b@2264
|
1 #!/usr/bin/python
|
b@2264
|
2
|
b@2264
|
3 import sys
|
b@2264
|
4 import os
|
b@2264
|
5 import csv
|
b@2264
|
6 import matplotlib.pyplot as plt
|
b@2264
|
7 import numpy as np
|
b@2264
|
8 import scipy as sp
|
b@2264
|
9 import scipy.stats
|
b@2264
|
10
|
b@2264
|
11 # COMMAND LINE ARGUMENTS
|
b@2264
|
12
|
b@2264
|
13 #TODO: Merge, implement this functionality
|
b@2264
|
14 #TODO: Control by CLI arguments (plot types, save and/or show, ...)
|
b@2264
|
15
|
b@2264
|
16 assert len(sys.argv)<4, "score_plot takes at most 2 command line arguments\n"+\
|
b@2264
|
17 "Use: python score_plot.py [ratings_folder_location]."+\
|
b@2264
|
18 "Type 'python score_plot.py -h' for more options"
|
b@2264
|
19
|
b@2264
|
20 # initialise plot types (false by default) and options
|
b@2264
|
21 enable_boxplot = False # show box plot
|
b@2264
|
22 enable_confidence = False # show confidence interval
|
nicholas@3107
|
23 enable_combined = False # show combined plots
|
b@2264
|
24 confidence = 0.90 # confidence value (for confidence interval plot)
|
b@2264
|
25 enable_individual = False # show all individual ratings
|
b@2264
|
26 show_individual = [] # show specific individuals (empty: show all individuals found)
|
b@2264
|
27 show_legend = False # show names of individuals
|
b@2264
|
28
|
b@2264
|
29 # DEFAULT: Looks in 'saves/ratings/' folder from 'scripts/' folder
|
b@2264
|
30 rating_folder = "../saves/ratings/"
|
b@2264
|
31
|
b@2264
|
32 # XML results files location
|
b@2264
|
33 if len(sys.argv) == 1: # no extra arguments
|
b@2264
|
34 enable_boxplot = True # show box plot
|
b@2272
|
35 print("Use: python score_plot.py [rating folder] [plot_type] [-l/-legend]")
|
b@2272
|
36 print("Type 'python score_plot.py -h' for help.")
|
b@2272
|
37 print("Using default path: " + rating_folder + " with boxplot.")
|
b@2264
|
38 else:
|
b@2264
|
39 for arg in sys.argv: # go over all arguments
|
b@2264
|
40 if arg == '-h':
|
b@2264
|
41 # show help
|
b@2264
|
42 #TODO: replace with contents of helpfile score_plot.info (or similar)
|
b@2272
|
43 print("Use: python score_plot.py [rating_folder] [plot_type] [-l] [confidence]")
|
b@2272
|
44 print(" rating_folder:")
|
b@2272
|
45 print(" folder where output of 'score_parser' can be found, and")
|
b@2272
|
46 print(" where plots will be stored.")
|
b@2272
|
47 print(" By default, '../saves/ratings/' is used.")
|
b@2272
|
48 print("")
|
b@2272
|
49 print("PLOT TYPES")
|
b@2272
|
50 print(" Can be used in combination.")
|
b@2272
|
51 print(" box | boxplot | -b")
|
b@2272
|
52 print(" Enables the boxplot" )
|
b@2272
|
53 print(" conf | confidence | -c")
|
b@2272
|
54 print(" Enables the confidence interval plot" )
|
b@2272
|
55 print(" ind | individual | -i")
|
b@2272
|
56 print(" Enables plot of individual ratings" )
|
b@2272
|
57 print("")
|
b@2272
|
58 print("PLOT OPTIONS")
|
b@2272
|
59 print(" leg | legend | -l")
|
b@2272
|
60 print(" For individual plot: show legend with individual file names")
|
b@2272
|
61 print(" numeric value between 0 and 1, e.g. 0.95")
|
b@2272
|
62 print(" For confidence interval plot: confidence value")
|
b@2264
|
63 assert False, ""# stop immediately after showing help #TODO cleaner way
|
b@2264
|
64
|
b@2264
|
65 # PLOT TYPES
|
b@2264
|
66 elif arg == 'box' or arg == 'boxplot' or arg == '-b':
|
b@2264
|
67 enable_boxplot = True # show box plot
|
b@2264
|
68 elif arg == 'conf' or arg == 'confidence' or arg == '-c':
|
b@2264
|
69 enable_confidence = True # show confidence interval
|
b@2264
|
70 #TODO add confidence value input
|
b@2264
|
71 elif arg == 'ind' or arg == 'individual' or arg == '-i':
|
b@2264
|
72 enable_individual = True # show all individual ratings
|
nicholas@3107
|
73 elif arg == 'comb' or arg == 'combined' or arg == '-m':
|
nicholas@3107
|
74 enable_combined = True # show combined plot with error bars
|
b@2264
|
75 # PLOT OPTIONS
|
b@2264
|
76 elif arg == 'leg' or arg == 'legend' or arg == '-l':
|
b@2264
|
77 if not enable_individual:
|
b@2272
|
78 print("WARNING: The 'legend' option is only relevant to plots of "+\
|
b@2272
|
79 "individual ratings")
|
b@2264
|
80 show_legend = True # show all individual ratings
|
b@2264
|
81 elif arg.isdigit():
|
b@2264
|
82 if not enable_confidence:
|
b@2272
|
83 print("WARNING: The numeric confidence value is only relevant when "+\
|
b@2272
|
84 "confidence plot is enabled")
|
b@2264
|
85 if float(arg)>0 and float(arg)<1:
|
b@2264
|
86 confidence = float(arg)
|
b@2264
|
87 else:
|
b@2272
|
88 print("WARNING: The confidence value needs to be between 0 and 1")
|
b@2264
|
89
|
b@2264
|
90 # FOLDER NAME
|
b@2264
|
91 else:
|
b@2264
|
92 # assume it's the folder name
|
b@2264
|
93 rating_folder = arg
|
b@2264
|
94
|
b@2264
|
95 # at least one plot type should be selected: box plot by default
|
nicholas@3107
|
96 if not enable_boxplot and not enable_confidence and not enable_individual and not enable_combined:
|
nicholas@3107
|
97 print("Default to enable boxplot")
|
b@2264
|
98 enable_boxplot = True
|
b@2264
|
99
|
b@2264
|
100 # check if folder_name exists
|
b@2264
|
101 if not os.path.exists(rating_folder):
|
b@2264
|
102 #the file is not there
|
b@2272
|
103 print("Folder '"+rating_folder+"' does not exist.")
|
b@2264
|
104 sys.exit() # terminate script execution
|
b@2264
|
105 elif not os.access(os.path.dirname(rating_folder), os.W_OK):
|
b@2264
|
106 #the file does exist but write rating_folder are not given
|
b@2272
|
107 print("No write privileges in folder '"+rating_folder+"'.")
|
b@2264
|
108
|
b@2264
|
109
|
b@2264
|
110 # CONFIGURATION
|
b@2264
|
111
|
b@2264
|
112 # Font settings
|
b@2264
|
113 font = {'weight' : 'bold',
|
b@2264
|
114 'size' : 10}
|
b@2264
|
115 plt.rc('font', **font)
|
b@2264
|
116
|
b@2264
|
117
|
b@2264
|
118 # CODE
|
nicholas@3107
|
119 combined = {}
|
b@2264
|
120
|
b@2264
|
121 # get every csv file in folder
|
b@2264
|
122 for file in os.listdir(rating_folder):
|
b@2264
|
123 if file.endswith(".csv"):
|
b@2264
|
124 page_name = file[:-4] # file name (without extension) is page ID
|
b@2264
|
125
|
b@2272
|
126 # get header (as text)
|
b@2272
|
127 with open(rating_folder+file, 'rt') as readfile: # read this csv file
|
b@2272
|
128 filereader = csv.reader(readfile, delimiter=',')
|
b@2272
|
129 headerrow = next(filereader) # use headerrow as X-axis
|
b@2272
|
130 headerrow = headerrow[1:]
|
b@2272
|
131
|
b@2272
|
132 # read ratings into matrix (as bytes)
|
b@2264
|
133 with open(rating_folder+file, 'rb') as readfile: # read this csv file
|
b@2264
|
134 filereader = csv.reader(readfile, delimiter=',')
|
b@2264
|
135 ratings = np.genfromtxt(readfile,
|
b@2264
|
136 delimiter=",",
|
b@2272
|
137 skip_header = 1,
|
b@2264
|
138 converters = {3: lambda s: float(s or 'Nan')},
|
b@2272
|
139 usecols=list(range(1,len(headerrow)+1))
|
b@2264
|
140 )
|
b@2264
|
141
|
b@2264
|
142 # assert at least 2 subjects (move on to next file if violated)
|
b@2264
|
143 if ratings.shape[0]<2:
|
b@2272
|
144 print("WARNING: Just one subject for " + page_name + ". Moving on to next file.")
|
b@2264
|
145 break
|
b@2264
|
146
|
b@2489
|
147 if len(ratings.shape) <= 1: # if only single subject
|
b@2489
|
148 ratings = [[r] for r in ratings] # turn into array of arrays
|
b@2489
|
149
|
b@2264
|
150 # BOXPLOT
|
b@2264
|
151 if enable_boxplot:
|
b@2264
|
152 plt.boxplot(ratings)
|
b@2264
|
153
|
b@2264
|
154 # CONFIDENCE INTERVAL
|
b@2264
|
155 if enable_confidence:
|
b@2264
|
156 iterator = 0
|
b@2264
|
157 for column in ratings.T: # iterate over transposed matrix
|
b@2264
|
158 # remove all 'Nan's from column
|
b@2264
|
159 column = column[~np.isnan(column)]
|
b@2264
|
160
|
b@2264
|
161 # get number of non-Nan ratings (= #subjects)
|
b@2264
|
162 n = column.size
|
b@2264
|
163
|
b@2264
|
164 # get mean
|
b@2264
|
165 mean_rating = np.mean(column)
|
b@2264
|
166
|
b@2264
|
167 # get errors
|
b@2264
|
168 err = scipy.stats.sem(column)* sp.stats.t._ppf((1+confidence)/2., n-1)
|
b@2264
|
169
|
b@2264
|
170 # draw plot
|
b@2264
|
171 plt.errorbar(iterator+1,
|
b@2264
|
172 mean_rating,
|
b@2264
|
173 yerr=err,
|
b@2264
|
174 marker="x",
|
b@2264
|
175 color ="k",
|
b@2264
|
176 markersize=12,
|
b@2264
|
177 linestyle='None')
|
b@2264
|
178
|
b@2264
|
179 iterator += 1 # increase counter
|
b@2264
|
180
|
b@2264
|
181
|
b@2264
|
182 # INDIVIDUAL PLOT
|
b@2264
|
183 if enable_individual or show_individual:
|
b@2264
|
184 # marker list and color map to cycle through
|
b@2264
|
185 markerlist = ["x", ".", "o", "*", "+", "v", ">", "<", "8", "s", "p"]
|
b@2264
|
186 colormap = ['b', 'r', 'g', 'c', 'm', 'y', 'k']
|
b@2264
|
187 increment = 0
|
b@2264
|
188 linehandles = []
|
b@2264
|
189 legendnames = []
|
b@2272
|
190 with open(rating_folder+file, 'r') as readfile: # read this csv file
|
b@2264
|
191 filereader = csv.reader(readfile, delimiter=',')
|
b@2272
|
192 headerrow = next(filereader) # use headerrow as X-axis
|
b@2264
|
193 headerrow = headerrow[1:]
|
b@2264
|
194 for row in filereader:
|
b@2264
|
195 subject_id = row[0][:-4] # read from beginning of line
|
b@2264
|
196 # assume plotting all individuals if no individual(s) specified
|
b@2264
|
197 if not show_individual or subject_id in show_individual:
|
b@2264
|
198 plothandle, = plt.plot(range(1,len(row)), # x-values
|
b@2264
|
199 ratings[increment,:],#row[1:], # y-values: csv values except subject name
|
b@2264
|
200 color=colormap[increment%len(colormap)],
|
b@2264
|
201 marker=markerlist[increment%len(markerlist)],
|
b@2264
|
202 markersize=10,
|
b@2264
|
203 linestyle='None',
|
b@2264
|
204 label=subject_id
|
b@2264
|
205 )
|
b@2264
|
206 linehandles.append(plothandle)
|
b@2264
|
207 legendnames.append(subject_id)
|
b@2264
|
208 if show_legend:
|
b@2264
|
209 plt.legend(linehandles, legendnames,
|
b@2264
|
210 loc='upper right',
|
b@2264
|
211 bbox_to_anchor=(1.1, 1),
|
b@2264
|
212 borderaxespad=0.,
|
b@2264
|
213 numpoints=1 # remove extra marker
|
b@2264
|
214 )
|
b@2264
|
215 increment += 1 # increase counter
|
nicholas@3107
|
216 if enable_combined:
|
nicholas@3107
|
217 print(page_name)
|
nicholas@3107
|
218 combined[page_name] = {"labels": headerrow, "r": ratings}
|
b@2264
|
219
|
nicholas@3107
|
220 if enable_boxplot or enable_confidence or enable_individual:
|
nicholas@3107
|
221 # TITLE, AXIS LABELS AND LIMITS
|
nicholas@3107
|
222 plt.title(page_name)
|
nicholas@3107
|
223 plt.xlabel('Fragment')
|
nicholas@3107
|
224 plt.xlim(0, len(headerrow)+1) # only show relevant region, leave space left & right)
|
nicholas@3107
|
225 plt.xticks(range(1, len(headerrow)+1), headerrow, rotation=90) # show fragment names
|
nicholas@3107
|
226 plt.ylabel('Rating')
|
nicholas@3107
|
227 plt.ylim(0,1)
|
nicholas@3107
|
228 # SHOW PLOT
|
nicholas@3107
|
229 #plt.show()
|
nicholas@3107
|
230 #exit()
|
b@2264
|
231
|
nicholas@3107
|
232 # SAVE PLOT
|
nicholas@3107
|
233 # automatically
|
nicholas@3107
|
234 plot_type = ("-box" if enable_boxplot else "") + \
|
b@2264
|
235 ("-conf" if enable_confidence else "") + \
|
b@2264
|
236 ("-ind" if enable_individual else "")
|
nicholas@3107
|
237 plt.savefig(rating_folder+page_name+plot_type+".pdf", bbox_inches='tight')
|
nicholas@3107
|
238 plt.close()
|
nicholas@3107
|
239
|
nicholas@3107
|
240 if enable_combined:
|
nicholas@3107
|
241 plt.figure()
|
nicholas@3107
|
242 pages = combined.keys()
|
nicholas@3107
|
243 numcombined = len(pages)
|
nicholas@3107
|
244 spacing = 1.0/float(numcombined+2)
|
nicholas@3107
|
245 for i in range(0,numcombined):
|
nicholas@3107
|
246 page_name = pages[i]
|
nicholas@3107
|
247 N = len(combined[page_name]['labels'])
|
nicholas@3107
|
248 mean = np.percentile(combined[page_name]['r'], 50, 0)
|
nicholas@3107
|
249 p25 = np.percentile(combined[page_name]['r'], 25, 0)
|
nicholas@3107
|
250 p75 = np.percentile(combined[page_name]['r'], 75, 0)
|
nicholas@3107
|
251 yerr = [mean-p25, p75-mean]
|
nicholas@3107
|
252 print(yerr)
|
nicholas@3107
|
253 plt.errorbar(np.arange(0,N)+(spacing*(i+1)), combined[page_name]['r'].mean(0), yerr=yerr, fmt='x', elinewidth=0.5)
|
nicholas@3107
|
254 ax = plt.gca()
|
nicholas@3107
|
255 ax.grid(which='major', axis='x', linewidth=2, color='k')
|
nicholas@3107
|
256 plt.show()
|