Web Audio Evaluation Tool: A framework for subjective
assessment of audio

Nicholas Jillings
n.g.r.jillings@se14.gmul.ac.uk

_ David Moffat
d.j.moffat@gmul.ac.uk

Brecht De Man
b.deman@qgmul.ac.uk

Joshua D. Reiss

joshua.reiss@gmul.ac.uk

Centre for Digital Music
School of Electronic Engineering and Computer Science
Queen Mary University of London
Mile End Road, London E1 4NS
United Kingdom

ABSTRACT

Here comes the abstract.

1. INTRODUCTION

Perceptual evaluation of audio, in the form of listening
tests, is a powerful way to assess anything from audio codec
quality over realism of sound synthesis to the performance
of source separation, automated music production and other
auditory evaluations. In less technical areas, the framework
of a listening test can be used to measure emotional response
to music or test cognitive abilities.

Several applications for performing perceptual listening
tests currently exist, as can be seen in Table The Web
Audio Evaluation Toolbox stands out as it does not require
proprietary software or a specific platform. It also provides
a wide range of interface and test types in one user friendly
environment. Furthermore, it does not require any progam-
ming experience as any test based on the default test types
can be configured in the browser as well. Note that the
design of an effective listening test further poses many chal-
lenges unrelated to interface design, which are beyond the
scope of this paper [1].

Web Audio API has important features for performing
perceptual tests including sample level manipulation of au-
dio streams [18] and the ability for synchronous and flexible
playback. Being in the browser also allows leveraging the
flexible object oriented JavaScript format and native sup-
port for web documents, such as the extensible markup lan-
guage (XML) which is used for configuration and test result
files. Using the web also reduces deployment requirements
to a basic web server with advanced functionality such as
test collection and automatic processing using PHP. As re-
cruiting participants can be very time-consuming, and as for

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4-6, 2016, Atlanta, USA
(© 2016 Copyright held by the owner/author(s). .

some tests a large number of participants is needed, browser-
based tests 18] can resolve these problems by enabling par-
ticipants in multiple locations to perform the test. However,
to our knowledge, no tool currently exists that allows the
creation of a remotely accessible listening test.

Both BeaqleJS [9] and mushraJd'| also operate in the
browser, however BeaqleJS does not make use of the Web
Audio API and therefore lacks arbitrary manipulation of
audio stream samples, and neither offer an adequately wide
choice of test designs for them to be useful to many re-
searchers.

To meet the need for a cross-platform, versatile and easy-
to-use listening test tool, we previously developed the Web
Audio Evaluation Tool [§] which at the time of its inception
was capable of running a listening test in the browser from
an XML configuration file, and storing an XML file as well,
with one particular interface. We have now expanded this
into a tool with which a wide range of listening test types can
easily be constructed and set up remotely, without any need
for manually altering code or configuration files, and which
allows visualisation of the collected results in the browser.
In this paper, we discuss these different aspects and explore
which future improvements would be possible. Specifically,
in Section [2] we cover the general implementation aspects,
with a focus on the Web Audio API, followed by a discussion
of the requirements for successful remote tests in Section
Section {4 describes the various interfaces the tool supports,
as well as how to keep this manageable. Finally, in Section
we provide an overview of the analysis capabilities in the
browser, before summarising our findings and listing future
research directions in Section [0l

2. ARCHITECTURE

While WAET uses a sparse subset of the Web Audio API
functionality, its performance comes directly from using the
Web Audio API for audio playback. Listening tests can
convey large amounts of information other than obtaining
the perceptual relationship between the audio fragments.
Specifically, with WAET one can obtain which parts of the
audio fragments were listened to and when, at what point
in the audio stream the participant switched to a different

"https://github.com/akaroice/mushraJS

Table 1: Table with existing listening test platforms

and their features

Name Ref. | Language | Interfaces Remote All UI
APE 15] MATLAB | multi-stimulus, 1 axis per attribute
BeagleJS 9] JavaScript | ABX, MUSHRA (not natively supported)
HULTL-GEN | [7] MAX See Table v
mushraJS JavaScript | MUSHRA v
MUSHRAM 19 MATLAB | MUSHRA
Scale 6 MATLAB | See Table
WhisPER 2 MATLAB | See Table v
WAET 8 JavaScript | All of the above v v
Table 2: Table with interfaces and which toolboxes support them
Interface HULTI-GEN | Scale | WhisPER | WAET
MUSHRA (ITU-R BS. 1534) v v
Rank scale v v
Likert scale v v v
ABC/HR (ITU-R BS. 1116) v v
-50 to 50 Bipolar with Ref v v
Absolute Category Rating (ACR) Scale v v
Degredation Category Rating (DCR) Scale v v
Comparison Category Rating (CCR) Scale v v v
9 Point Hedonic Category Rating Scale v v v
ITU-R 5 Point Continuous Impairment Scale | v/ v
Pairwise Comparison / AB test v v
Multi-attribute ratings v v
ABX Test v v
Adaptive psychophysical methods v
Repertory Grid Technique (RGT) v
Semantic differential v v
n-Alternative Forced choice v

fragment, and how a fragment’s rating was adjusted over
time within a session, to name a few. Not only does this al-
low to evaluate a wealth of perceptual aspects, but it helps
detect poor participants whose results are potentially not
representative.

One of the key initial design parameters for WAET is to
make the tool as open as possible to non-programmers and
to this end the tool has been designed in such a way that all
of the user modifiable options are included in a single XML
document. This XML document is called the specification
document and can be designed either by manually writing
the XML (or modifying an existing document or template)
or using our included test creator. These are standalone
HTML pages which do not require any server or internet con-
nection and help a build your test specification document.
The first (test_create.html) is for simpler tests and operates
step-by-step using in-page popups to guide the user. It sup-
ports media through drag and drop and clutter free interface.
The advanced version is for more advanced tests where raw
XML manipulation is not wanted but the same freedom is
required (whilst keeping a safety net). Both models support
automatic XML verification to ensure the XML file is valid
and will highlight areas which are either incorrect and would
cause an error, or options which should be removed as they
are blank.

The basic test create utilises some web audio of its own. It
utilises the API to perform quick playback checks, but also
allow for loudness normalisation techniques inspired from

[5]. These are calculated offline by accessing the raw audio
samples exposed from the buffer before being applied to the
audio element as a gain attribute. This is used in the test
to perform loudness normalisation without needing to edit
any audio files. Equally the gain can be modified in either
editor using an HTMLS5 slider or number box.

The specification document also contains the URL of the
audio fragments for each test page. These fragments are
downloaded asynchronously in the test and decoded offline
by the Web Audio offline decoder. The resulting buffers are
assigned to a custom Audio Objects node which tracks the
fragment buffer, the playback bufferSourceNode, the XML
information including its unique test 1D, the interface ob-
ject(s) associated with the fragment and any metric or data
collection objects. The Audio Object is controlled by an
over-arching custom Audio Context node (not to be con-
fused with the Web Audio Context), this parent JS Node
allows for session wide control of the Audio Objects includ-
ing starting and stopping playback of specific nodes.

The only issue with this model is the bufferNode in the
Web Audio API, which is implemented as a ‘use once’ object
which, once the buffer has been played, the buffer must be
discarded as it cannot be instructed to play the buffer again.
Therefore on each start request the buffer object must be
created and then linked with the stored bufferSourceNode.
This is an odd behaviour for such a simple object which
has no alternative except to use the HTML5 audio element,
however they do not have the ability to synchronously start

on a given time and therefore not suited.

In the test the each buffer node is connected to a gain
node which will operate at the level determined by the spec-
ification document. Therefore it is technically possible to
perform a ’Method of Adjustment’ test where an interface
could directly manipulate these gain nodes. Equally there
is an optional ’Master Volume’ slider which can be shown
on the test GUI. This slider modifies a gain node before
the destination node. This slider can also be monitored and
therefore its data tracked providing extra validation. Of
course this slider is not indicative of the final volume exiting
the speakers and therefore its use should only be considered
in a lab condition environment to ensure proper behaviour.
Finally the gain nodes allow for cross-fading between sam-
ples when operating in synchronous playback. Cross-fading
can either be fade-out fade-in or a true cross-fade.

The media files supported depend on the browser level
support for the initial decoding of information and is the
same as the browser support for the HTML5 audio element.
Therefore the most widely supported media file is the wave
(.WAV) format which can be accpeted by every browser sup-
porting the Web Audio API. The next best supported audio
only formats are MP3 and AAC (in MP4) which are sup-
ported by all major browsers, Firefox relies on OS decoders
and therefore its support is predicated by the OS support.
The toolbox will work in any browser which supports the
Web Audio API, which at point of writing are the major
desktop browsers except Microsoft’s Internet Explorer, how-
ever its newer FEdge browser should be supporte

All the collected session data is returned in an XML doc-
ument structured similarly to the configuration document,
where test pages contain the audio elements with their trace
collection, results, comments and any other interface-specific
data points.

3. REMOTE TESTS

If the experimenter is willing to trade some degree of con-
trol for a higher number of participants, the test can be
hosted on a web server so that participants can take part
remotely. This way, a link can be shared widely in the hope
of attracting a large amount of subjects, while listening con-
ditions and subject reliability may be less ideal. However, a
sound system calibration page and a wide range of metrics
logged during the test mitigate these problems. Note also
that in some experiments, it may be preferred that the sub-
ject has a ‘real life’, familiar listening set-up, for instance
when perceived quality differences on everyday sound sys-
tems are investigated. Furthermore, a fully browser-based
test, where the collection of the results is automatic, is more
efficient and technically reliable even when the test still takes
place under lab conditions.

The following features allow easy and effective remote
testing:

PHP script to collect result XML files and store on cen-

tral server.

Randomly pick a specified number of pages to ensure
an equal and randomised spread of the different pages
(‘audioHolders’) across participants.

Calibration of the sound system (and participant) by

a perceptual pre-test to gather information about the
frequency response and speaker configuration - this can

Zhttps://msdn.microsoft.com/en-us/library/dn985708.aspx

be supplemented with a survey.

Intermediate saves for tests which were interrupted or
unfinished.

Collect IP address information for geographic location,
through PHP function which grabs address and ap-
pends to XML file.

Collect Browser and Display information to the extent
it is available and reliable.

4. INTERFACES

The purpose of this listening test framework is to allow
any user the maximum flexibility to design a listening test
for their exact application with minimum effort. To this end,
a large range of standard listening test interfaces have been
implemented. A review of existing listening test frameworks
was undertaken and presented in Table[]l HULTI-GEN (7] is
a single toolbox that presents the user with a large number
of different test interfaces and allows for customisation of
each test interface.

To provide users with a flexible system, a large range of
‘standard’ listening test interfaces have been implemented,
including:

e MUSHRA (ITU-R BS. 1534) [17]

— Multiple stimuli are presented and rated on a con-
tinuous scale, which includes a reference, hidden
reference and hidden anchors.

e Rank Scale [12]

— Stimuli ranked on single horizontal scale, where

they are ordered in preference order.
e Likert scale [10]
— Each stimuli has a five point scale with values:

Strongly Agree, Agree, Neutral, Disagree and Strongly

Disagree.
e ABC/HR (ITU-R BS. 1116) [16] (Mean Opinion Score:
MOS)

— Each stimulus has a continuous scale (5-1), la-
beled as Imperceptible, Perceptible but not an-
noying, slightly annoying, annoying, very annoy-
ing.

e -50 to 50 Bipolar with Ref

— Each stimulus has a continuous scale -50 to 50
with default values as 0 in middle and a compar-
ison. There is also a provided reference

e Absolute Category Rating (ACR) Scale [14]

— Each stimuli has a five point scale with values:

Bad, Poor, Fair, Good, Excellent
e Degredation Category Rating (DCR) Scale [14]

— Each stimuli has a five point scale with values:
(5) Inaudible, (4) Audible but not annoying, (3)
slightly annoying, (2) annoying, (1) very annoy-
ing.

e Comparison Category Rating (CCR) Scale [14]

— Each stimuli has a seven point scale with values:
Much Better, Better, Slightly Better, About the
same, slightly worse, worse, much worse. There
is also a provided reference.

e 9 Point Hedonic Category Rating Scale [13]

— Each stimuli has a seven point scale with values:
Like Extremely, Like Very Much, Like Moderate,
Like Slightly, Neither Like nor Dislike, dislike Ex-
tremely, dislike Very Much, dislike Moderate, dis-
like Slightly. There is also a provided reference.

e ITU-R 5 Point Continuous Impairment Scale [15]

https://msdn.microsoft.com/en-us/library/dn985708.aspx

— Each stimuli has a five point scale with values:
(5) Imperceptible, (4) Perceptible but not annoy-
ing, (3) slightly annoying, (2) annoying, (1) very
annoying. There is also a provided reference.
e Pairwise Comparison (Better/Worse) [4]

— A reference is provided and ever stimulus is rated

as being either better or worse than the reference.
APE style [5]
— Multiple stimuli on a single horizontal slider for
inter-sample rating.
e Multi attribute ratings
— Multiple stimuli as points on a 2D plane for inter-
sample rating (eg. Valence Arousal)
e AB Test [11]

— Two stimuli are presented at a time and the par-

ticipant has to select a preferred stimulus.
ABX Test [3]

— Two stimuli are presented along with a reference
and the participant has to select a preferred stim-
ulus, often the closest to the reference.

While implementing all of these interfaces, it is possible to
include any number of references, anchors, hidden references
and hidden anchors into all of these listening test formats.

Because of the design choice to separate the core code and
interface modules, it is possible for a 3rd party interface to
be built with minimal effort. The repository includes docu-
mentation on which functions must be called and the specific
functions they expect your interface to perform. To this end,
there is an ‘Interface’ object which includes functions for
creating the on-page comment boxes (including those with
radio or checkbox responses), start and stop buttons with
function handles pre-attached and the playhead / transport
bars.

5. ANALYSIS AND DIAGNOSTICS

There are several benefits to providing basic analysis tools
in the browser: they allow diagnosing problems, with the
interface or with the test subject; they may be sufficient
for many researchers’ purposes; and test subjects may enjoy
seeing an overview of their own results and/or results thus
far at the end of their tests. For this reason, we include a
proof-of-concept web page with:

e All audioholder IDs, file names, subject IDs, audio ele-
ment IDs, ... in the collected XMLs so far (saves/*.xml)

e Selection of subjects and/or test samples to zoom in
on a subset of the data

e Embedded audio to hear corresponding test samples

e Box plot, confidence plot, and scatter plot of rating
values

e Timeline for a specific subject

e Distribution plots of any radio button and number
questions in pre- and post-test survey

e All ‘comments’ on a specific audioelement

e A ‘download’ function for a CSV of ratings, survey
responses and comments

[Some pictures here please.]

6. CONCLUDING REMARKS AND FUTURE

WORK

The code and documentation can be pulled or downloaded
from our online repository available at code.soundsoftware.
ac.uk/projects/webaudioevaluationtool.

[Talking a little bit about what else might happen. Unless
we really want to wrap this up. |

[18] gives a ‘checklist’ for subjective evaluation of audio
systems. The Web Audio Evaluation Toolbox meets most
of its given requirements including remote testing, crossfad-
ing between audio streams, collecting browser information,
utilising Ul elements and working with various audio for-
mats including uncompressed PCM or WAV format.

[What can we not do? ‘Method of adjustment’, as in [18] is
another can of worms, because, like, you could adjust lots of
things (volume is just one of them, that could be done quite
easily). Same for using input signals like the participant’s
voice. Either leave out, or mention this requires modification
of the code we provide.]

7. REFERENCES

[1] S. Bech and N. Zacharov. Perceptual Audio Evaluation
- Theory, Method and Application. John Wiley &
Sons, 2007.

[2] S. Ciba, A. Wlodarski, and H.-J. Maempel. Whisper —
A new tool for performing listening tests. In 126th
Convention of the Audio Engineering Society, May
7-10 2009.

[3] D. Clark. High-resolution subjective testing using a
double-blind comparator. Journal of the Audio
Engineering Society, 30(5):330-338, 1982.

[4] H. A. David. The method of paired comparisons,
volume 12. DTIC Document, 1963.

[5] B. De Man and J. D. Reiss. APE: Audio Perceptual
Evaluation toolbox for MATLAB. In 136th Convention
of the Audio Engineering Society, April 2014.

[6] A. V. Giner. Scale - a software tool for listening
experiments. In AIA/DAGA Conference on Acoustics,
Merano (Italy), 2013.

[7] C. Gribben and H. Lee. Toward the development of a
universal listening test interface generator in max. In
Audio Engineering Society Convention 138. Audio
Engineering Society, 2015.

[8] N. Jillings, D. Moffat, B. De Man, and J. D. Reiss.
Web Audio Evaluation Tool: A browser-based
listening test environment. In 12th Sound and Music
Computing Conference, July 2015.

[9] S. Kraft and U. Zélzer. BeagleJS: HTML5 and
JavaScript based framework for the subjective
evaluation of audio quality. In Linuz Audio
Conference, Karlsruhe, DE, 2014.

[10] R. Likert. A technique for the measurement of
attitudes. Archives of psychology, 1932.

[11] S. P. Lipshitz and J. Vanderkooy. The great debate:
Subjective evaluation. Journal of the Audio
Engineering Society, 29(7/8):482-491, 1981.

[12] G. C. Pascoe and C. C. Attkisson. The evaluation
ranking scale: a new methodology for assessing
satisfaction. Evaluation and program planning,
6(3):335-347, 1983.

[13] D. R. Peryam and N. F. Girardot. Advanced taste-test
method. Food Engineering, 24(7):58-61, 1952.

[14] 1. Rec. P. 800: Methods for subjective determination
of transmission quality. International
Telecommunication Union, Geneva, 1996.

[15] I. Rec. Bs. 562-3,‘subjective assessment of sound
quality’. International Telecommunications Union,

code.soundsoftware.ac.uk/projects/webaudioevaluationtool
code.soundsoftware.ac.uk/projects/webaudioevaluationtool

[16]

1997.

I. Recommendation. 1116-1: Methods for the
subjective assessment of small impairments in audio
systems including multichannel sound systems.
International Telecommunication Union, Geneva,
1997.

I. Recommendation. Bs. 1534-1: Method for the
subjective assessment of intermediate quality levels of
coding systems. International Telecommunication
Union, 2003.

M. Schoeffler, F.-R. Stoter, B. Edler, and J. Herre.
Towards the next generation of web-based
experiments: A case study assessing basic audio
quality following the ITU-R recommendation BS. 1534
(MUSHRA). In 1st Web Audio Conference, 2015.

E. Vincent, M. G. Jafari, and M. D. Plumbley.
Preliminary guidelines for subjective evalutation of
audio source separation algorithms. In UK ICA
Research Network Workshop, 2006.

	Introduction
	Architecture
	Remote tests
	Interfaces
	Analysis and diagnostics
	Concluding remarks and future work
	References

