xue@1
|
1 #ifndef MatrixH
|
xue@1
|
2 #define MatrixH
|
xue@1
|
3
|
xue@1
|
4 /*
|
xue@1
|
5 Matrix.cpp - matrix operations.
|
xue@1
|
6
|
xue@1
|
7 Matrices are accessed by double pointers as MATRIX[Y][X], where Y is the row index.
|
xue@1
|
8 */
|
xue@1
|
9
|
xue@1
|
10 #include "xcomplex.h"
|
xue@1
|
11 #include "arrayalloc.h"
|
xue@1
|
12
|
xue@1
|
13 //--Similar balance----------------------------------------------------------
|
xue@1
|
14 void BalanceSim(int n, double** A);
|
xue@1
|
15
|
xue@1
|
16 //--Choleski factorization---------------------------------------------------
|
xue@1
|
17 int Choleski(int N, double** L, double** A);
|
xue@1
|
18
|
xue@1
|
19 //--matrix copy--------------------------------------------------------------
|
xue@1
|
20 double** Copy(int M, int N, double** Z, double** A, MList* List=0);
|
xue@1
|
21 double** Copy(int M, int N, double** A, MList* List=0);
|
xue@1
|
22 double** Copy(int N, double** Z, double ** A, MList* List=0);
|
xue@1
|
23 double** Copy(int N, double ** A, MList* List=0);
|
xue@1
|
24 cdouble** Copy(int M, int N, cdouble** Z, cdouble** A, MList* List=0);
|
xue@1
|
25 cdouble** Copy(int M, int N, cdouble** A, MList* List=0);
|
xue@1
|
26 cdouble** Copy(int N, cdouble** Z, cdouble** A, MList* List=0);
|
xue@1
|
27 cdouble** Copy(int N, cdouble** A, MList* List=0);
|
xue@1
|
28 double* Copy(int N, double* z, double* a, MList* List=0);
|
xue@1
|
29 double* Copy(int N, double* a, MList* List=0);
|
xue@1
|
30 cdouble* Copy(int N, cdouble* z, cdouble* a, MList* List=0);
|
xue@1
|
31 cdouble* Copy(int N, cdouble* a, MList* List=0);
|
xue@1
|
32
|
xue@1
|
33 //--matrix determinant calculation-------------------------------------------
|
xue@1
|
34 double det(int N, double** A, int mode=0);
|
xue@1
|
35 cdouble det(int N, cdouble** A, int mode=0);
|
xue@1
|
36
|
xue@1
|
37 //--power methods for solving eigenproblems----------------------------------
|
xue@1
|
38 int EigPower(int N, double& l, double* x, double** A, double ep=1e-6, int maxiter=50);
|
xue@1
|
39 int EigPowerA(int N, double& l, double* x, double** A, double ep=1e-6, int maxiter=50);
|
xue@1
|
40 int EigPowerI(int N, double& l, double* x, double** A, double ep=1e-6, int maxiter=50);
|
xue@1
|
41 int EigPowerS(int N, double& l, double* x, double** A, double ep=1e-6, int maxiter=50);
|
xue@1
|
42 int EigPowerWielandt(int N, double& m, double* u, double l, double* v, double** A, double ep=1e-06, int maxiter=50);
|
xue@1
|
43 int EigenValues(int N, double** A, cdouble* ev);
|
xue@1
|
44 int EigSym(int N, double** A, double* d, double** Q);
|
xue@1
|
45
|
xue@1
|
46 //--Gaussian elimination for solving linear systems--------------------------
|
xue@1
|
47 int GEB(int N, double* x, double** A, double* b);
|
xue@1
|
48 int GESCP(int N, double* x, double** A, double*b);
|
xue@1
|
49 void GExL(int N, double* x, double** L, double* a);
|
xue@1
|
50 void GExLAdd(int N, double* x, double** L, double* a);
|
xue@1
|
51 void GExL1(int N, double* x, double** L, double a);
|
xue@1
|
52 void GExL1Add(int N, double* x, double** L, double a);
|
xue@1
|
53
|
xue@1
|
54 /*
|
xue@1
|
55 template GECP: Gaussian elimination with maximal column pivoting for solving linear system Ax=b
|
xue@1
|
56
|
xue@1
|
57 In: matrix A[N][N], vector b[N]
|
xue@1
|
58 Out: vector x[N]
|
xue@1
|
59
|
xue@1
|
60 Returns 0 if successful. Contents of matrix A and vector b are destroyed on return.
|
xue@1
|
61 */
|
xue@1
|
62 template<class T, class Ta>int GECP(int N, T* x, Ta** A, T *b, Ta* logdet=0)
|
xue@1
|
63 {
|
xue@1
|
64 if (logdet) *logdet=1E-302; int c, p, ip, *rp=new int[N]; for (int i=0; i<N; i++) rp[i]=i;
|
xue@1
|
65 Ta m;
|
xue@1
|
66 //Gaussian eliminating
|
xue@1
|
67 for (int i=0; i<N-1; i++)
|
xue@1
|
68 {
|
xue@1
|
69 p=i, ip=i+1;
|
xue@1
|
70 while (ip<N){if (fabs(A[rp[ip]][i])>fabs(A[rp[p]][i])) p=ip; ip++;}
|
xue@1
|
71 if (A[rp[p]][i]==0) {delete[] rp; return 1;}
|
xue@1
|
72 if (p!=i) {c=rp[i]; rp[i]=rp[p]; rp[p]=c;}
|
xue@1
|
73 for (int j=i+1; j<N; j++)
|
xue@1
|
74 {
|
xue@1
|
75 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
76 A[rp[j]][i]=0;
|
xue@1
|
77 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
78 b[rp[j]]-=m*b[rp[i]];
|
xue@1
|
79 }
|
xue@1
|
80 }
|
xue@1
|
81 if (A[rp[N-1]][N-1]==0) {delete[] rp; return 1;}
|
xue@1
|
82 //backward substitution
|
xue@1
|
83 x[N-1]=b[rp[N-1]]/A[rp[N-1]][N-1];
|
xue@1
|
84 for (int i=N-2; i>=0; i--)
|
xue@1
|
85 {
|
xue@1
|
86 x[i]=b[rp[i]]; for (int j=i+1; j<N; j++) x[i]-=A[rp[i]][j]*x[j]; x[i]/=A[rp[i]][i];
|
xue@1
|
87 }
|
xue@1
|
88 if (logdet){*logdet=log(fabs(A[rp[0]][0])); for (int n=1; n<N; n++) *logdet+=log(fabs(A[rp[n]][n]));}
|
xue@1
|
89 delete[] rp;
|
xue@1
|
90 return 0;
|
xue@1
|
91 }//GECP
|
xue@1
|
92
|
xue@1
|
93 //--inverse lower and upper triangular matrices------------------------------
|
xue@1
|
94 double GILT(int N, double** A);
|
xue@1
|
95 double GIUT(int N, double** A);
|
xue@1
|
96
|
xue@1
|
97 //--inverse matrix calculation with gaussian elimination---------------------
|
xue@1
|
98 double GICP(int N, double** X, double** A);
|
xue@1
|
99 double GICP(int N, double** A);
|
xue@1
|
100 cdouble GICP(int N, cdouble** A);
|
xue@1
|
101 double GISCP(int N, double** X, double** A);
|
xue@1
|
102 double GISCP(int N, double** A);
|
xue@1
|
103
|
xue@1
|
104 //--Gaussian-Seidel method for solving linear systems------------------------
|
xue@1
|
105 int GSI(int N, double* x0, double** A, double* b, double ep=1e-4, int maxiter=50);
|
xue@1
|
106
|
xue@1
|
107 //Reduction to upper Heissenberg matrix by elimination with pivoting
|
xue@1
|
108 void Hessenb(int n, double** A);
|
xue@1
|
109
|
xue@1
|
110 //--Householder algorithm converting a matrix tridiagonal--------------------
|
xue@1
|
111 void HouseHolder(int N, double** A);
|
xue@1
|
112 void HouseHolder(int N, double** T, double** Q, double** A);
|
xue@1
|
113 void HouseHolder(int n, double **A, double* d, double* sd);
|
xue@1
|
114
|
xue@1
|
115 //--inner product------------------------------------------------------------
|
xue@1
|
116 double Inner(int N, double* x, double* y);
|
xue@1
|
117 cdouble Inner(int N, double* x, cdouble* y);
|
xue@1
|
118 cdouble Inner(int N, cdouble* x, cdouble* y);
|
xue@1
|
119 cdouble Inner(int N, cfloat* x, cdouble* y);
|
xue@1
|
120 cfloat Inner(int N, cfloat* x, cfloat* y);
|
xue@1
|
121 double Inner(int M, int N, double** X, double** Y);
|
xue@1
|
122
|
xue@1
|
123 /*
|
xue@1
|
124 template Inner: Inner product <xw, y>
|
xue@1
|
125
|
xue@1
|
126 In: vectors x[N], w[N] and y[N]
|
xue@1
|
127
|
xue@1
|
128 Returns inner product of xw and y.
|
xue@1
|
129 */
|
xue@1
|
130 template<class Tx, class Tw>cdouble Inner(int N, Tx* x, Tw* w, cdouble* y)
|
xue@1
|
131 {
|
xue@1
|
132 cdouble result=0;
|
xue@1
|
133 for (int i=0; i<N; i++) result+=(x[i]*w[i])**y[i];
|
xue@1
|
134 return result;
|
xue@1
|
135 }//Inner
|
xue@1
|
136 template<class Tx, class Tw>cdouble Inner(int N, Tx* x, Tw* w, double* y)
|
xue@1
|
137 {
|
xue@1
|
138 cdouble result=0;
|
xue@1
|
139 for (int i=0; i<N; i++) result+=x[i]*w[i]*y[i];
|
xue@1
|
140 return result;
|
xue@1
|
141 }//Inner
|
xue@1
|
142
|
xue@1
|
143 //--Jacobi iterative method for solving linear systems-----------------------
|
xue@1
|
144 int JI(int N, double* x, double** A, double* b, double ep=1e-4, int maxiter=50);
|
xue@1
|
145
|
xue@1
|
146 //--LDL factorization of a symmetric matrix----------------------------------
|
xue@1
|
147 int LDL(int N, double** L, double* d, double** A);
|
xue@1
|
148
|
xue@1
|
149 //--LQ factorization by Gram-Schmidt-----------------------------------------
|
xue@1
|
150 void LQ_GS(int M, int N, double** A, double** L, double** Q);
|
xue@1
|
151
|
xue@1
|
152 //--1-stage Least-square solution of overdetermined linear system------------
|
xue@1
|
153 /*
|
xue@1
|
154 template LSLinera: direct LS solution of A[M][N]x[N]=y[M], M>=N.
|
xue@1
|
155
|
xue@1
|
156 In: matrix A[M][N], vector y[M]
|
xue@1
|
157 Out: vector x[N]
|
xue@1
|
158
|
xue@1
|
159 Returns the log determinant of AtA. Contents of matrix A and vector y are unchanged on return.
|
xue@1
|
160 */
|
xue@1
|
161 template <class T> T LSLinear(int M, int N, T* x, T** A, T* y)
|
xue@1
|
162 {
|
xue@1
|
163 MList* mlist=new MList;
|
xue@1
|
164 T** AtA=MultiplyXtX(N, M, A, mlist);
|
xue@1
|
165 T* Aty=MultiplyXty(N, M, A, y, mlist);
|
xue@1
|
166 T result; GECP(N, x, AtA, Aty, &result);
|
xue@1
|
167 delete mlist;
|
xue@1
|
168 return result;
|
xue@1
|
169 }//LSLinear
|
xue@1
|
170
|
xue@1
|
171 //--2-stage Least-square solution of overdetermined linear system------------
|
xue@1
|
172 void LSLinear2(int M, int N, double* x, double** A, double* y);
|
xue@1
|
173
|
xue@1
|
174 //--LU factorization of a non-singular matrix--------------------------------
|
xue@1
|
175 int LU_Direct(int mode, int N, double* diag, double** a);
|
xue@1
|
176 int LU(int N, double** l, double** u, double** a); void LU_DiagL(int N, double** l, double* diagl, double** u, double** a);
|
xue@1
|
177 int LU_PD(int N, double** b);
|
xue@1
|
178 int LU_PD(int N, double** b, double* c);
|
xue@1
|
179 double LUCP(double **a, int N, int *ind, int& parity, int mode=1);
|
xue@1
|
180
|
xue@1
|
181 //--LU factorization method for solving a linear system----------------------
|
xue@1
|
182 void LU(int N, double* x, double** A, double* y, int* ind=0);
|
xue@1
|
183
|
xue@1
|
184 //--find maximum of vector---------------------------------------------------
|
xue@1
|
185 int maxind(double* data, int from, int to);
|
xue@1
|
186
|
xue@1
|
187 //--matrix linear combination------------------------------------------------
|
xue@1
|
188 /*
|
xue@1
|
189 template MultiAdd: matrix linear combination Z=X+aY
|
xue@1
|
190
|
xue@1
|
191 In: matrices X[M][N], Y[M][N], scalar a
|
xue@1
|
192 Out: matrix Z[M][N]
|
xue@1
|
193
|
xue@1
|
194 Returns pointer to Z. Z is created anew if Z=0 is specified on start.
|
xue@1
|
195 */
|
xue@1
|
196 template<class Tz, class Tx, class Ty, class Ta> Tz** MultiAdd(int M, int N, Tz** Z, Tx** X, Ty** Y, Ta a, MList* List=0)
|
xue@1
|
197 {
|
xue@1
|
198 if (!Z){Allocate2(Tz, M, N, Z); if (List) List->Add(Z, 2);}
|
xue@1
|
199 for (int i=0; i<M; i++) for (int j=0; j<N; j++) Z[i][j]=X[i][j]+a*Y[i][j];
|
xue@1
|
200 return Z;
|
xue@1
|
201 }//MultiAdd
|
xue@1
|
202
|
xue@1
|
203 /*
|
xue@1
|
204 template MultiAdd: vector linear combination z=x+ay
|
xue@1
|
205
|
xue@1
|
206 In: vectors x[N], y[N], scalar a
|
xue@1
|
207 Out: vector z[N]
|
xue@1
|
208
|
xue@1
|
209 Returns pointer to z. z is created anew if z=0 is specified on start.
|
xue@1
|
210 */
|
xue@1
|
211 template<class Tz, class Tx, class Ty, class Ta> Tz* MultiAdd(int N, Tz* z, Tx* x, Ty* y, Ta a, MList* List=0)
|
xue@1
|
212 {
|
xue@1
|
213 if (!z){z=new Tz[N]; if (List) List->Add(z, 1);}
|
xue@1
|
214 for (int i=0; i<N; i++) z[i]=x[i]+Ty(a)*y[i];
|
xue@1
|
215 return z;
|
xue@1
|
216 }//MultiAdd
|
xue@1
|
217 template<class Tx, class Ty, class Ta> Tx* MultiAdd(int N, Tx* x, Ty* y, Ta a, MList* List=0)
|
xue@1
|
218 {
|
xue@1
|
219 return MultiAdd(N, (Tx*)0, x, y, a, List);
|
xue@1
|
220 }//MultiAdd
|
xue@1
|
221
|
xue@1
|
222 //--matrix multiplication by constant----------------------------------------
|
xue@1
|
223 /*
|
xue@1
|
224 template Multiply: matrix-constant multiplication Z=aX
|
xue@1
|
225
|
xue@1
|
226 In: matrix X[M][N], scalar a
|
xue@1
|
227 Out: matrix Z[M][N]
|
xue@1
|
228
|
xue@1
|
229 Returns pointer to Z. Z is created anew if Z=0 is specified on start.
|
xue@1
|
230 */
|
xue@1
|
231 template<class Tz, class Tx, class Ta> Tz** Multiply(int M, int N, Tz** Z, Tx** X, Ta a, MList* List=0)
|
xue@1
|
232 {
|
xue@1
|
233 if (!Z){Allocate2(Tz, M, N, Z); if (List) List->Add(Z, 2);}
|
xue@1
|
234 for (int i=0; i<M; i++) for (int j=0; j<N; j++) Z[i][j]=a*X[i][j];
|
xue@1
|
235 return Z;
|
xue@1
|
236 }//Multiply
|
xue@1
|
237
|
xue@1
|
238 /*
|
xue@1
|
239 template Multiply: vector-constant multiplication z=ax
|
xue@1
|
240
|
xue@1
|
241 In: matrix x[N], scalar a
|
xue@1
|
242 Out: matrix z[N]
|
xue@1
|
243
|
xue@1
|
244 Returns pointer to z. z is created anew if z=0 is specified on start.
|
xue@1
|
245 */
|
xue@1
|
246 template<class Tz, class Tx, class Ta> Tz* Multiply(int N, Tz* z, Tx* x, Ta a, MList* List=0)
|
xue@1
|
247 {
|
xue@1
|
248 if (!z){z=new Tz[N]; if (List) List->Add(z, 1);}
|
xue@1
|
249 for (int i=0; i<N; i++) z[i]=x[i]*a;
|
xue@1
|
250 return z;
|
xue@1
|
251 }//Multiply
|
xue@1
|
252 template<class Tx, class Ta>Tx* Multiply(int N, Tx* x, Ta a, MList* List=0)
|
xue@1
|
253 {
|
xue@1
|
254 return Multiply(N, (Tx*)0, x, a, List);
|
xue@1
|
255 }//Multiply
|
xue@1
|
256
|
xue@1
|
257 //--matrix multiplication operations-----------------------------------------
|
xue@1
|
258 /*
|
xue@1
|
259 macro Multiply_full: matrix-matrix multiplication z=xy and multiplication-accumulation z=z+xy.
|
xue@1
|
260
|
xue@1
|
261 Each expansion of the macro defines three function templates; two are named $MULTIPLY and do matrix
|
xue@1
|
262 multiplication only; one is named $MULTIADD and accumulates the multiplicated result on top of a
|
xue@1
|
263 specified matrix. One of the two $MULTIPLY functions allows using a pre-allocated matrix to accept
|
xue@1
|
264 the matrix product, while the other directly allocates a new matrix and returns the pointer.
|
xue@1
|
265
|
xue@1
|
266 Functions are named after their exact functions. For example, MultiplyXYc multiplies matrix X with
|
xue@1
|
267 the complex conjugate of matrix Y, where postfix "c" attched to Y stands for conjugate. Likewise,
|
xue@1
|
268 the postfix "t" stands for transpose, and "h" stnads for Hermitian (conjugate transpose).
|
xue@1
|
269
|
xue@1
|
270 Three dimension arguments are needed by each function template. The first and last of the three are
|
xue@1
|
271 the number of rows and columns, respectively, of the product (output) matrix. The middle one is the
|
xue@1
|
272 "other", common dimension of both multiplier matrices.
|
xue@1
|
273 */
|
xue@1
|
274 #define Multiply_full(MULTIPLY, MULTIADD, xx, yy) \
|
xue@1
|
275 template<class Tx, class Ty>Tx** MULTIPLY(int N, int M, int K, Tx** z, Tx** x, Ty** y, MList* List=0){ \
|
xue@1
|
276 if (!z) {Allocate2(Tx, N, K, z); if (List) List->Add(z, 2);} \
|
xue@1
|
277 for (int n=0; n<N; n++) for (int k=0; k<K; k++){ \
|
xue@1
|
278 Tx zz=0; for (int m=0; m<M; m++) zz+=xx*yy; z[n][k]=zz;} return z;} \
|
xue@1
|
279 template<class Tx, class Ty>Tx** MULTIPLY(int N, int M, int K, Tx** x, Ty** y, MList* List=0){ \
|
xue@1
|
280 Tx** Allocate2(Tx, N, K, z); if (List) List->Add(z, 2); \
|
xue@1
|
281 for (int n=0; n<N; n++) for (int k=0; k<K; k++){ \
|
xue@1
|
282 Tx zz=0; for (int m=0; m<M; m++) zz+=xx*yy; z[n][k]=zz;} return z;} \
|
xue@1
|
283 template<class Tx, class Ty>void MULTIADD(int N, int M, int K, Tx** z, Tx** x, Ty** y){ \
|
xue@1
|
284 for (int n=0; n<N; n++) for (int k=0; k<K; k++){ \
|
xue@1
|
285 Tx zz=0; for (int m=0; m<M; m++) zz+=xx*yy; z[n][k]+=zz;}}
|
xue@1
|
286 Multiply_full(MultiplyXY, MultiAddXY, x[n][m], y[m][k]) //z[N][K]=x[N][M]y[M][K], identical z and x or y not allowed
|
xue@1
|
287 Multiply_full(MultiplyXYc, MultiAddXYc, x[n][m], *y[m][k]) //z[N][K]=x[N][M](y*)[M][K], identical z and x or y not allowed
|
xue@1
|
288 Multiply_full(MultiplyXYt, MultiAddXYt, x[n][m], y[k][m]) //z[N][K]=x[N][M]Yt[M][K], identical z and x or y not allowed
|
xue@1
|
289 Multiply_full(MultiplyXYh, MultiAddXYh, x[n][m], *y[k][m]) //z[N][K]=x[N][M](Yt*)[M][K], identical z and x or y not allowed
|
xue@1
|
290
|
xue@1
|
291 /*
|
xue@1
|
292 macro Multiply_square: square matrix multiplication z=xy and multiplication-accumulation z=z+xy.
|
xue@1
|
293 Identical z and x allowed for multiplication but not for multiplication-accumulation.
|
xue@1
|
294
|
xue@1
|
295 Each expansion of the macro defines three function templates; two are named $MULTIPLY and do matrix
|
xue@1
|
296 multiplication only; one is named $MULTIADD and accumulates the multiplicated result on top of a
|
xue@1
|
297 specified matrix. One of the two $MULTIPLY functions allows using a pre-allocated matrix to accept
|
xue@1
|
298 the matrix product, while the other directly allocates a new matrix and returns the pointer.
|
xue@1
|
299 */
|
xue@1
|
300 #define Multiply_square(MULTIPLY, MULTIADD) \
|
xue@1
|
301 template<class T>T** MULTIPLY(int N, T** z, T** x, T** y, MList* List=0){ \
|
xue@1
|
302 if (!z){Allocate2(T, N, N, z); if (List) List->Add(z, 2);} \
|
xue@1
|
303 if (z!=x) MULTIPLY(N, N, N, z, x, y); else{ \
|
xue@1
|
304 T* tmp=new T[N]; int sizeN=sizeof(T)*N; for (int i=0; i<N; i++){ \
|
xue@1
|
305 MULTIPLY(1, N, N, &tmp, &x[i], y); memcpy(z[i], tmp, sizeN);} delete[] tmp;} \
|
xue@1
|
306 return z;} \
|
xue@1
|
307 template<class T>T** MULTIPLY(int N, T** x, T** y, MList* List=0){return MULTIPLY(N, N, N, x, y, List);}\
|
xue@1
|
308 template<class T>void MULTIADD(int N, T** z, T** x, T** y){MULTIADD(N, N, N, z, x, y);}
|
xue@1
|
309 Multiply_square(MultiplyXY, MultiAddXY)
|
xue@1
|
310
|
xue@1
|
311 /*
|
xue@1
|
312 macro Multiply_xx: matrix self multiplication z=xx and self-multiplication-accumulation z=z+xx.
|
xue@1
|
313
|
xue@1
|
314 Each expansion of the macro defines three function templates; two are named $MULTIPLY and do matrix
|
xue@1
|
315 multiplication only; one is named $MULTIADD and accumulates the multiplicated result on top of a
|
xue@1
|
316 specified matrix. One of the two $MULTIPLY functions allows using a pre-allocated matrix to accept
|
xue@1
|
317 the matrix product, while the other directly allocates a new matrix and returns the pointer.
|
xue@1
|
318 */
|
xue@1
|
319 #define Multiply_xx(MULTIPLY, MULTIADD, xx1, xx2, zzt) \
|
xue@1
|
320 template<class T>T** MULTIPLY(int M, int N, T** z, T** x, MList* List=0){ \
|
xue@1
|
321 if (!z){Allocate2(T, M, M, z); if (List) List->Add(z, 2);} \
|
xue@1
|
322 for (int m=0; m<M; m++) for (int k=0; k<=m; k++){ \
|
xue@1
|
323 T zz=0; for (int n=0; n<N; n++) zz+=xx1*xx2; z[m][k]=zz; if (m!=k) z[k][m]=zzt;} \
|
xue@1
|
324 return z;} \
|
xue@1
|
325 template<class T>T** MULTIPLY(int M, int N, T ** x, MList* List=0){ \
|
xue@1
|
326 T** Allocate2(T, M, M, z); if (List) List->Add(z, 2); \
|
xue@1
|
327 for (int m=0; m<M; m++) for (int k=0; k<=m; k++){ \
|
xue@1
|
328 T zz=0; for (int n=0; n<N; n++) zz+=xx1*xx2; z[m][k]=zz; if (m!=k) z[k][m]=zzt;} \
|
xue@1
|
329 return z;} \
|
xue@1
|
330 template<class T>void MULTIADD(int M, int N, T** z, T** x){ \
|
xue@1
|
331 for (int m=0; m<M; m++) for (int k=0; k<=m; k++){ \
|
xue@1
|
332 T zz=0; for (int n=0; n<N; n++) zz+=xx1*xx2; z[m][k]+=zz; if (m!=k) z[k][m]+=zzt;}}
|
xue@1
|
333 Multiply_xx(MultiplyXtX, MultiAddXtX, x[n][m], x[n][k], zz) //z[M][M]=xt[M][N]x[N][M], identical z and x NOT ALLOWED.
|
xue@1
|
334 Multiply_xx(MultiplyXXt, MultiAddXXt, x[m][n], x[k][n], zz) //z[M][M]=X[M][N]xt[N][M], identical z and x NOT ALLOWED.
|
xue@1
|
335 Multiply_xx(MultiplyXhX, MultiAddXhX, *x[n][m], x[n][k], *zz) //z[M][M]=(xt*)[M][N]x[N][M], identical z and x NOT ALLOWED.
|
xue@1
|
336 Multiply_xx(MultiplyXXh, MultiAddXXh, x[m][n], *x[k][n], *zz) //z[M][M]=x[M][N](xt*)[N][M], identical z and x NOT ALLOWED.
|
xue@1
|
337 Multiply_xx(MultiplyXcXt, MultiAddXcXt, *x[m][n], x[k][n], *zz) //z[M][M]=(x*)[M][N]xt[N][M], identical z and x NOT ALLOWED.
|
xue@1
|
338
|
xue@1
|
339 //matrix-vector multiplication routines
|
xue@1
|
340 double* MultiplyXy(int M, int N, double* z, double** x, double* y, MList* List=0);
|
xue@1
|
341 double* MultiplyXy(int M, int N, double** x, double* y, MList* List=0);
|
xue@1
|
342 cdouble* MultiplyXy(int M, int N, cdouble* z, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
343 cdouble* MultiplyXy(int M, int N, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
344 cdouble* MultiplyXy(int M, int N, cdouble* z, double** x, cdouble* y, MList* List=0);
|
xue@1
|
345 cdouble* MultiplyXy(int M, int N, double** x, cdouble* y, MList* List=0);
|
xue@1
|
346 double* MultiplyxY(int M, int N, double* zt, double* xt, double** y, MList* List=0);
|
xue@1
|
347 double* MultiplyxY(int M, int N, double* xt, double** y, MList* List=0);
|
xue@1
|
348 cdouble* MultiplyxY(int M, int N, cdouble* zt, cdouble* xt, cdouble** y, MList* List=0);
|
xue@1
|
349 cdouble* MultiplyxY(int M, int N, cdouble* xt, cdouble** y, MList* List=0);
|
xue@1
|
350 double* MultiplyXty(int M, int N, double* z, double** x, double* y, MList* List=0);
|
xue@1
|
351 double* MultiplyXty(int M, int N, double** x, double* y, MList* List=0);
|
xue@1
|
352 cdouble* MultiplyXty(int M, int N, cdouble* z, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
353 cdouble* MultiplyXty(int M, int N, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
354 cdouble* MultiplyXhy(int M, int N, cdouble* z, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
355 cdouble* MultiplyXhy(int M, int N, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
356 cdouble* MultiplyXcy(int M, int N, cdouble* z, cdouble** x, cfloat* y, MList* List=0);
|
xue@1
|
357 cdouble* MultiplyXcy(int M, int N, cdouble** x, cfloat* y, MList* List=0);
|
xue@1
|
358 cdouble* MultiplyXcy(int M, int N, cdouble* z, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
359 cdouble* MultiplyXcy(int M, int N, cdouble** x, cdouble* y, MList* List=0);
|
xue@1
|
360 double* MultiplyxYt(int M, int N, double* zt, double* xt, double** y, MList* MList=0);
|
xue@1
|
361 double* MultiplyxYt(int M, int N, double* xt, double** y, MList* MList=0);
|
xue@1
|
362
|
xue@1
|
363 //--matrix norms-------------------------------------------------------------
|
xue@1
|
364 double Norm1(int N, double** A);
|
xue@1
|
365
|
xue@1
|
366 //--QR factorization---------------------------------------------------------
|
xue@1
|
367 void QR_GS(int M, int N, double** A, double** Q, double** R);
|
xue@1
|
368 void QR_householder(int M, int N, double** A, double** Q, double** R);
|
xue@1
|
369
|
xue@1
|
370 //--QR factorization of a tridiagonal matrix---------------------------------
|
xue@1
|
371 int QL(int N, double* d, double* sd, double** z);
|
xue@1
|
372 int QR(int N, double **A, cdouble* ev);
|
xue@1
|
373
|
xue@1
|
374 //--QU factorization of a matrix---------------------------------------------
|
xue@1
|
375 void QU(int N, double** Q, double** A);
|
xue@1
|
376
|
xue@1
|
377 //--Extract the real part----------------------------------------------------
|
xue@1
|
378 double** Real(int M, int N, double** z, cdouble** x, MList* List);
|
xue@1
|
379 double** Real(int M, int N, cdouble** x, MList* List);
|
xue@1
|
380
|
xue@1
|
381 //--Finding roots of real polynomials----------------------------------------
|
xue@1
|
382 int Roots(int N, double* p, double* rr, double* ri);
|
xue@1
|
383
|
xue@1
|
384 //--Sor iterative method for solving linear systems--------------------------
|
xue@1
|
385 int SorI(int N, double* x0, double** a, double* b, double w=1, double ep=1e-4, int maxiter=50);
|
xue@1
|
386
|
xue@1
|
387 //--Submatrix----------------------------------------------------------------
|
xue@1
|
388 void SetSubMatrix(double** z, double** x, int Y1, int Y, int X1, int X);
|
xue@1
|
389 void SetSubMatrix(cdouble** z, cdouble** x, int Y1, int Y, int X1, int X);
|
xue@1
|
390 cdouble** SubMatrix(cdouble** z, cdouble** x, int Y1, int Y, int X1, int X, MList* List=0);
|
xue@1
|
391 cdouble** SubMatrix(cdouble** x, int Y1, int Y, int X1, int X, MList* List=0);
|
xue@1
|
392 cdouble* SubVector(cdouble* z, cdouble* x, int X1, int X, MList* List=0);
|
xue@1
|
393 cdouble* SubVector(cdouble* x, int X1, int X, MList* List=0);
|
xue@1
|
394
|
xue@1
|
395 //--matrix transpose operation-----------------------------------------------
|
xue@1
|
396 void transpose(int N, double** a);
|
xue@1
|
397 void transpose(int N, cdouble** a);
|
xue@1
|
398 double** transpose(int N, int M, double** ta, double** a, MList* List=0); //z[NM]=a[MN]'
|
xue@1
|
399 double** transpose(int N, int M, double** a, MList* List=0);
|
xue@1
|
400
|
xue@1
|
401 //--rotation matrix converting between vectors-------------------------------
|
xue@1
|
402 double** Unitary(int N, double** P, double* x, double* y, MList* List=0);
|
xue@1
|
403 double** Unitary(int N, double* x, double* y, MList* List=0);
|
xue@1
|
404 cdouble** Unitary(int N, cdouble** P, cdouble* x, cdouble* y, MList* List=0);
|
xue@1
|
405 cdouble** Unitary(int N, cdouble* x, cdouble* y, MList* List=0);
|
xue@1
|
406
|
xue@1
|
407 #endif
|