Web Audio Evaluation Tool: A framework for subjective
assessment of audio

Nicholas Jillings?
nicholas.jillings@mail.bcu.ac.uk

_ David Moffat:
d.j.moffat@qgmul.ac.uk

~ Joshua D. Reiss*
joshua.reiss@gmul.ac.uk

Brecht De Man!
b.deman@qgmul.ac.uk

Ryan Stables?
ryan.stables@bcu.ac.uk

Centre for Digital Music, School of Electronic Engineering and Computer Science*
Queen Mary University of London
Mile End Road, London E1 4NS
United Kingdom

Digital Media Technology Lab?
Birmingham City University
Birmingham B4 7XG
United Kingdom

ABSTRACT

Perceptual listening tests are commonplace in audio research
and a vital form of evaluation. Many tools exist to run such
tests, however many operate one test type and are there-
fore limited whilst most require proprietary software. Using
Web Audio the Web Audio Evaluation Tool (WAET) ad-
dresses these concerns by having one toolbox which can be
configured to run many different tests, perform it through
a web browser and without needing proprietary software or
computer programming knowledge. In this paper the role
of the Web Audio API in giving WAET key functionalities
are shown. The paper also highlights less common features,
available to web based tools, such as easy remote testing
environment and in-browser analytics.

1. INTRODUCTION

Perceptual evaluation of audio, using listening tests, is a
powerful way to assess anything from audio codec quality
to realism of sound synthesis to the performance of source
separation, automated music production and other auditory
evaluations. In less technical areas, the framework of a lis-
tening test can be used to measure emotional response to
music or test cognitive abilities.

Several applications for performing perceptual listening
tests currently exist presented in Table Many rely on
proprietary, 3rd party software such as MATLAB and MAX,
making them less attractive for many. With the exception of
the existing JavaScript-based toolboxes, remote deployment
(web-based test hosting and result collection) is not possible.

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4-6, 2016, Atlanta, USA
(© 2016 Copyright held by the owner/author(s). .

HULTI-GEN [1] is a single example of a toolbox that
presents the user with a large number of different test inter-
faces and customisation, without requiring knowledge of any
programming language. The Web Audio Evaluation Tool-
box (WAET), presented here, stands out for the same rea-
sons and does not require proprietary software or a specific
platform. It also provides a wide range of interface and test
types in one user friendly environment. Furthermore any
test based on the default test types can be configured in the
browser as well. Note that the design of an effective listen-
ing test further poses many challenges unrelated to interface
design, which are beyond the scope of this paper [2].

The Web Audio API provides important features includ-
ing sample level manipulation of audio streams [3] and syn-
chronous and flexible playback. Operating in the browser
allows leveraging the flexible JavaScript language and native
support for web documents, such as the extensible markup
language (XML) which is used for configuration and test
result files. Using the web also reduces deployment require-
ments to a basic web server with extra functionality, such as
test collection and automatic processing, using PHP. As re-
cruiting participants can be very time-consuming, and as for
some tests a large number of participants is needed, browser-
based tests can enable participants in multiple locations to
perform the test simultaneously [3].

Both BeagleJS [4] and mushraJd'| also operate in the
browser. However, BeagleJS does not make use of the Web
Audio API and therefore lacks arbitrary manipulation of
audio stream samples, and neither offer an adequately wide
choice of test designs for them to be useful to many re-
searchers.

To meet the need for a cross-platform, versatile and easy-
to-use listening test tool, we previously developed the Web
Audio Evaluation Tool [9] which was capable of running a
listening test in the browser from an XML configuration file,
and storing an XML file as well, with one particular inter-
face. This has now expanded into a tool with which a wide
range of listening test types can easily be constructed and set

"https://github.com/akaroice/mushraJS

Table 1: Table with existing listening test platforms and their features

Z =
n) n | < s
R 3 | & =
2 [& | & [N e
& g |2 S| e ° 2 A
a0 Q =} = - g = <
Toolbox < M as £ | = n 2 3
Reference 5] 14] 11] 6 7] 19]
Language MATLAB | JS MAX | JS | MATLAB | MATLAB | MATLAB | JS
Remote (V) v v
MUSHRA (ITU-R BS. 1534) v |7 7 |7 v
APE v v
Rank Scale v v
Likert Scale v v v
ABC/IR (ITU-R BS. 1116) 7 v
-50 to 50 Bipolar with ref. v v
Absolute Category Rating Scale v v
Degradation Category Rating Scale v v
Comparison Category Rating Scale v v v
9 Point Hedonic Category Rating Scale v v v
ITU-R 5 Continuous Impairment Scale v v
Pairwise / AB Test v v
Multi-attribute ratings v v
ABX Test v v v
Adaptive psychophysical methods v
Repertory Grid Technique v
Semantic Differential v v v
n-Alternative Forced Choice v
Listening test justed over time within a session, to name a few. Not only
) does this allow evaluation of a wealth of perceptual aspects,
Lstep || subme | Example Test Question but it also helps detect poor participants whose results are
fettorz potentially not representative.

One of the key initial design parameters for WAET was to
make the tool as open as possible to non-programmers and
to this end all of the user modifiable options are included

- oo = in a single XML document, referred to as the specification

Comment on fragment 0 Comment on fragment 1

Figure 1: A simple example of a multi-stimulus, sin-
gle attribute, single rating scale test with a reference
and comment fields.

up remotely, without any need for manually altering code or
configuration files, and allows visualisation of the collected
results in the browser. In this paper, we discuss these differ-
ent aspects and explore which future improvements would
be possible.

2. ARCHITECTURE

Although WAET uses a sparse subset of the Web Au-
dio API functionality, its performance comes directly from
it. Listening tests can convey large amounts of information
other than obtaining the perceptual relationship between the
audio fragments. With WAET it is possible to track which
parts of the audio fragments were listened to and when, at
what point in the audio stream the participant switched to
a different fragment, and how a fragment’s rating was ad-

document, that can be written manually (or modifying an
existing document or template) or using the included test
creator. The test creator can modify existing specification
documents or generate new ones in a user friendly environ-
ment. This simplifies the creation of elements by visualising
the data structure with explanatory text.

The specification document contains the URL of the audio
fragments for each test page. These fragments are down-
loaded asynchronously in the test and decoded offline by
the Web Audio offline decoder. The LUFS integrated loud-
ness of the buffers are calculated and stored to enable
on-the-fly loudness normalisation. Equally if the playback
uses synchronous looping, the buffers are zero-padded ac-
cordingly. Performing these in the browser removes any
pre-processing. The resulting buffers are assigned to a cus-
tom Audio Objects node which tracks the fragment buffer,
the Web Audio bufferSourceNode, and other specification at-
tributes including its 1D, the interface object(s) associated
with the fragment and any metric or data collection objects.
The Audio Object is controlled by an over-arching custom
Audio Engine node allowing for session wide control of the
Audio Objects.

The only significant issue with this model is the bufferN-
ode in the Web Audio API, implemented in the standard
as a ‘use once’ object. Once the node has been played it
must be discarded as it cannot be instructed to play again.

Therefore on each play request the bufferSourceNode must
be created and then linked with the stored bufferNode. This
is an odd behaviour with no alternative except to use the
HTML5 audio element, but they do not have the ability to
synchronously start on a given time and therefore not suited.

In the test, each buffer node is connected to a gain node
configured by the loudness normalisation and any user spec-
ified gain. Therefore it is possible to perform a ‘Method of
Adjustment’ test where an interface could directly manipu-
late these gain nodes. These gain nodes are used for cross-
fading between samples when operating in synchronous play-
back. Cross-fading can either be fade-out fade-in or a true
cross-fade. This is achieved by using the AudioParam con-
trols to provide linear ramping from 0 to the calculated
playback level. There is also an optional ‘Master Volume’
slider which can be shown on the test GUI which modifies
a gain node before the destination. The controls’ position
is tracked providing extra test use validation. This is not
indicative of the final volume exiting the speakers, not least
because the browser cannot read the system volume. There-
fore its use should only be considered in a lab environment
to ensure results are representative.

The media files supported depend on the browser level
support for the initial decoding of information and is the
same as the browser support for the HTML5 audio element.
The most widely supported media file is the wave (\WAV)
format which is accepted by every browser supporting the
Web Audio API. Most browsers support floating point WAV
except Firefox. To resolve this the tool includes its own wave
file decoder to extract the samples. The toolbox works in
any browser which supports the Web Audio API and HTML
5.

All the collected session data is returned in an XML doc-
ument structured similarly to the configuration document,
where test pages contain the audio elements with their trace
collection, results, comments and any interface specific data
points.

3. REMOTE TESTS

If the experimenter is willing to trade some degree of con-
trol for a higher number of participants, the test can be
hosted on a public web server. This way, a link can be
shared widely in the hope of attracting a large amount of
subjects, while listening conditions and subject reliability
may be less ideal. However, a sound system calibration page
and the range of metrics logged mitigate these problems. In
some experiments, it may be preferred that the subject has
a ‘real life’, familiar listening set-up, for instance when per-
ceived quality differences on everyday sound systems are in-
vestigated. Furthermore, a fully browser-based test, where
the collection of the results is automatic, is more efficient
and technically reliable even when the test still takes place
under lab conditions.

The following features allow easy and effective remote
testing:

PHP script to collect result XML files and store on cen-

tral server.

Randomly pick a specified number of pages to ensure
an equal and randomised spread of the different pages
(‘audioHolders’) across participants.

Calibration of the sound system (and participant) by

a perceptual pre-test to gather information about the
frequency response and speaker configuration - this can

be supplemented with a survey.

Intermediate saves for tests which were interrupted or
unfinished.

Collect IP address information for geographic location,
through PHP function which grabs address and ap-
pends to XML file.

Collect Browser and Display information to the extent
it is available and reliable.

4. INTERFACES

The purpose of this listening test framework is to allow
any user the maximum flexibility to design a listening test
for their exact application with minimum effort. To this
end, a large range of standard listening test interfaces have
been implemented including:

e AB Test [11]: Two stimuli presented at a time, partic-
ipant selects a preferred stimulus.

e ABC/HR (ITU-R BS. 1116) [12] (Mean Opinion Score:
MOS): each stimulus has a continuous scale (5-1), la-
beled as Imperceptible, Perceptible but not annoying,
slightly annoying, annoying, very annoying.

e -50 to 50 Bipolar with Ref: each stimulus has a contin-
uous scale -50 to 50 with default values as 0 in middle
and a reference.

e Absolute Category Rating (ACR) Scale [13]: Likert
but labels are Bad, Poor, Fair, Good, Excellent

e ABX Test [14]: Two stimuli are presented along with a
reference and the participant has to select a preferred
stimulus, often the closest to the reference.

e APE style [5]: Multiple stimuli as points on a 2D plane
for inter-sample rating (eg. Valence Arousal)

e Comparison Category Rating (CCR) Scale [13]: ACR
& DCR but 7 point scale: Much Better, Better, Slightly
Better, About the same, slightly worse, worse, much
worse. There is also a provided reference.

e Degredation Category Rating (DCR) Scale [13]: ABC
& Likert but labels are (5) Inaudible, (4) Audible but
not annoying, (3) slightly annoying, (2) annoying, (1)
very annoying.

e ITU-R 5 Point Continuous Impairment Scale [15]: Same
as ABC/HR but with a reference.

e Likert scale [16]: each stimuli has a five point scale
with values: Strongly Agree, Agree, Neutral, Disagree
and Strongly Disagree.

e MUSHRA (ITU-R BS. 1534) [17]

e Pairwise Comparison (Better/Worse) |18]: every stim-
ulus is rated as being either better or worse than the
reference.

e Rank Scale |19|: stimuli ranked on single horizontal
scale, where they are ordered in preference order.

e 9 Point Hedonic Category Rating Scale [20]: each stim-
uli has a seven point scale with values: Like Extremely,
Like Very Much, Like Moderate, Like Slightly, Neither
Like nor Dislike, dislike Extremely, dislike Very Much,
dislike Moderate, dislike Slightly. There is also a pro-
vided reference.

It is possible to include any number of references, hidden
references and hidden anchors into all of these listening test
formats.

Because of the design to have separate core code and in-
terface modules, it is possible for a 3rd party interface to be
built with minimal effort. The repository includes a boiler-
plate (blank.js) and documentation on which functions must

be called and the specific functions they expect your in-
terface to perform. The core includes an ‘Interface’ object
which includes object prototypes for the on-page comment
boxes (including those with radio or checkbox responses),
start and stop buttons and the playhead / transport bars.

S. ANALYSIS AND DIAGNOSTICS

There are several benefits to providing basic analysis tools
in the browser: they allow diagnosing problems, with the
interface or with the test subject; they may be sufficient
for many researchers’ purposes; and test subjects may enjoy
seeing an overview of their own results and/or results thus
far at the end of their tests. For this reason, we include a

Excellent I L

s 41 LT

Fair
[T °

Poor * |
Bad E;;l Y

_

Rating

A B C D E F
audioelement ID

Figure 2: Box and whisker plot showing the aggre-
gated numerical ratings of six stimuli by a group of
subjects.

proof-of-concept web page with:
e All audioholder IDs, file names, subject IDs, audio ele-

ment IDs, ... in the collected XMLs so far (saves/*.xml)

e Selection of subjects and/or test samples to zoom in
on a subset of the data

e Embedded audio to hear corresponding test samples

e Scatter plot, confidence plot and box plot of rating
values (see Figure)

e Timeline for a specific subject

e Distribution plots of any radio button and number
questions in pre- and post-test survey

e All ‘comments’ on a specific audioelement

e A ‘download’ function for a CSV of ratings, survey

responses and comments

6. CONCLUDING REMARKS AND FUTURE
WORK

We have developed a browser-based tool for the design and
deployment of listening tests, requiring no programming ex-
perience or proprietary software. Following the predictions
or guidelines in [3|, it supports remote testing, cross-fading
between audio streams, collecting information about the sys-
tem, among others.

Whereas many other types of interfaces do exist, we felt
that supporting e.g. a range of ‘method of adjustment’
tests would be beyond the scope of a tool that aims to
be versatile enough while not claiming to support any cus-
tom experiment one might want to set up. Rather, it sup-
ports many non-adaptive listening test up to multi-stimulus,
multi-attribute evaluation including references, anchors, text
boxes, radio buttons and/or checkboxes, with arbitrary place-
ment of the various Ul elements.

The code and documentation can be downloaded from
our online repository available at|code.soundsoftware.ac.uk/
projects/webaudioevaluationtool.

7. REFERENCES

[1] C. Gribben and H. Lee, “Toward the development of a
universal listening test interface generator in max,” in AES
Convention 138, Audio Engineering Society, 2015.

S. Bech and N. Zacharov, Perceptual Audio Evaluation -

Theory, Method and Application. John Wiley & Sons, 2007.

[3] M. Schoeffler, F.-R. Stéter, B. Edler, and J. Herre,

“Towards the next generation of web-based experiments: A

case study assessing basic audio quality following the

ITU-R recommendation BS. 1534 (MUSHRA),” in 1st Web

Audio Conference, 2015.

S. Kraft and U. Zolzer, “BeaqleJS: HTML5 and JavaScript

based framework for the subjective evaluation of audio

quality,” in Linux Audio Conference, Karlsruhe, DE, 2014.

(5] B. De Man and J. D. Reiss, “APE: Audio Perceptual
Evaluation toolbox for MATLAB,” in 136th Convention of
the AES, April 2014.

[6] E. Vincent, M. G. Jafari, and M. D. Plumbley,
“Preliminary guidelines for subjective evalutation of audio
source separation algorithms,” in UK ICA Research
Network Workshop, 2006.

[7] A. V. Giner, “Scale - a software tool for listening
experiments,” in AIA/DAGA Conference on Acoustics,
Merano (Italy), 2013.

[8] S. Ciba, A. Wlodarski, and H.-J. Maempel, “Whisper — A

new tool for performing listening tests,” in 126th

Convention of the AES, May 7-10 2009.

N. Jillings, D. Moffat, B. De Man, and J. D. Reiss, “Web

Audio Evaluation Tool: A browser-based listening test

environment,” in 12th Sound and Music Computing

Conference, July 2015.

[10] ITURBS Recommendation, “Bs. 1770 : Algorithms to
measure audio programme loudness and true-peak audio
level,” International Telecommunication Union, 2015.

[11] S. P. Lipshitz and J. Vanderkooy, “The great debate:
Subjective evaluation,” Journal of the AES, vol. 29,
no. 7/8, pp. 482-491, 1981.

[12] ITURBS Recommendation, “1116-1: Methods for the
subjective assessment of small impairments in audio
systems including multichannel sound systems,”
International Telecommunication Union, Geneva, 1997.

[13] ITUT Recommendation, “P. 800: Methods for subjective
determination of transmission quality,” International
Telecommunication Union, Geneva, 1996.

[14] D. Clark, “High-resolution subjective testing using a
double-blind comparator,” Journal of the AES, vol. 30,
no. 5, pp. 330-338, 1982.

[15] ITUR Recommendation, “Bs. 562-3,‘subjective assessment
of sound quality’,” International Telecommunications
Union, 1997.

[16] R. Likert, “A technique for the measurement of attitudes.,”
Archives of psychology, 1932.

[17] ITURBS Recommendation, “Bs. 1534-1: Method for the
subjective assessment of intermediate quality levels of
coding systems,” International Telecommunication Union,
2003.

[18] H. A. David, The method of paired comparisons, vol. 12.
DTIC Document, 1963.

[19] G. C. Pascoe and C. C. Attkisson, “The evaluation ranking
scale: a new methodology for assessing satisfaction,”
Evaluation and program planning, vol. 6, no. 3,
pp. 335-347, 1983.

[20] D. R. Peryam and N. F. Girardot, “Advanced taste-test
method,” Food Engineering, vol. 24, no. 7, pp. 5861, 1952.

[2

[4

[9

code.soundsoftware.ac.uk/projects/webaudioevaluationtool
code.soundsoftware.ac.uk/projects/webaudioevaluationtool

	Introduction
	Architecture
	Remote tests
	Interfaces
	Analysis and diagnostics
	Concluding remarks and future work
	References

