Instructions for
Web Audio Evaluation Tool

Nicholas Jillings, Brecht De Man and David Moffat

7 December 2015

These instructions are about use of the Web Audio Evaluation Tool on Windows and Mac
OS X platforms.

We request that you acknowledge the authors and cite our work when using it , see also
CITING.txt.

The tool is available in its entirety including source code on https://code.soundsoftware.
ac.uk/projects/webaudioevaluationtool/, under the GNU General Public License v3.0
(http://choosealicense.com/licenses/gpl-3.0/), see also LICENSE.txt.

Contents

|

]
[\
Q
©]
B
=
&
=
g
—
=
(< |
ot

|2 Test setup|
2.1 Samplerate]

N
~
—
o
o
[oN
&
[
D
w0
—+

I~
E
=8

i)
=
@
—+
(€]
w0
-+
o,
]
@]
o)
=
@
=

[0 |
—_

https://code.soundsoftware.ac.uk/projects/webaudioevaluationtool/
https://code.soundsoftware.ac.uk/projects/webaudioevaluationtool/
http://choosealicense.com/licenses/gpl-3.0/

3.5 ABl. . 13

3.4 Discrete/Likert| oo 13
35 ACR/COR/DORMOIZONAl . « o o o oo 14
[4 Project XML 15
HEIRooll oo 15
....................................... 15
/ PATE| . . . e e e e e e e e e e e e e e e 16
4.4 UIVEY] « « v v v o e e e e e e e e e e e e e e e e 17
[4.4.1 Survey Entry|lo 17

M5 Tnterfacel 18
4.6 Audio Element]o 18
[6__Features| 19
5.1 Intertace options| 19
[5.1.1 Multiple scales| 20

5.2 Randomisation| Lo 20
[5.2.1 Randomisation of configuration XML files| 21
b.2.2 Randomsation of page order|. 21
(£.2.3 Randomisation of axisorderd o000 21
b.2.4 Randomisation of fragment order{ 21
[5.2.5 Randomisation of initial slider position|. 21

DING| .« o v v e e e e e e e e e e 21

b.4 Sampleratel 22
5.5 Metrics| e 22
05.5.1 Time test durationl 22
[5.5.2 Time fragment playbacklo 0. 22
[6.5.3 Imitial positions|o 23
9.5.4 Track movements e 23
5.5.5 Which fragments listened to|. 23
5.5.6 Which fragments moved| 0oL, 23

b.0. 7 elementlistenTrackerl. oL o oL 23

5.6 References and anchorsl. oL 24
0.6.1 Outside Referencel 24
5.6.2 Hidden referencel oo 24
6.3 Hidden anchorl oo 24

B7 _Checks o 24
5.7.1 Playback checks| o0 24
(.72 Movement checkl oo oo 25
b.73 Comment checkl. 25
B.74 Scaleusecheckl 25

|6 Using the test create tool

|7 Building your own interface)
[r.1 Nodes to familiarisel Lo o
7.2 Modilying core.js|. L
7.3 Building the Interface] o oo
[(.3.1 loadlntertacel
[7.3.2 loadTest(audioHolderObject)|

I8 Analysis and diagnostics|
8.1 Inthe browserl
8.2 Python scripts|
[8.2.1 comment_parser.py|o
[8.2.2 evaluation_stats.py]o Lo
[8.2.5 generate_report.py| oo Lo o e e
[8.2.4 SCOTE_PATSET.DY| - « « « « v v v v v e e e e e e e e e e e e e
[8.2.5 scoreplot.pyl
[8.2.6 timeline_view_movement.py| oo
[8.2.7 timeline view.py|

|9 Troubleshooting]
9.1 Reporting bugs and requesting features|

IB Listening test instructions example]

|C Terminology|

[Contact details|

28

28
28
29
29
29
30

31
31
31
31
31
32
32
32
32
32

33
33
33
34

35

36

37

38

39

1 Installation

Download the folder (https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool/
archive/tip.zip) and unzip in a location of your choice, or pull the source code from
https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool (Mercurial).

1.1 Contents

The folder should contain the following elements:

Main folder:
e analyse.html: analysis and diagnostics of a set of result XML files

e core.css, graphics.css, structure.css: core style files (edit to change appear-
ance)

e CITING.txt, LICENSE.txt, README.txt: text files with, respectively, the citation
which we ask to include in any work where this tool or any portion thereof is used,
modified or otherwise; the license under which the software is shared; and a general
readme file referring to these instructions.

e core.js: JavaScript file with core functionality

e index.html: webpage where interface should appear (includes link to test configu-
ration XML)

e jquery-2.1.4.js: jQuery JavaScript Library

e loudness. js: Allows for automatic calculation of loudness of Web Audio API Buffer
objects, return gain values to correct for a target loudness or match loudness between
multiple objects

e pythonServer.py: webserver for running tests locally

e pythonServer-legacy.py: webserver with limited functionality (no automatic stor-
ing of output XML files)

e save.php: PHP script to store result XML files to web server

Documentation (./docs/)

e DMRN+10: PDF and I¥TEXsource of poster for 10" Digital Music Research Network
One-Day workshop (“soft launch”)

https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool/archive/tip.zip
https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool/archive/tip.zip
https://code.soundsoftware.ac.uk/hg/webaudioevaluationtool
http://c4dm.eecs.qmul.ac.uk/dmrn/events/dmrnp10/#posters

Instructions: PDF and IATgXsource of these instructions
Project Specification Document (IXTEX/PDF)
Results Specification Document (IWTEX/PDF)

SMC15: PDF and I#TEXsource of 12th Sound and Music Computing Conference
paper [1]
WAC2016: PDF and I¥TgXsource of 2nd Web Audio Conference paper

Example project (./example_eval/)

e An example of what the set up XML should look like, with example audio files
0.wav-10.wav which are short recordings at 44.1kHz, 16bit of a woman saying the
corresponding number (useful for testing randomisation and general familiarisation
with the interface).

Interface files (./interfaces/

e Each interface class has a JavaScript file and an optional CSS style file. These are
loaded as needed.

Output files (./saves/)

e The output XML files of tests will be stored here by default by the pythonServer.py
script.

Auxiliary scripts (./scripts/)

e Helpful Python scripts for extraction and visualisation of data.

Test creation tool (./test_create/)

e Webpage for easily setting up your own test without having to delve into the XML.

1.2 Compatibility

As Microsoft Internet Explorer doesn’t support the Web Audio APIF_-], you will need an-
other browser like Google Chrome, Safari or Firefox (all three are tested and confirmed to
work).

"http://caniuse.com/#feat=audio-api

http://caniuse.com/#feat=audio-api

Firefox does not currently support other bit depths than 8 or 16 bit for PCM wave files.
In the future, this will throw a warning message to tell the user that their content is being
quantised automatically.

The tool is platform-independent and works in any browser that supports the Web Audio
API. It does not require any specific, proprietary software. However, in case the tool is
hosted locally (i.e. you are not hosting it on an actual webserver) you will need Python
(2.7), which is a free programming language - see the next paragraph.

2 Test setup

2.1 Sample rate

Depending on how the experiment is set up, audio is resampled automatically (the Web
Audio default) or the sample rate is enforced. In the latter case, you will need to make
sure that the sample rate of the system is equal to the sample rate of these audio files. For
this reason, all audio files in the experiment will have to have the same sample rate.

Always make sure that all other digital equipment in the playback chain (clock, audio
interface, digital-to-analog converter, ...) is set to this same sample rate.

Note that upon changing the sampling rate, the browser will have to be restarted for the
change to take effect.

2.1.1 Mac OS X

To change the sample rate in Mac OS X, go to Applications/Utilities/Audio MIDI
Setup or find this application with Spotlight (see Figure . Then select the output of the
audio interface you are using and change the ‘Format’ to the appropriate number. Also
make sure the bit depth and channel count are as desired. If you are using an external
audio interface, you may have to go to the preference pane of that device to change the
sample rate.

Also make sure left and right channel gains are equal, as some applications alter this
without changing it back, leading to a predominantly louder left or right channel. See
Figure (1| for an example where the channel gains are different.

2.1.2 Windows

To change the sample rate in Windows, right-click on the speaker icon in the lower-right
corner of your desktop and choose ‘Playback devices’. Right-click the appropriate playback
device and click ‘Properties’. Click the ‘Advanced’ tab and verify or change the sample
rate under ‘Default Format’. If you are using an external audio interface, you may have to
go to the preference pane of that device to change the sample rate.

2.2 Local test

If the test is hosted locally, you will need to run the local webserver provided with this
tool.

[JOX) Audio Devices

Built-in Microphone
¥ 2in/0out \!; Built-in Output
5 Built-in Output Clock source: Default ?
S 0in/ 2 out Faph}
Soundflower (2ch) i3y Output |
2in/ 2 out
Soundflower (16ch)
16 in/ 16 out Source: Internal Speakers
Format: 96000.0 Hz B 2ch-24bit Integer <]
44100.0 Hz
Ch Volume 48000.0 Hz Value dB Mute
Master 88200.0 Hz
1: -
96000.0 Hz Daz7_)I-22
2 0.62 135
Configure Speakers...
+] (% g op

Figure 1: The Audio MIDI Setup window in Mac OS X

2.2.1 Mac OS X & Linux

On Mac OS X, Python comes preinstalled, as with most Unix/Linux distributions.

Open the Terminal (find it in Applications/Terminal or via Spotlight), and go to the
folder you downloaded. To do this, type cd [folder], where [folder] is the folder
where to find the pythonServer.py script you downloaded. For instance, if the location is
/Users/John/Documents/test/, then type

cd /Users/John/Documents/test/

Then hit enter and run the Python script by typing
python pythonServer.py

and hit enter again. See also Figure

Alternatively, you can simply type python (follwed by a space) and drag the file into the
Terminal window from Finder.

You can leave this running throughout the different experiments (i.e. leave the Terminal
open). Once running the terminal will report the current URL to type into your browser
to initiate the test, usually this is http://localhost:8000/.

To start the test, open the browser and type

in: Fri Jul

T

Figure 2: Mac OS X: The Terminal window after going to the right folder (cd
[folder_path]) and running pythonServer.py.

localhost:8000
and hit enter. The test should start (see Figure |5)).

To quit the server, either close the terminal window or press Ctrl+C on your keyboard to
forcibly shut the server.

2.2.2 Windows

On Windows, Python 2.7 is not generally preinstalled and therefore has to be downloadedﬂ
and installed to be able to run scripts such as the local webserver, necessary if the tool is
hosted locally.

Simply double click the Python script pythonServer. py in the folder you downloaded.
You may see a warning like the one in Figure [3] Click ‘Allow access’.
The process should now start, in the Command prompt that opens - see Figure [

You can leave this running throughout the different experiments (i.e. leave the Command
Prompt open).

To start the test, open the browser and type
localhost:8000
and hit enter. The test should start (see Figure [5]).

If at any point in the test the participant reports weird behaviour or an error of some kind,
or the test needs to be interrupted, please notify the experimenter and/or refer to Section

i)

’https://www.python.org/downloads/windows/

https://www.python.org/downloads/windows/

& Windows Security Alert

Windows Firewall has blocked some features of python on all public and private networks.

Eﬂﬂ Nam.e: hytho

Publisher: Unknown
Path: C:\python27\python.exe

Allow python to communicate on these networks:
[W]Private networks, such as my home or work network

[]Public netwarks, such as those in airports and cafés (not recommended
because these networks often have litte or no security)

What are the risks of allowing an app throuah a firewal?

Fy Allow access Cancel

Figure 3: Windows: Potential warning message when executing pythonServer.py.

C C\Python27\python.exe = =

test—2.xml
B3-highbloodpressure—myfunnyvalentine.xml
- [38-Jun-/2815 12:24:191 “GET ~ HITP-1.1" 288 —
- [38-Jun-/2815 12:24:191 “GET ~core.css HTTP-/1.1" 288 -
- [38-Jun-/2815 12:24:191 “GET ~jguery-2.1.4.js HTTP/1 1" 288 -
- [38-Jun-2815 12:24:291 “GET ~rcore.js HTTP-1.1" 2
ession_filessB3-highbloodpressure— myfunnyualentlne
- [38-Jun- 2815 12:24:381 “GET ~pseudo.xml HITP-1.1'

ET ~favicon.ico HTT

GET ~sape.css HITP-1.
- [38/Jun.2015 12:24:3@1 “GET sape.js HTITP-1.1

Figure 4: Windows: The Command Prompt after running pythonServer.py and opening
the corresponding website.

10

I

[apeTool x \ @ Getting Started x \| |-

€« > C' | [1localhost:2000 o

Please enter your name.
paul|

1227
30/06/2015

5 [50 B O

Figure 5: The start of the test in Google Chrome on Windows 7.

When the test is over (the subject should see a message to that effect, and click ‘Submit’
one last time), the output XML file containing all collected data should have appeared in
‘saves/’. The names of these files are ‘test-0.xml’, ‘test-1.xml’, etc., in ascending order.
The Terminal or Command prompt running the local web server will display the following
file name. If such a file did not appear, please again refer to Section [9}

It is advised that you back up these results as often as possible, as a loss of this data means
that the time and effort spent by the subject(s) has been in vain. Save the results to an
external or network drive, and/or send them to the experimenter regularly.

To start the test again for a new participant, you do not need to close the browser or shut
down the Terminal or Command Prompt. Simply refresh the page or go to localhost:8000
again.

2.3 Remote test

Put all files on a web server which supports PHP. This allows the ‘save.php’ script to store
the XML result files in the ‘saves/’ folder. If the web server is not able to store the XML

11

file there at the end of the test, it will present the XML file locally to the user, as a ‘Save
file’ link.

Make sure the projectReturn attribute of the setup node is set to the save. php script.

Then, just go to the URL of the corresponding HTML file, e.g. http://server.com/path/to/WAET/index.htn
If storing on the server doesn’t work at submission (e.g. if the projectReturn attribute

isn’t properly set), the result XML file will be presented to the subject on the client side,

as a ‘Save file’ link.

2.4 Load a test / Multiple test documents

By default the index page will load a demo page of tests. To automatically load a

test document, you need to append the location in the URL. If your URL is normally
http://localhost:8000/index.html you would append the following: ?url=/path/to/your/test.xml.
Replace the fields with your actual path, the path is local to the running directory, so if

you have your test in the directory example_eval called project.xml you would append
?7url=/example_eval/project.xml.

12

3 Interfaces

The Web Audio Evaluation Tool comes with a number of interface styles, each of which can
be customised extensively, either by configuring them differently using the many optional
features, or by modifying the JavaScript files.

To set the interface style for the whole test, set the attribute of the setup node to
interface=‘‘APE’’, where ‘ ‘APE’’ is one of the interface names below.

3.1 APE

The APE interface is based on [2], and consists of one or more axes, each corresponding
with an attribute to be rated, on which markers are placed. As such, it is a multiple
stimulus interface where (for each dimension or attribute) all elements are on one axis so
that they can be maximally compared against each other, as opposed to rated individually
or with regards to a single reference. It also contains an optional text box for each element,
to allow for clarification by the subject, tagging, and so on.

3.2 MUSHRA
This is a straightforward implementation of 3], especially common for the rating of audio

quality, for instance for the evaluation of audio codecs. This can also operate any vertical
slider style test and does not necessarily have to match the MUSHRA specification.

3.3 AB

Performs a pairwise comparison, but supports ABX and n-way comparison (in the example
we demonstrate it performing a 7-way comparison).

3.4 Discrete/Likert

Each audio element is given a discrete set of values based on the number of slider options
specified. For instance, Likert specifies 5 values and therefore each audio element must be
one of those 5 values.

13

3.5 ACR/CCR/DCR/horizontal

Creates the same interfaces as MUSHRA except the sliders are horizontal, not verti-
cal.

14

4 Project XML

Each test is defined by its project XML file, examples of these can be seen in the ./exam-
ple_eval/ directory.

In the XML there are several nodes which must be defined:
e <waet>: The root node.
e <setup>: The first child node, defines whole-test parameters
e <page>: Specifies a test page, attached after the <setup>.
e <audioelement>: Specifies an audio element.

The test uses XML validation, so the ordering of nodes is important to pass this validation.
Some nodes also have specific attributes which must be set and may even have a certain
format to apply them. This is done so error checking can be performed both quickly and
succintly with easy to find errors before loading and running a test session.

Before identifying any features, this part will walk you through the available nodes, their
function and their attributes.

4.1 Root

The root node is <waet>, it must have the following attributes:
xmlns:xsi=‘ ‘http://www.w3.o0rg/2001/XMLSchema-instance’’
xsi:noNamespaceSchemalocation=°‘test-schema.xsd’’.

This will ensure it is checked against the XML schema for validation.

4.2 Set up
The first child node, <setup> specifies any one time and global parameters. It takes the
following attributes:

e interface: String, mandatory, specifies the interface to load

e projectReturn: URL, mandatory, specifies the return point. Can be a 3rd party
server or the local server. Set to null to disable automatic saving. Specifying
“save.php” will trigger the return if either the PHP or python servers are used.
On error, it will always default to presenting the save on page.

15

randomiseOrder: Boolean, optional, if true it will randomise the order of the test
pages. Default is false.

testPages: non-negative integer, optional. Specifies the number of test pages to
actually test with. Combined with randomiseOrder being true will give a random
set of test pages per participant from the given pool of <page> nodes. Specifying 0
disables this option, default is O.

loudness: non-positive integer, optional. Set the default LUFS target value. See

(.10 for more.

sampleRate: positive integer, optional. If set, the sample rate reported by the Web
Audio API must match this number. See [5.4l

The <setup> node takes the following child nodes, note these must appear in this or-

der:
[]
[]

4.3

<survey>: Min of 0, max of 2 occurences. See
<metric>: Must appear only once.

<interface>: Must appear only once.

Page

The only other first level child nodes, these specify the test pages. It takes the following
attributes:

id: ID, mandatory. A string which must be unique across the entire XML. It is used
to identify the page on test completion as pages are returned in the results in the
order they appeared, not specified.

hostURL: URL, mandatory. Used in conjuction with the <audioelement> url to
specify where the audio files are located. For instance if all your files are in the
directory ./test/ you can set this attribute to “/test/” and the <audioelement>
url attribute only needs to file name. Set to “” if no hostURL prefix desired.

randomiseOrder: Boolean, optional. If true the audio fragments are presented ran-
domly rather than the order specified. See Default is false.

repeatCount: non-negative integer, optional. Specify the number of times to repeat
the test page (re-present). Each presentation will appear as an individual page in the
results. Default is 0.

loop: Boolean, optional. If true, the audio elements will loop synchronously with
each other. See[5.3l Default is false.

16

e showElementComments: Boolean, optional. If true then there will be a comment box
on the test page for each audio element presented, see [5.11

e loudness: non-positive integer, optional. Set the LUFS target value for this page.
Supersedes the <setup> loudness attribute for this page. See for more.

The <page> node takes the following child, nodes note these must appear in this or-
der:

e <title>: Appear once or not at all. The text content of this node specifies the title
of the test page, for instance <title>John Doe’s Test</title>

e <commentboxprefix: Appear once or not at all. The text content specifies the prefix
of the comment boxes, see [5.11}

e <interface>: Must appear only once.
e <audioelement>: Minimum of one. Specifies an audio element, see
e <commentquestion>: Min of 0, max unlimited occurences. See [5.11]

e <survey>: Min of 0, max of 2 occurences. See

4.4 Survey

These specify any survey items to be presented. The must be a maximum of two of
these per <setup> and <page> nodes. These have one attribute, location, which must be
set to one of the following: before, pre, after or post. In this case before == pre and
after == post. This specifies where the survey must appear before or after the node it
is associated with. When a child of <setup> then pre/before will be shown before the
first test page and after/post shown after completing the last test page. When a child of
<page> then pre/before is before the test commences and after/post is once the test has
been submitted.

The survey node takes as its only set of childs the <surveyentry> node of which there can
be any number.

4.4.1 Survey Entry

These nodes have the following attributes, which vary depending on the survey type
wanted:

e id: ID, mandatory. Must be unique across the entire XML, used to identify the
response in the results.

17

e type: String, mandatory. Must be one of the following: statement, question, check-
box, radio or number. This defines the type to show.

e mandatory: Boolean, optional. Defines if the survey must have a response or not.
Does not apply to statements. Default is false.

e min: Number, optional. Only applies when type="number", the minimum valid
response.

e max: Number, optional. Only applies when type="number", the maximum valid
response.

e boxsize: String, optional. Only applies when type="question" and must be one of
the following: normal (default), small, large or huge.

The nodes have the following children, which vary depending on the survey type wanted.

e <statement>: Must appear only once. Its text content specifies the text to appear
as the statement or question for the user to respond to.

e <option>: Only valid if the parent node has the attribute type set to checkbox or
radio. Has attribute name to identify the selected option in the results. The text
content is the text to show next to the radio/checkbox.

4.5 Interface

This node specifies any interface specific options and test parameters. It has an optional
name attribute used to set the axis name (where applicable), such as the multi-axis APE
interface. Specifying multiple interface nodes in a <page> node will trigger multiple axis
where applicable, otherwise only the first node will be used and the rest ignored.

The node has the following children, note the order these must appear in is as follows:

e title: Min 0, max 1 occurence. The text content specifies the name of the axis as
shown to the user.

e interfaceoption: Min 0, max unbounded. Specifies the interface options. See ?7.

e scales: Min 0, max 1 occurence. Contains <scalelable> nodes which define the
displayed scales. See 77.

4.6 Audio Element

Appear as children of the page node. Each of these specify an individual interface fragment
to display. Multiple fragments can reference the same file (allowing for repetition with

18

different parameters or blind-doubles). The node has the following attributes:

id: ID, mandatory. Must be unique across the test page. Used to identify the specific
fragment in the results.

url: URL, mandatory. Used with the parent page nodes’ hostURL attribute to get
the full url of the audio file to load.

gain: Float, optional. Specify the gain in decibels to apply to the node after loudness
normalisation. Default is 0.

type: String, optional. Must be one of the following: normal (default when not
specified), anchor, reference or outside-reference. Normal, anchor and reference are
presented as normal, outside-reference presents the node as a separate interface op-
tion.

marker: Integer between 0 and 100, optional. Only used when type="anchor" |"reference".

See 5.6

5 Features

This section covers the different features implemented in the Web Audio Evaluation Tool,
how to use them, and what to know about them.

Unless otherwise specified, each feature described here is optional, i.e. it can be enabled
or disabled and adjusted to some extent.

As the example project showcases (nearly) all of these features, please refer to its configu-
ration XML document for a demonstration of how to enable and adjust them.

5.1

Interface options

The interface node has children of interface options which are used to specify modifications
to the test environment. These are divided into two catagories: check and show. Check are
used to specify conditions which must be met before a page can be completed, these include
checking all fragments have been played or checking all fragments have a comment and so
on. Show is used to show an optional on page element or control, such as the playhead or

master volume.

Check items have the attribute “type” set to “check”. The following list gives the string
to give the “name” attribute along with a description of the check.

fragmentPlayed: Checks that all fragments have been at least partially played

19

e fragmentFullPlayback: Checks that all fragments have been fully played. NOTE:
This will always clear if the page is looping as it is not possible to know every sample
has been played.

o fragmentMoved: Checks that all fragments have been moved. This is interface de-
pendent, for instance on AB this will always clear as there is no movement.

o fragmentComments: Cheks that all fragments have a comment. Will clear if there
are no on page comments but with a console warning.

e scalerange: Has two extra attributes “min” and “max”. Checks that at least one
element is below the min value and one element is above the max value.

Show items have the attribute “type” set to “show”. The following list gives the string to
give the “name” attribute along with a description.

e playhead: Shows the playhead to the end user indicating where in the file they are
currently listening

e page-count: Shows the current test page number and the total number of test pages.

e volume: Shows a master volume control to the user to manipulate the output gain
of the page. This is tracked.

5.1.1 Multiple scales

In the case of multiple rating scales, e.g. when the stimuli are to be rated in terms of
attributes ‘timbre’ and ‘spatial impression’, multiple interface nodes will have to be added,
each specifying the title and annotations.

This is where the interface’s name attribute is particularly important: use this to re-
trieve the rating values, comments and metrics associated with the specified interface. If
none is given, you can still use the automatically given interface-id, which is the in-
terface number starting with 0 and corresponding to the order in which the rating scales
appear.

5.2 Randomisation

[WORK IN PROGRESS]

20

5.2.1 Randomisation of configuration XML files

The python server has a special function to automatically cycle through a list of test pages.
Instead of directly requesting an XML, simply setting the url item in the browser URL to
pseudo.xml will cycle through a list of XMLs. These XMLs must be in the local directory
called ./pseudo/.

5.2.2 Randomsation of page order

The page order randomisation is set by the <setup> node attribute randomise-order, for
example <setup ... randomise-order=‘‘true’’>...</setup> will randomise the test
page order. When not set, the default is to not randomise the test page order.

5.2.3 Randomisation of axis order
5.2.4 Randomisation of fragment order

The audio fragment randomisation is set by the <audioholder> node attribute randomise-order,
for example <audioholder ... randomise-order=‘‘true’’>...</audioholder> will
randomise the test page order. When not set, the default is to not randomise the test page
order.

5.2.5 Randomisation of initial slider position

By default slider values are randomised on start. The MUSHRA interface supports setting
the initial values of all sliders throught the <audioholder> attribute initial-position.
This takes an integer between 0 and 100 to signify the slider position.

5.3 Looping

Looping enables the fragments to loop until stopped by the user. Looping is synchronous
so all fragments start at the same time on each loop. Individual test pages can have their
playback looped by the <page> attribute loop with a value of “true” or “false”. If the
fragments are not of equal length initially, they are padded with zeros so that they are
equal length, to enable looping without the fragments going out of sync relative to each
other.

Note that fragments cannot be played until all page fragments are loaded when in looped
mode, as the engine needs to know the length of each fragment to calculate the padding.

21

5.4 Sample rate

If you require the test to be conducted at a certain sample rate (i.e. you do not tolerate re-
sampling of the elements to correspond with the system’s sample rate), add sampleRate="96000"
- where “96000” can be any support sample rate (in Hz) - so that a warning message is
shown alerting the subject that their system’s sample rate is different from this enforced
sample rate. This is checked immediately after parsing and stops the page loading any
other elements if this check has failed.

5.5 Metrics

The Metric node, which contains the metrics to be tracked during the complete test, is a
child of the setup node, and it could look as follows.

<Metric>
<metricEnable>test Timer </metricEnable>
<metricEnable>elementTimer </metricEnable>
<metricEnable>elementInitialPosition </metricEnable>
<metricEnable>elementTracker </metricEnable>
<metricEnable>elementFlagListenedTo </metricEnable>
<metricEnable>elementFlagMoved </metricEnable>
<metricEnable>elementListenTracker </metricEnable>

</Metric>

When in doubt, err on the inclusive side, as one never knows which information is needed
in the future. Most of these metrics are necessary for post-processing scripts such as
timeline_view_movement.py.

5.5.1 Time test duration

testTimer

One per test page. Presents the total test time from the first playback on the test page
to the submission of the test page (exculding test time of the pre-/post- test surveys).
This is presented in the results as <metricresult id=‘‘testTime’’> 8.60299319727892
</metricresult>. The time is in seconds.

5.5.2 Time fragment playback

elementTimer
One per audio fragment per test page. This totals up the entire time the audio fragment has

22

been listened to in this test and presented <metricresult name=‘‘enableElementTimer’’>
1.0042630385487428 </metricresult>. The time is in seconds.

5.5.3 Initial positions

elementInitialPosition

One per audio fragment per test page. Tracks the initial position of the sliders, especially

relevant when these are randomised. Example result <metricresult name=‘‘elementInitialPosition’’>
0.8395522388059702 </metricresult>.

5.5.4 Track movements
elementTracker

One per audio fragment per test page. Tracks the movement of each interface object. Each
movement event has the time it occured at and the new value.

5.5.5 Which fragments listened to

elementFlaglistenedTo
One per audio fragment per test page. Boolean response, set to true if listened to.

5.5.6 Which fragments moved

elementFlagMoved
One per audio fragment per test page. Binary check whether or not a the marker corre-
sponding with a particular fragment was moved at all throughout the experiment.

5.5.7 elementListenTracker

elementListenTracker
One per audio fragment per test page. Tracks the playback events of each audio element
pairing both the time in the test when playback started and when it stopped, it also gives
the buffertime positions.

23

5.6 References and anchors

The audio elements, <audioelement> have the attribute type, which defaults to normal.
Setting this to one of the following will have the following effects.

5.6.1 Outside Reference

Set type to ‘outside-reference’. This will place the object in a separate playback element
clearly labelled as an outside reference. This is exempt of any movement checks but will
still be included in any listening checks.

5.6.2 Hidden reference

Set type to ‘reference’. The element will still be randomised as normal (if selected) and
presented to the user. However the element will have the ‘reference’ type in the results to
quickly find it. The reference can be forced to be below a value before completing the test
page by setting the attribute ‘marker’ to be a value between 0 and 100 representing the
integer value position it must be equal to or above.

5.6.3 Hidden anchor

Set type to ‘anchor’. The element will still be randomised as normal (if selected) and
presented to the user. However the element will have the ‘anchor’ type in the results to
quickly find it. The anchor can be forced to be below a value before completing the test

page by setting the attribute ‘marker’ to be a value between 0 and 100 representing the
integer value position it must be equal to or below.

5.7 Checks

These checks are enabled in the interface node, which is a child of the setup node.

5.7.1 Playback checks

Enforce playing each sample at least once, for at least a little bit (e.g. this test is satisfied
even if you only play a tiny portion of the file), by alerting the user to which samples
have not been played upon clicking ‘Submit’. When enabled, one cannot proceed to the

24

next page, answer a survey question, or finish the test, before clicking each sample at least
once.

Alternatively, one can check whether the entire fragment was listened to at least once.

Add <check name="fragmentPlayed"/> to the interface node.

5.7.2 Movement check

Enforce moving each sample at least once, for at least a little bit (e.g. this test is satisfied
even if you only play a tiny portion of the file), by alerting the user to which samples have
not been played upon clicking ‘Submit’. When enabled, one cannot proceed to the next
page, answer a survey question, or finish the test, before clicking each sample at least once.
If there are several axes, the warning will specify which samples have to be moved on which
axis.

Add <check name="fragmentMoved"/> to the interface node.

5.7.3 Comment check

Enforce commenting, by alerting the user to which samples have not been commented on
upon clicking ‘Submit’. When enabled, one cannot proceed to the next page, answer a
survey question, or finish the test, before putting at least one character in each comment
box.

Note that this does not apply to any extra (text, radio button, checkbox) elements, unless
these have the ‘mandatory’ option enabled.

Add <check name="fragmentComments"/> to the interface node.

5.7.4 Scale use check

It is possible to enforce a certain usage of the scale, meaning that at least one slider needs
to be below and/or above a certain percentage of the slider.

Add <check name="scalerange" min="25" max="75"/> to the interface node.

5.7.5 Note on the use of multiple rating axes

I.e. what if more than one axis? How to specify which axis the checks relate to?

25

5.8 Platform information

For troubleshooting and usage statistics purposes, information about the browser and the
operating system is logged in the results XML file. This is especially useful in the case
of remote tests, when it is not certain which operating system, browser and/or browser
were used. Note that this information is not always available and/or accurate, e.g. when
the subject has taken steps to be more anonymous, so it should be treated as a guide
only.

Example:

<navigator>

<platform>MacIntel</platform>

<vendor>Google Inc.</vendor>

<uagent>Mozilla /5.0 ... </uagent>

<screen innerHeight="1900px” innerWidth="1920px” />
</navigator>

5.9 Gain

It is possible to set the gain (in decibel) applied to the different audioelements, as an
attribute of the audioelement nodes in the configuration XML file:

<audioElements url="sample-01l.wav" gain="-6" id="sampleOlquieter" />
Please note, there are no checks on this to detect if accidentaly typed in linear. This gain
is applied after any loudness normalisation.

5.10 Loudness

Each audio fragment on loading has its loudness calculated. The tool uses the EBU R
128 recommendation following the ITU-R BS.1770-4 loduness calculations to return the
integreated LUFS loudness. The attribute loudness will set the loudness from the scope
it is applied in. Applying it in the <setup> node will set the loudness for all test pages.
Applying it in the <page> node will set the loudness for that page. Applying it in the
<audioelement> node will set the loudness for that fragment. The scope is set locally, so
if there is a loudness on both the <page> and <setup> nodes, that test page will take the
value associated with the <page>. The loudness attribute is set in LUFS

26

5.11 Comment Boxes

There are two types of comment boxes which can be presented, those linked to the audio
fragments on the page and those which pose a general question. The audio fragment
boxes are shown by setting the attribute showElementComments to true of the page in
question. This will then show a comment box below the main interface for every fragment
on the page. There is some customisation around the text that accompanies the box, by
default the text will read “Comment on fragment” followed by the fragment identifier (the
number / letter shown by the interface). This ‘prefix’ can be modified using the page
node <commentboxprefix>, see for where to place this node in the document. The
comment box prefix node takes no attribute and the text contained by the node represents
to the prefix. For instance if we have a node <commentboxprefix> Describe fragment
</commentboxprefix>, then the interface will show “Describe fragment” followed by the
identifier.

The second type of comment box is slightly more complex because it can handle different
types of response data. These are called comment questions because they are located in
the comment section of the test but pose a specific question.

27

6 Using the test create tool

We provide a test creation tool, available in the directory test_create. This tool is a
self-contained web page, so doubling clicking will launch the page in your system default
browser.

The test creation tool can help you build a simple test very quickly. By simply selecting
your interface and clicking check-boxes you can build a test in minutes.

Include audio by dragging and dropping the stimuli you wish to include.

The tool examines your XML before exporting to ensure you do not export an invalid XML
structure which would crash the test.

This guide will help you to construct your own interface on top of the WAET (Web Au-
dio Evaluation Tool) engine. The WAET engine resides in the core.js file, this contains
prototype objects to handle most of the test creation, operation and data collection. The
interface simply has to link into this at the correct points.

7 Building your own interface

7.1 Nodes to familiarise

Core.js handles several very important nodes which you should become familiar with. The
first is the Audio Engine, initialised and stored in variable ‘AudioEngineContext’. This
handles the playback of the web audio nodes as well as storing the ‘AudioObjects’. The
‘AudioObjects’ are custom nodes which hold the audio fragments for playback. These
nodes also have a link to two interface objects, the comment box if enabled and the interface
providing the ranking. On creation of an ‘AudioObject’ the interface link will be nulled,
it is up to the interface to link these correctly.

The specification document will be decoded and parsed into an object called ‘specification’.
This will hold all of the specifications various nodes. The test pages and any pre/post test
objects are processed by a test state which will proceed through the test when called to
by the interface. Any checks (such as playback or movement checks) are to be completed
by the interface before instructing the test state to proceed. The test state will call the
interface on each page load with the page specification node.

28

7.2 Modifying core. js

Whilst there is very little code actually needed, you do need to instruct core.js to load
your interface file when called for from a specification node. There is a function called
‘loadProjectSpecCallback’ which handles the decoding of the specification and setting any
external items (such as metric collection). At the very end of this function there is an
if statement, add to this list with your interface string to link to the source. There is
an example in there for both the APE and MUSHRA tests already included. Note: Any
updates to core.js in future work will most likely overwrite your changes to this file, so
remember to check your interface is still here after any update that interferes with core.js.
Any further files can be loaded here as well, such as css styling files. jQuery is already
included.

7.3 Building the Interface

Your interface file will get loaded automatically when the ‘interface’ attribute of the setup
node matches the string in the ‘loadProjectSpecCallback’ function. The following functions
must be defined in your interface file.

e loadInterface - Called once when the document is parsed. This creates any nec-
essary bindings, such as to the metric collection classes and any check commands.
Here you can also start the structure for your test such as placing in any common
nodes (such as the title and empty divs to drop content into later).

e loadTest (audioHolderObject) - Called for each page load. The audioHolderObject
contains a specification node holding effectively one of the audioHolder nodes.

e resizeWindow(event) - Handle for any window resizing. Simply scale your interface
accordingly. This function must be here, but can me an empty function call.

7.3.1 loadInterface

This function is called by the interface once the document has been parsed since some
browsers may parse files asynchronously. The best method is simply to put ‘loadInterface()’
at the top of your interface file, therefore when the JavaScript engine is ready the function
is called.

By default the HTML file has an element with id “topLevelBody” where you can build your
interface. Make sure you blank the contents of that object. This function is the perfect
time to build any fixed items, such as the page title, session titles, interface buttons (Start,
Stop, Submit) and any holding and structure elements for later on.

29

At the end of the function, insert these two function calls: testState.initialise() and test-
State.advanceState();. This will actually begin the test sequence, including the pre-test
options (if any are included in the specification document).

7.3.2 loadTest(audioHolderObject)

This function is called on each new test page. It is this functions job to clear out the previ-
ous test and set up the new page. Use the function audioEngineContext.newTestPage(); to
instruct the audio engine to prepare for a new page. “audioEngineContext.audioObjects
= [];” will delete any audioObjects, interfaceContext.deleteCommentBoxes(); will delete
any comment boxes and interfaceContext.deleteCommentQuestions(); will delete any extra
comment boxes specified by commentQuestion nodes.

This function will need to instruct the audio engine to build each fragment. Just pass-
ing the constructor each element from the audioHolderObject will build the track, au-
dioEngineContext.newTrack(element) (where element is the audioHolderObject audio ele-
ment). This will return a reference to the constructed audioObject. Decoding of the audio
will happen asynchronously.

You also need to link audioObject.interfaceDOM with your interface object for that au-
dioObject. The interfaceDOM object has a few default methods. Firstly it must start
disabled and become enabled once the audioObject has decoded the audio (function call:
enable()). Next it must have a function exportXMLDOMY(), this will return the xml node
for your interface, however the default is for it to return a value node, with textContent
equal to the normalised value. You can perform other functions, but our scripts may not
work if something different is specified (as it will breach our results specifications). Finally
it must also have a method getValue, which returns the normalised value.

It is also the job the interfaceDOM to call any metric collection functions necessary, how-
ever some functions may be better placed outside (for example, the APE interface uses drag
and drop, therefore the best way was to call the metric functions from the dragknd func-
tion, which is called when the interface object is dropped). Metrics based upon listening
are handled by the audioObject. The interfaceDOM object must manage any movement
metrics. For a list of valid metrics and their behaviours, look at the project specification
document included in the repository/docs location. The same goes for any checks required
when pressing the submit button, or any other method to proceed the test state.

30

8 Analysis and diagnostics

8.1 In the browser

See ‘analysis.htm!’ in the main folder: immediate visualisation of (by default) all results in
the ‘saves/’ folder.

8.2 Python scripts

The package includes Python (2.7) scripts (in ‘scripts/’) to extract ratings and comments,
generate visualisations of ratings and timelines, and produce a fully fledged report.

Visualisation requires the free matplotlib toolbox (http://matplotlib.org), numpy and
scipy. By default, the scripts can be run from the ‘scripts’ folder, with the result files
in the ‘saves’ folder (the default location where result XMLs are stored). Each script takes
the XML file folder as an argument, along with other arguments in some cases. Note: to
avoid all kinds of problems, please avoid using spaces in file and folder names (this may
work on some systems, but others don’t like it).

8.2.1 comment_parser.py

Extracts comments from the output XML files corresponding with the different subjects
found in ‘saves/’. It creates a folder per ‘audioholder’/page it finds, and stores a CSV
file with comments for every ‘audioelement’/fragment within these respective ‘audiohold-
ers’/pages. In this CSV file, every line corresponds with a subject/output XML file. De-
pending on the settings, the first column containing the name of the corresponding XML
file can be omitted (for anonymisation). Beware of Excel: sometimes the UTF-8 is not
properly imported, leading to problems with special characters in the comments (particu-
larly cumbersome for foreign languages).

8.2.2 evaluation_stats.py

Shows a few statistics of tests in the ‘saves/’ folder so far, mainly for checking for errors.
Shows the number of files that are there, the audioholder IDs that were tested (and how
many of each separate ID), the duration of each page, the duration of each complete test, the
average duration per page, and the average duration in function of the page number.

31

8.2.3 generate_report.py

Similar to ‘evaluation_stats.py’, but generates a PDF report based on the output files in
the ‘saves/’ folder - or any folder specified as command line argument. Uses pdflatex to
write a LaTeX document, then convert to a PDF.

8.2.4 score_parser.py

Extracts rating values from the XML to CSV - necessary for running visualisation of
ratings. Creates the folder ‘saves/ratings/’ if not yet created, to which it writes a separate
file for every ‘audioholder’/page in any of the output XMLs it finds in ‘saves/’. Within
each file, rows represent different subjects (output XML file names) and columns represent
different ‘audioelements’/fragments.

8.2.5 score_plot.py

Plots the ratings as stored in the CSVs created by score_parser.py Depending on the set-
tings, it displays and/or saves (in ‘saves/ratings/’) a boxplot, confidence interval plot,
scatter plot, or a combination of the aforementioned. Requires the free matplotlib library.
At this point, more than one subjects are needed for this script to work.

8.2.6 timeline_view_movement.py

Creates a timeline for every subject, for every ‘audioholder’/page, corresponding with any
of the output XML files found in ‘saves/’. It shows the marker movements of the different
fragments, along with when each fragment was played (red regions). Automatically takes
fragment names, rating axis title, rating axis labels, and audioholder name from the XML
file (if available).

8.2.7 timeline_view.py
Creates a timeline for every subject, for every ‘audioholder’/page, corresponding with any

of the output XML files found in ‘saves/’. It shows when and for how long the subject
listened to each of the fragments.

32

9 Troubleshooting

9.1 Reporting bugs and requesting features

Thanks to feedback from using the interface in experiments by the authors and others,
many bugs have been caught and fatal crashes due to the interface seem to be a thing of
the past entirely.

We continually develop this tool to fix issues and implement features useful to us or our user
base. See https://code.soundsoftware.ac.uk/projects/webaudioevaluationtool/
issues for a list of feature requests and bug reports, and their status.

Please contact the authors if you experience any bugs, if you would like additional func-
tionality, if you spot any errors or gaps in the documentation, if you have questions about
using the interface, or if you would like to give any feedback (even positive!) about the
interface. We look forward to learning how the tool has (not) been useful to you.

9.2 First aid

Meanwhile, if things do go wrong or the test needs to be interrupted for whatever reason,
all data is not lost. In a normal scenario, the test needs to be completed until the end (the
final ‘Submit’), at which point the output XML is stored in the saves/. If this stage is
not reached, open the JavaScript Console (see below for how to find it) and type

createProjectSave ()
to present the result XML file on the client side, or
createProjectSave(specification.projectReturn)

to try to store it to the specified location, e.g. the ‘saves/’ folder on the web server or the
local machine (on failure the result XML should be presented directly in the web browser
instead)

and hit enter. This will open a pop-up window with a hyperlink that reads ‘Save File’;
click it and an XML file with results until that point should be stored in your download
folder.

Alternatively, a lot of data can be read from the same console, in which the tool prints a
lot of debug information. Specifically:

e the randomisation of pages and fragments are logged;

e any time a slider is played, its ID and the time stamp (in seconds since the start of
the test) are displayed;

33

https://code.soundsoftware.ac.uk/projects/webaudioevaluationtool/issues
https://code.soundsoftware.ac.uk/projects/webaudioevaluationtool/issues

e any time a slider is dragged and dropped, the location where it is dropped including
the time stamp are shown;

e any comments and pre- or post-test questions and their answers are logged as well.

You can select all this and save into a text file, so that none of this data is lost. You may
to choose to do this even when a test was successful as an extra precaution.

If you encounter any issue which you believe to be caused by any aspect of the tool, and/or
which the documentation does not mention, please do let us know!

Opening the JavaScript Console

e In Google Chrome, the JavaScript Console can be found in View>Developer>JavaScript
Console, or via the keyboard shortcut Cmd + Alt + J (Mac OS X).

e In Safari, the JavaScript Console can be found in Develop>Show Error Console,
or via the keyboard shortcut Cmd + Alt + C (Mac OS X). Note that for the Developer
menu to be visible, you have to go to Preferences (Cmd + ,) and enable ‘Show Develop
menu in menu bar’ in the ‘Advanced’ tab. Note that as long as the Developer
menu is not visible, nothing is logged to the console, i.e. you will only
be able to see diagnostic information from when you switched on the
Developer tools onwards.

e In Firefox, go to Tools>Web Developer>Web Console, or hit Cmd + Alt + K.

9.3 Known issues and limitations

The following is a non-exhaustive list of problems and limitations you may experience using
this tool, due to not being supported yet by us, or by the Web Audio API and/or (some)
browsers.

e I[ssue|#1463: Firefox only supports 8 bit and 16 bit WAV files. Pending automatic
requantisation (which deteriorates the audio signal’s dynamic range to some extent),
WAV format stimuli need to adhere to these limitations in order for the test to be
compatible with Firefox.

e Issues #1474 and |#1462: On occasions, audio is not working - or only a contin-
uous ‘beep’ can be heard - notably in Safari. Refreshing, quitting the browser and
even enabling Developer tools in Safari’s Preferences pane (‘Advanced’ tab: “Show
‘Develop’ menu in menu bar”) has helped resolve this. If no (high quality) audio can
be heard, make sure your entire playback system’s settings are all correct.

34

https://code.soundsoftware.ac.uk/issues/1463
https://code.soundsoftware.ac.uk/issues/1474
https://code.soundsoftware.ac.uk/issues/1462

10 References

[1] N. Jillings, D. Moffat, B. De Man, and J. D. Reiss, “Web Audio Evaluation Tool:
A browser-based listening test environment,” in 12th Sound and Music Computing
Conference, July 2015.

[2] B. De Man and J. D. Reiss, “APE: Audio Perceptual Evaluation toolbox for MATLAB,”
in 136th Convention of the Audio Engineering Society, April 2014.

[3] Method for the subjective assessment of intermediate quality level of coding systems.
Recommendation ITU-R BS.1534-1, 2003.

35

A Legacy

The APE interface and most of the functionality of the first WAET editions are inspired by
the APE toolbox for MATLAB [2]. See https://code.soundsoftware.ac.uk/projects/
ape for the source code and http://brechtdeman.com/publications/aes136.pdf|for the
corresponding paper.

36

https://code.soundsoftware.ac.uk/projects/ape
https://code.soundsoftware.ac.uk/projects/ape
http://brechtdeman.com/publications/aes136.pdf

B Listening test instructions example

Before each test, show the instructions below or similar and make sure it is available to the
subject throughout the test. Make sure to ask whether the participant has any questions
upon seeing and/or reading the instructions.

e You will be asked for your name (“John Smith”) and location (room identifier).
e An interface will appear, where you are asked to

— click green markers to play the different mixes;

drag the markers on a scale to reflect your preference for the mixes;

— comment on these mixes, using text boxes with corresponding numbers (in your
native language);

— optionally comment on all mixes together, or on the song, in ‘General comments’.

e You are asked for your personal, honest opinion. Feel free to use the full range of the
scale to convey your opinion of the various mixes. Don?t be afraid to be harsh and
direct.

e The markers appear at random positions at first (which means some markers may
hide behind others).

e The interface can take a few seconds to start playback, but switching between mixes
should be instantaneous.

e This is a research experiment, so please forgive us if things go wrong. Let us know
immediately and we will fix it or restart the test.

e When the test is finished (after all songs have been evaluated), just call the experi-
menter, do NOT close the window.

e After the test, please fill out our survey about your background, experience and
feedback on the test.

e By participating, you consent to us using all collected data for research. Unless asked
explicitly, all data will be anonymised when shared.

37

C Terminology

As a guide to better understand the Instructions, and to expand them later, here is a list
of terms that may be unclear or ambiguous unless properly defined.

Subject The word we use for a participant, user, ... of the test, i.e. not the experimenter
who designs the test but the person who evaluates the audio under test as part of an
experiment (or the preparation of one).

User The person who uses the tool to configure, run and analyse the test - i.e. the
experimenter, most likely a researcher - or at least

Page A screen in a test; corresponds with an audioholder
Fragment An element, stimulus or sample in a test; corresponds with an audioelement

Test A complete test which can consist of several pages; corresponds with an entire con-
figuration XML file

Configuration XML file The XML file containing the necessary information on inter-
face, samples, survey questions, configurations, ... which the JavaScript modules read
to produce the desired test.

Results XML file The output of a successful test, including ratings, comments, survey
responses, timing information, and the complete configuration XML file with which
the test was generated in the first place.

38

Contact details

e Nicholas Jillings: nicholas.jillings@mail.bcu.ac.uk
e Brecht De Man: b.deman@gmul.ac.uk

e David Moffat: d.j.moffat@gmul.ac.uk

39

	Installation
	Contents
	Compatibility

	Test setup
	Sample rate
	Mac OS X
	Windows

	Local test
	Mac OS X & Linux
	Windows

	Remote test
	Load a test / Multiple test documents

	Interfaces
	APE
	MUSHRA
	AB
	Discrete/Likert
	ACR/CCR/DCR/horizontal

	Project XML
	Root
	Set up
	Page
	Survey
	Survey Entry

	Interface
	Audio Element

	Features
	Interface options
	Multiple scales

	Randomisation
	Randomisation of configuration XML files
	Randomsation of page order
	Randomisation of axis order
	Randomisation of fragment order
	Randomisation of initial slider position

	Looping
	Sample rate
	Metrics
	Time test duration
	Time fragment playback
	Initial positions
	Track movements
	Which fragments listened to
	Which fragments moved
	elementListenTracker

	References and anchors
	Outside Reference
	Hidden reference
	Hidden anchor

	Checks
	Playback checks
	Movement check
	Comment check
	Scale use check
	Note on the use of multiple rating axes

	Platform information
	Gain
	Loudness
	Comment Boxes

	Using the test create tool
	Building your own interface
	Nodes to familiarise
	Modifying core.js
	Building the Interface
	loadInterface
	loadTest(audioHolderObject)

	Analysis and diagnostics
	In the browser
	Python scripts
	comment_parser.py
	evaluation_stats.py
	generate_report.py
	score_parser.py
	score_plot.py
	timeline_view_movement.py
	timeline_view.py

	Troubleshooting
	Reporting bugs and requesting features
	First aid
	Known issues and limitations

	References
	Legacy
	Listening test instructions example
	Terminology
	Contact details

