shift of
pt P -1, regardless of the parity of p.

To test the correctness of the filters, we see if




{h*;+g*§=25(n)

(D" h1*h +[(-1)"g]*& =0

The conditions can be tested in a way as if all the filters start from zero, thanks to the alignments and
parities.



