Instructions for
Web Audio Evaluation Tool

Nicholas Jillings, Brecht De Man and David Moffat

7 December 2015

These instructions are about use of the Web Audio Evaluation Tool on Windows and
Mac OS X platforms.

Contents
(1__Installationl 3
LI Contents. 3
L2 Browserl ot 4
|2 Test setup| 5
2.1 Sampleratel)
RII1 MacOSXI. e 5
212 Windows 5
22 Tocaltestl 5
21 MacOSX[. e 6
222 Windowd 7
23 Remotetest]. 9
|13 Using the test create tool 11
8.1 Nodes to familiariselo 11
3.2 Modifying core.js|. 11
[3.3 Building the Interface] o oo Lo 12
8.3.1 JoadInterfacel 12
[3.3.2 loadTest(audioHolderObject)| 13
4 Troubleshooting] 14
4.1 Opening the JavaScript Console|. 14

BE K . [Timnifations
6 Referencesl

|A Listening test instructions example]

16

17

18

1 Installation

Download the folder (https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool/
archive/tip.zip) and unzip in a location of your choice.

1.1 Contents

The folder should contain the following elements:

Main folder:
e analyse.html: analysis and diagnostics of a set of result XML files

e ape.css, core.css, graphics.css, mushra.css, structure.css: style files (edit
to change appearance)

e ape.js: JavaScript file for APE-style interface [2]
e mushra.js: JavaScript file for MUSHRA-style interface [3]

e CITING.txt, LICENSE.txt, README.txt: text files with, respectively, the citation
which we ask to include in any work where this tool or any portion thereof is used,
modified or otherwise; the license under which the software is shared; and a general
readme file.

e core.js: JavaScript file with core functionality

e index.html: webpage where interface should appear (includes link to test configu-
ration XML)

e jquery-2.1.4.js: jQuery JavaScript Library
e pythonServer.py: webserver for running tests locally

e pythonServer-legacy.py: webserver with limited functionality (no automatic stor-
ing of output XML files)

e save.php: PHP script to store result XML files to web server

Documentation (./docs/)
e Instructions: PDF and I¥TEXsource of these instructions
e Project Specification Document (IXTgX/PDF)
e Results Specification Document (IATEX/PDF)

https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool/archive/tip.zip
https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool/archive/tip.zip

e SMC15: PDF and I¥TEXsource of corresponding SMC2015 publication [1]
e WAC2016: PDF and IXTEXsource of corresponding WAC2016 publication

Example project (./example_eval/)

e An example of what the set up XML should look like, with example audio files
0.wav-10.wav which are short recordings at 44.1kHz, 16bit of a woman saying the
corresponding number (useful for testing randomisation and general familiarisation
with the interface).

Output files (./saves/)

e The output XML files of tests will be stored here by default by the pythonServer.py
script.

Auxiliary scripts (./scripts/)

e Helpful Python scripts for extraction and visualisation of data.

Test creation tool (./test_create/)

e Webpage for easily setting up your own test without having to delve into the XML.

1.2 Browser

As Microsoft Internet Explorer doesn’t support the Web Audio APIF_-], you will need an-
other browser like Google Chrome, Safari or Firefox (all three are tested and confirmed to
work).

The tool is platform-independent and works in any browser that supports the Web Audio
API It does not require any specific, proprietary software. However, in case the tool is
hosted locally (i.e. you are not hosting it on an actual webserver) you will need Python
(2.7), which is a free programming language - see the next paragraph.

"http://caniuse.com/#feat=audio-api

http://caniuse.com/#feat=audio-api

2 Test setup

2.1 Sample rate

Depending on how the experiment is set up, audio is resampled automatically (the Web
Audio default) or the sample rate is enforced. In the latter case, you will need to make
sure that the sample rate of the system is equal to the sample rate of these audio files. For
this reason, all audio files in the experiment will have to have the same sample rate.

Always make sure that all other digital equipment in the playback chain (clock, audio
interface, digital-to-analog converter, ...) is set to this same sample rate.

Note that upon changing the sampling rate, the browser will have to be restarted for the
change to take effect.

2.1.1 Mac OS X

To change the sample rate in Mac OS X, go to Applications/Utilities/Audio MIDI
Setup or find this application with Spotlight (see Figure . Then select the output of the
audio interface you are using and change the ‘Format’ to the appropriate number. Also
make sure the bit depth and channel count are as desired. If you are using an external
audio interface, you may have to go to the preference pane of that device to change the
sample rate.

Also make sure left and right channel gains are equal, as some applications alter this
without changing it back, leading to a predominantly louder left or right channel. See
Figure (1| for an example where the channel gains are different.

2.1.2 Windows

To change the sample rate in Windows, right-click on the speaker icon in the lower-right
corner of your desktop and choose ‘Playback devices’. Right-click the appropriate playback
device and click ‘Properties’. Click the ‘Advanced’ tab and verify or change the sample
rate under ‘Default Format’. If you are using an external audio interface, you may have to
go to the preference pane of that device to change the sample rate.

2.2 Local test

If the test is hosted locally, you will need to run the local webserver provided with this
tool.

[JOX) Audio Devices

Built-in Microphone
¥ 2in/0out \!; Built-in Output
5 Built-in Output Clock source: Default ?
S 0in/ 2 out Faph}
Soundflower (2ch) i3y Output |
2in/ 2 out
Soundflower (16ch)
16 in/ 16 out Source: Internal Speakers
Format: 96000.0 Hz B 2ch-24bit Integer <]
44100.0 Hz
Ch Volume 48000.0 Hz Value dB Mute
Master 88200.0 Hz
1: -
96000.0 Hz Daz7_)I-22
2 0.62 135
Configure Speakers...
+] (% g op

Figure 1: The Audio MIDI Setup window in Mac OS X

2.2.1 Mac OS X

On Mac OS X, Python comes preinstalled.

Open the Terminal (find it in Applications/Terminal or via Spotlight), and go to the
folder you downloaded. To do this, type cd [folder], where [folder] is the folder
where to find the pythonServer.py script you downloaded. For instance, if the location is
/Users/John/Documents/test/, then type

cd /Users/John/Documents/test/

Then hit enter and run the Python script by typing
python pythonServer.py

and hit enter again. See also Figure

Alternatively, you can simply type python (follwed by a space) and drag the file into the
Terminal window from Finder.

You can leave this running throughout the different experiments (i.e. leave the Terminal
open).

To start the test, open the browser and type

localhost:8000

in: Fri Jul

T

Figure 2: Mac OS X: The Terminal window after going to the right folder (cd
[folder_path]) and running pythonServer.py.

and hit enter. The test should start (see Figure |5)).

To quit the server, either close the terminal window or press Ctrl+C on your keyboard to
forcibly shut the server.

2.2.2 Windows

On Windows, Python 2.7 is not generally preinstalled and therefore has to be downloadedﬂ
and installed to be able to run scripts such as the local webserver, necessary if the tool is
hosted locally.

Simply double click the Python script pythonServer . py in the folder you downloaded.
You may see a warning like the one in Figure [3] Click ‘Allow access’.
The process should now start, in the Command prompt that opens - see Figure

You can leave this running throughout the different experiments (i.e. leave the Command
Prompt open).

To start the test, open the browser and type
localhost:8000
and hit enter. The test should start (see Figure [5]).

If at any point in the test the participant reports weird behaviour or an error of some kind,
or the test needs to be interrupted, please notify the experimenter and/or refer to Section

EN

2https://www.python.org/downloads/windows/

https://www.python.org/downloads/windows/

& Windows Security Alert

Windows Firewall has blocked some features of python on all public and private networks.

Eﬂﬂ Nam.e: hytho

Publisher: Unknown
Path: C:\python27\python.exe

Allow python to communicate on these networks:
[W]Private networks, such as my home or work network

[]Public netwarks, such as those in airports and cafés (not recommended
because these networks often have litte or no security)

What are the risks of allowing an app throuah a firewal?

Fy Allow access Cancel

Figure 3: Windows: Potential warning message when executing pythonServer.py.

C C\Python27\python.exe = =

test—2.xml
B3-highbloodpressure—myfunnyvalentine.xml
- [38-Jun-/2815 12:24:191 “GET ~ HITP-1.1" 288 —
- [38-Jun-/2815 12:24:191 “GET ~core.css HTTP-/1.1" 288 -
- [38-Jun-/2815 12:24:191 “GET ~jguery-2.1.4.js HTTP/1 1" 288 -
- [38-Jun-2815 12:24:291 “GET ~rcore.js HTTP-1.1" 2
ession_filessB3-highbloodpressure— myfunnyualentlne
- [38-Jun- 2815 12:24:381 “GET ~pseudo.xml HITP-1.1'

ET ~favicon.ico HTT

GET ~sape.css HITP-1.
- [38/Jun.2015 12:24:3@1 “GET sape.js HTITP-1.1

Figure 4: Windows: The Command Prompt after running pythonServer.py and opening
the corresponding website.

I

[apeTool x \ @ Getting Started x \| |-

€« > C' | [1localhost:2000 o

Please enter your name.
paul|

1227
30/06/2015

5 [50 B O

Figure 5: The start of the test in Google Chrome on Windows 7.

When the test is over (the subject should see a message to that effect, and click ‘Submit’
one last time), the output XML file containing all collected data should have appeared in
‘saves/’. The names of these files are ‘test-0.xml’, ‘test-1.xml’, etc., in ascending order.
The Terminal or Command prompt running the local web server will display the following
file name. If such a file did not appear, please again refer to Section [4

It is advised that you back up these results as often as possible, as a loss of this data means
that the time and effort spent by the subject(s) has been in vain. Save the results to an
external or network drive, and/or send them to the experimenter regularly.

To start the test again for a new participant, you do not need to close the browser or shut
down the Terminal or Command Prompt. Simply refresh the page or go to localhost:8000
again.

2.3 Remote test

Put all files on a web server which supports PHP. This allows the ‘save.php’ script to store
the XML result files in the ‘saves/’ folder. If the web server is not able to store the XML

file there at the end of the test, it will present the XML file locally to the user, as a ‘Save
file’ link.

10

3 Using the test create tool

We provide a test creation tool, available in the directory test_create. This tool is a
self-contained web page, so doubling clicking will launch the page in your system default
browser.

The test creation tool can help you build a simple test very quickly. By simply selecting
your interface and clicking check-boxes you can build a test in minutes.

Include audio by dragging and dropping the stimuli you wish to include.

The tool examines your XML before exporting to ensure you do not export an invalid XML
structure which would crash the test.

This guide will help you to construct your own interface on top of the WAET (Web Au-
dio Evaluation Tool) engine. The WAET engine resides in the core.js file, this contains
prototype objects to handle most of the test creation, operation and data collection. The
interface simply has to link into this at the correct points.

3.1 Nodes to familiarise

Core.js handles several very important nodes which you should become familiar with. The
first is the Audio Engine, initialised and stored in variable ‘AudioEngineContext’. This
handles the playback of the web audio nodes as well as storing the ‘AudioObjects’. The
‘AudioObjects’ are custom nodes which hold the audio fragments for playback. These
nodes also have a link to two interface objects, the comment box if enabled and the interface
providing the ranking. On creation of an ‘AudioObject’ the interface link will be nulled,
it is up to the interface to link these correctly.

The specification document will be decoded and parsed into an object called ‘specification’.
This will hold all of the specifications various nodes. The test pages and any pre/post test
objects are processed by a test state which will proceed through the test when called to
by the interface. Any checks (such as playback or movement checks) are to be completed
by the interface before instructing the test state to proceed. The test state will call the
interface on each page load with the page specification node.

3.2 Modifying core.js

Whilst there is very little code actually needed, you do need to instruct core.js to load
your interface file when called for from a specification node. There is a function called
‘loadProjectSpecCallback’ which handles the decoding of the specification and setting any
external items (such as metric collection). At the very end of this function there is an

11

if statement, add to this list with your interface string to link to the source. There is
an example in there for both the APE and MUSHRA tests already included. Note: Any
updates to core.js in future work will most likely overwrite your changes to this file, so
remember to check your interface is still here after any update that interferes with core.js.
Any further files can be loaded here as well, such as css styling files. jQuery is already
included.

3.3 Building the Interface

Your interface file will get loaded automatically when the ‘interface’ attribute of the setup
node matches the string in the ‘loadProjectSpecCallback’ function. The following functions
must be defined in your interface file.

e loadInterface - Called once when the document is parsed. This creates any nec-
essary bindings, such as to the metric collection classes and any check commands.
Here you can also start the structure for your test such as placing in any common
nodes (such as the title and empty divs to drop content into later).

e loadTest (audioHolderObject) - Called for each page load. The audioHolderObject
contains a specification node holding effectively one of the audioHolder nodes.

e resizeWindow(event) - Handle for any window resizing. Simply scale your interface
accordingly. This function must be here, but can me an empty function call.

3.3.1 loadInterface

This function is called by the interface once the document has been parsed since some
browsers may parse files asynchronously. The best method is simply to put ‘loadInterface()’
at the top of your interface file, therefore when the JavaScript engine is ready the function
is called.

By default the HTML file has an element with id “topLevelBody” where you can build your
interface. Make sure you blank the contents of that object. This function is the perfect
time to build any fixed items, such as the page title, session titles, interface buttons (Start,
Stop, Submit) and any holding and structure elements for later on.

At the end of the function, insert these two function calls: testState.initialise() and test-
State.advanceState();. This will actually begin the test sequence, including the pre-test
options (if any are included in the specification document).

12

3.3.2 loadTest(audioHolderObject)

This function is called on each new test page. It is this functions job to clear out the previ-
ous test and set up the new page. Use the function audioEngineContext.newTestPage(); to
instruct the audio engine to prepare for a new page. “audioEngineContext.audioObjects
= [];” will delete any audioObjects, interfaceContext.deleteCommentBoxes(); will delete
any comment boxes and interfaceContext.deleteCommentQuestions(); will delete any extra
comment boxes specified by commentQuestion nodes.

This function will need to instruct the audio engine to build each fragment. Just pass-
ing the constructor each element from the audioHolderObject will build the track, au-
dioEngineContext.newTrack(element) (where element is the audioHolderObject audio ele-
ment). This will return a reference to the constructed audioObject. Decoding of the audio
will happen asynchronously.

You also need to link audioObject.interfaceDOM with your interface object for that au-
dioObject. The interfaceDOM object has a few default methods. Firstly it must start
disabled and become enabled once the audioObject has decoded the audio (function call:
enable()). Next it must have a function export XMLDOM(), this will return the xml node
for your interface, however the default is for it to return a value node, with textContent
equal to the normalised value. You can perform other functions, but our scripts may not
work if something different is specified (as it will breach our results specifications). Finally
it must also have a method getValue, which returns the normalised value.

It is also the job the interfaceDOM to call any metric collection functions necessary, how-
ever some functions may be better placed outside (for example, the APE interface uses drag
and drop, therefore the best way was to call the metric functions from the dragEnd func-
tion, which is called when the interface object is dropped). Metrics based upon listening
are handled by the audioObject. The interfaceDOM object must manage any movement
metrics. For a list of valid metrics and their behaviours, look at the project specification
document included in the repository/docs location. The same goes for any checks required
when pressing the submit button, or any other method to proceed the test state.

13

4 Troubleshooting

Thanks to feedback from using the interface in experiments by the authors and others,
many bugs have been caught and fatal crashes due to the interface (provided it is set up
properly by the user) seem to be a thing of the past.

However, if things do go wrong or the test needs to be interrupted for whatever reason, all
data is not lost. In a normal scenario, the test needs to be completed until the end (the
final ‘Submit’), at which point the output XML is stored in the saves/. If this stage is
not reached, open the JavaScript Console (see below for how to find it) and type

createProjectSave ()

for a local test or
createProjectSave(specification.projectReturn)
for a remote test

and hit enter. This will open a pop-up window with a hyperlink that reads ‘Save File’;
click it and an XML file with results until that point should be stored in your download
folder.

Alternatively, a lot of data can be read from the same console, in which the tool prints a
lot of debug information. Specifically:

e the randomisation of pages and fragments are logged;

e any time a slider is played, its ID and the time stamp (in seconds since the start of
the test) are displayed;

e any time a slider is dragged and dropped, the location where it is dropped including
the time stamp are shown;

e any comments and pre- or post-test questions and their answers are logged as well.

You can select all this and save into a text file, so that none of this data is lost. You may
to choose to do this even when a test was successful as an extra precaution.

If you encounter any issue which you believe to be caused by any aspect of the , or which
the documentation does not mention, please do let us know!

4.1 Opening the JavaScript Console

e In Google Chrome, the JavaScript Console can be found in View>Developer>JavaScript
Console, or via the keyboard shortcut Cmd + Alt + J (Mac OS X).

14

e In Safari, the JavaScript Console can be found in Develop>Show Error Console,
or via the keyboard shortcut Cmd + Alt + C (Mac OS X). Note that for the Developer
menu to be visible, you have to go to Preferences (Cmd + ,) and enable ‘Show Develop
menu in menu bar’ in the ‘Advanced’ tab. Note that as long as the Developer
menu is not visible, nothing is logged to the console, i.e. you will only
be able to see diagnostic information from when you switched on the
Developer tools onwards.

e In Firefox, go to Tools>Web Developer>Web Console, or hit Cmd + Alt + K.

15

5 Known issues and limitations

The following is a non-exhaustive list of problems and limitations you may experience using
this tool, due to not being supported yet by us, or by the Web Audio API and/or (some)
browsers.

e Issue #1463 Firefox only supports 8 bit and 16 bit WAV files. Pending automatic
requantisation (which deteriorates the audio signal’s dynamic range to some extent),
WAV format stimuli need to adhere to these limitations in order for the test to be
compatible with Firefox.

o Issues #1474 and |#1462: On occasions, audio is not working - or only a contin-
uous ‘beep’ can be heard - notably in Safari. Refreshing, quitting the browser and
even enabling Developer tools in Safari’s Preferences pane (‘Advanced’ tab: “Show
‘Develop’ menu in menu bar”) has helped resolve this. If no (high quality) audio can
be heard, make sure your entire playback system’s settings are all correct.

16

https://code.soundsoftware.ac.uk/issues/1463
https://code.soundsoftware.ac.uk/issues/1474
https://code.soundsoftware.ac.uk/issues/1462

6 References

[1] N. Jillings, D. Moffat, B. De Man, and J. D. Reiss, “Web Audio Evaluation Tool:
A browser-based listening test environment,” in 12th Sound and Music Computing
Conference, July 2015.

[2] B. De Man and J. D. Reiss, “APE: Audio Perceptual Evaluation toolbox for MATLAB,”
in 136th Convention of the Audio Engineering Society, April 2014.

[3] Method for the subjective assessment of intermediate quality level of coding systems.
Recommendation ITU-R BS.1534-1, 2003.

17

A Listening test instructions example

Before each test, show the instructions below or similar and make sure it is available to the
subject throughout the test. Make sure to ask whether the participant has any questions
upon seeing and/or reading the instructions.

e You will be asked for your name (“John Smith”) and location (room identifier).
e An interface will appear, where you are asked to

— click green markers to play the different mixes;

drag the markers on a scale to reflect your preference for the mixes;

— comment on these mixes, using text boxes with corresponding numbers (in your
native language);

— optionally comment on all mixes together, or on the song, in ‘General comments’.

e You are asked for your personal, honest opinion. Feel free to use the full range of the
scale to convey your opinion of the various mixes. Don?t be afraid to be harsh and
direct.

e The markers appear at random positions at first (which means some markers may
hide behind others).

e The interface can take a few seconds to start playback, but switching between mixes
should be instantaneous.

e This is a research experiment, so please forgive us if things go wrong. Let us know
immediately and we will fix it or restart the test.

e When the test is finished (after all songs have been evaluated), just call the experi-
menter, do NOT close the window.

e After the test, please fill out our survey about your background, experience and
feedback on the test.

e By participating, you consent to us using all collected data for research. Unless asked
explicitly, all data will be anonymised when shared.

18

Contact details

e Nicholas Jillings: nicholas.jillings@mail.bcu.ac.uk
e Brecht De Man: b.deman@gmul.ac.uk

e David Moffat: d.j.moffat@gmul.ac.uk

19

	Installation
	Contents
	Browser

	Test setup
	Sample rate
	Mac OS X
	Windows

	Local test
	Mac OS X
	Windows

	Remote test

	Using the test create tool
	Nodes to familiarise
	Modifying core.js
	Building the Interface
	loadInterface
	loadTest(audioHolderObject)

	Troubleshooting
	Opening the JavaScript Console

	Known issues and limitations
	References
	Listening test instructions example

