Mercurial > hg > webaudioevaluationtool
view scripts/score_plot.py @ 858:30d5aa52b034
Update dev_main
author | Nicholas Jillings <nicholas.jillings@eecs.qmul.ac.uk> |
---|---|
date | Wed, 22 Jul 2015 12:41:22 +0100 |
parents | |
children | 7b0ce3a9ddc1 99cb3436759e |
line wrap: on
line source
#!/usr/bin/python import sys import os import csv import matplotlib.pyplot as plt import numpy as np import scipy as sp import scipy.stats # CONFIGURATION # Which type(s) of plot do you want? enable_boxplot = True # show box plot enable_confidence = False # show confidence interval confidence = 0.90 # confidence value (for confidence interval plot) enable_individual = False # show all individual ratings show_individual = [] # show specific individuals show_legend = False # show names of individuals #TODO: Merge, implement this functionality #TODO: Control by CLI arguments (plot types, save and/or show, ...) # Enter folder where rating CSV files are (generated with score_parser.py or same format). rating_folder = '../saves/ratings/' # folder with rating csv files # Font settings font = {'weight' : 'bold', 'size' : 10} plt.rc('font', **font) # CODE # get every csv file in folder for file in os.listdir(rating_folder): # You have to put this in folder where rating csv files are. if file.endswith(".csv"): page_name = file[:-4] # file name (without extension) is page ID # get header with open(rating_folder+file, 'rb') as readfile: # read this csv file filereader = csv.reader(readfile, delimiter=',') headerrow = filereader.next() # use headerrow as X-axis headerrow = headerrow[1:] # read ratings into matrix # ratings = np.loadtxt(open(rating_folder+file,"rb"), # delimiter=",", # skiprows=1, # usecols=range(1,len(headerrow)+1) # ) ratings = np.genfromtxt(readfile, delimiter=",", #skip_header = 1, converters = {3: lambda s: float(s or 'Nan')}, usecols=range(1,len(headerrow)+1) ) # assert at least 2 subjects (move on to next file if violated) if ratings.shape[0]<2: print "WARNING: Just one subject for " + page_name + ". Moving on to next file." break # BOXPLOT if enable_boxplot: plt.boxplot(ratings) # CONFIDENCE INTERVAL if enable_confidence: iterator = 0 for column in ratings.T: # iterate over transposed matrix # remove all 'Nan's from column column = column[~np.isnan(column)] # get number of non-Nan ratings (= #subjects) n = column.size # get mean mean_rating = np.mean(column) # get errors err = scipy.stats.sem(column)* sp.stats.t._ppf((1+confidence)/2., n-1) # draw plot plt.errorbar(iterator+1, mean_rating, yerr=err, marker="x", color ="k", markersize=12, linestyle='None') iterator += 1 # increase counter # INDIVIDUAL PLOT if enable_individual or show_individual: # marker list and color map to cycle through markerlist = ["x", ".", "o", "*", "+", "v", ">", "<", "8", "s", "p"] colormap = ['b', 'r', 'g', 'c', 'm', 'y', 'k'] increment = 0 linehandles = [] legendnames = [] with open(rating_folder+file, 'rb') as readfile: # read this csv file filereader = csv.reader(readfile, delimiter=',') headerrow = filereader.next() # use headerrow as X-axis headerrow = headerrow[1:] for row in filereader: subject_id = row[0][:-4] # read from beginning of line # assume plotting all individuals if no individual(s) specified if not show_individual or subject_id in show_individual: plothandle, = plt.plot(range(1,len(row)), # x-values ratings[increment,:],#row[1:], # y-values: csv values except subject name color=colormap[increment%len(colormap)], marker=markerlist[increment%len(markerlist)], markersize=10, linestyle='None', label=subject_id ) linehandles.append(plothandle) legendnames.append(subject_id) if show_legend: plt.legend(linehandles, legendnames, loc='upper right', bbox_to_anchor=(1.1, 1), borderaxespad=0., numpoints=1 # remove extra marker ) increment += 1 # increase counter # TITLE, AXIS LABELS AND LIMITS plt.title(page_name) plt.xlabel('Fragment') plt.xlim(0, len(headerrow)+1) # only show relevant region, leave space left & right) plt.xticks(range(1, len(headerrow)+1), headerrow) # show fragment names plt.ylabel('Rating') plt.ylim(0,1) # SHOW PLOT #plt.show() #exit() # SAVE PLOT # automatically plot_type = ("-box" if enable_boxplot else "") + \ ("-conf" if enable_confidence else "") + \ ("-ind" if enable_individual else "") plt.savefig(rating_folder+page_name+plot_type+".png") plt.close()