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Abstract

Presented here is an informal document, reviewing and allowing self-evaluation of my
work over the past three months. It is not intended for formal evaluation mearly as a
reference and guide, where comments, thoughts and criticisms are welcome (and desired).
The work includes current and future work and has been compiled as a pretext to the Stage
1 Report. It is not intentionally written in a formal style as it is believed more important
to consolidate my thoughts and intended direction.
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1 Introduction

Over the past 3 months I have been looking at possible ways to synthesis the sound of wind as
it interacts with objects in the environment. It was decided not to look at models that simply
shape noise to create similar sounds but to rather look at the physics behind the sound making
process. These mathematical principals would then be modelled in order to synthesis the correct
sounds.

The start of my research took me to first read a general book on physics [1] as well as a
number of general books on maths, [2], [3] and [4]. This was followed by a book on the topic of
fluid dynamics [5] as well as an online module taught by Boston University [6].

This was all in order to refresh my previous maths knowledge in topics such as differential
equations and linear algebra. The text on physics got me back into thinking about Newtons Laws
as well as identifying systems. I am new to the topic of Fluid Dynamics and a general course
helped me get familiar with the subject matter to a standard where I was able to start following
the terminology and thinking behind the subtopic of aeroacoustics. The level of mathematics
and physics that lie behind this subject is very high and it is fair to say the learning curve for
this topic has been steep and, at times, challenging.

1.1 Aims and Objectives

The aim of my research is to create accurate synthesis models for aeroacoustic sounds. This
is to be achieved by way of mathematically modelling the physical processes behind the sound
creation. This is commonly known as Physical Modelling in the sound synthesis community.

It is a desired quality of the sound synthesis models that the are able to run in real time
rather than have to rely on time consuming Computational Fluid Dynamics that are run offline.
The models created should be as light weight as possible with respects to processing.

The justification of this research is the ability to create a physical model of aeroacoustic
sounds that operates in real time will allow a number of sound effects to be created for the use
in video games, film and television. Aeroacoustic sounds include wind sounds, swooshing sword
sounds, jet engines, propellors to name a few.

The objectives of the research is as follows:

e Model wind sounds using the principals of fluid dynamics, including vortex sounds. This
includes looking at the sounds of wind and poles, trees, buildings, doorways and other
cavities (aeolian and cavity sounds)

e Model the sounds of an object being swung / thrown through the air. For example a golf
club, sword, propellors or a book (aeolian sounds)

e Could it be used to provide a light weight mimic of musical instruments? (Both cavity
and aeolian sounds)

e Can the models be re-formulated to other fluids, e.g. water?

The overlying principal behind all the models is to be able to create real-time procedurally
generated sound effects for use in the entertainment industry. The benefit of these sounds
are that they the rules behind the sound making process which can be easily manipulated or
programmed to sound unique and accurate each time they are employed.

This is useful in the video game industry where the use of samples can be very repetitive and
lack realism. Since the games are non-linear and the player can return to the same gameplay
action repeatedly, unique and new sounds based on the physics of the environment offer a far
more encapsulating experience.



For film and television the use of procedural sound effects is also becoming popular. It is
hypothesised that this is due to the sound designers not having to physically go and record every
required sound effect but can rather remain in their editing studio, adjusting the synthesis model
parameters to their desired sound.

The sound of wind is an integral part of environmental sounds. As well as the interaction
of the wind and the environment, the wind also has effect on other environmental components
such as rain. It also affects the transmission of sounds like thunder. A realistic real-time
physical model of the wind can be justified for this reason. Once the physics has been replicated,
properties of the vortices created can be used as devices of feedback to the sound creation process.
This happens naturally in some instances which explains whistling wind sounds. It is thought
that knowledge of the vortices can also be utilised to control objects like flags and swinging
cables that all contribute to environmental sounds.

The aeolian sounds can also be used as swoosh sounds as objects move rapidly through the
air. This includes but is not exclusive to, sword sounds, clubs and bats, thrown objects, e.g. balls
and books, propellors. The theory quite possibly breaks down here for a bullet which travels
at speeds approximately just below 1 Mach to higher. It is believed different theory comes into
play here and will include things like jets and explosions.

The sound sources to be modelled for the purposes stated above are for un-tuned, interactions
with objects where the sound making properties are incidental to the design and purpose of them.
But there are objects that the main design is to create sound in this way. This was found when
researching aeolian sounds there is an instrument called the Aeolian Harp which wis a musical
instrument played by the wind and named after the Greek god of wind, Aeolus. It is then
concluded that this instrument could be modelled by the same models that are creating the
wind interaction sounds. Extending this, can other wind driven instruments also be modelled,
e.g. pipes, recorders, flutes, blowing over bottles, and other such acoustic wind instruments?

What adjustments would have to be made to these models to be useful for sounds in water
rather than air? The speed of sound, viscosity and fluid density are all different. A large
proportion of fluid sounds are a result of bubbles. The sound from the bubbles relies on Minnearts
solution for the sound of bubbles. It might be possible that any vortex model could be part of
a water model, as modelling some of the movements that cause the creation of bubbles as well
as adding some sounds to the water effects.

2 Background and State of the Art

2.1 Fluid Dynamics

The following derivations are an expanded version from the one given in [7]. Some explanations
are taken verbatum from the text.

2.1.1 Lighthills Analogy

The fundemental equations in are the equations of mass conservation, momentum conservation
and energy conservation. The mass conservation equation is given in equation 1:
0 0
_p + (
where p is the fluid density, ¥ is the flow velocity at position x and time . The momentum
conservation equation is given in equatio‘2:
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where f; is an external force density, P;; is minus the fluid stress tensor, (P;; = pdi; — Tij,
where p is pressure, d;; is the Kronecker delta and 7 is the viscous stress tensor), and md; is
the momentum added by the issuing mass. To derive Lighthill’s wave equation from equations 1
and 2 we take the following steps:

Take the time derivative of the mass conservation equation, (equation 1) to get equation 3:
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We can write the mass m as a density p,, of volume fraction 5 = [(x,t) injected at a rate

0
= — m 4
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therefore equation 3 becomes
0 ps  0*(Bry)
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where p; is the total fluid density, py = po + o, po is the steady state fluid density and p
is the density fluctuations. If we now look at the momentum conservation equation 2, the first
step we take is the divergence of the equaiton:
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Hence from equation 5 and equation 6 it can be seen that
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Since only p’ varies with time, a wave equation for p’ can be constructed. First, the term
c2(0%p' /0x?) is subtracted from both sides of equation 6 to get equation 8. ¢y is the speed of

sound at the observer.

0 0%/ 0? af, 5%y
ot (pt:) = Cg(ﬁ> R (P — pUsd;) + e CS(@) (8)

This then makes equation 7 now:
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We can make use of the relationship given in equation 10:
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where 9;; is the Kronecker delta. This allows us to define the equation of Lighthill, equa-
tion 11.
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where T; is Lighthill’s stress tensor, defined by

(11)

Tij = Pij + ,01911% — (Cip, +p0)5ij (12)

Using the relationship P;; = pd;; — 7;;, equation 12 can also be written as:



Ty; = pdid; — 7 + (' — c2p')dy; (13)

Equation 13 enables three basic aero-acoustic processes which result in sound. The Reynolds
Stress Tensor, pv;0;, describes non-linear convective forces. There are viscous sources, 7;; and
the deviation from a uniform sound velocity cqg or the deviation from an isentropic behaviour,

(0" = c2p)di;

2.1.2 Green’s Functions

Green’s Theorem allows us to construct an integral equation which combines the effect of sources,
propagation, boundary conditions and initial conditions in a simple formula. The Greens func-
tion G(x,t|y,7) is the pulse response of the wave equation and shown in equation 14.

G ,0°G
or g da2
where G is the Green’s Function, The pulse d(x — y)d(t — 7) is released at the source point

y at time 7 and G is measured at the observation point x at time ¢. The Green’s Function also
satisfies equation 15 due to its reciprocity relationship and the symmetry of the Kronecker delta.

=J(x—y)i(t—1) (14)
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From this we shall solve the wave equation:

= §(x — y)(t — 7) (15)
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where ¢(y, 7) is the sound source. The first step is to multiple equation 15 by p/(y, 7). This
gives equation 17:

Py G = i = )= ¥)s(e— ) (17)

Equation 16 is multiplied by G(x,t|y, ) to give equation 18:
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Equation 19 is found by subtracting equation 17 from equation 18:
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Re-arranging gives:
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Equation 20 is then integrated to y over volume, V and to 7 between ¢, to t+.
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Partial integration over the time of the second integral and over the space of the third integral
in the right-hand side of (21) gives:

s = [ N /// oy, TG, ty, ) dy dr
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where n; is the outer normal to the surface S. The second integral vanishes for a tailored
Greens function and the third integral represents the effect of the initial conditions at 7 = t,. For
a tailored Greens function, and if ¢, = —o0, we have the superposition principle over elementary
sources which we expect intuitively:

(1) = / JI[[ 16ty ayar (23

2.1.3 Curle’s Method

Curle’s method is a method of calculating the sound radiation when a compact body is present
in a flow. It makes use of Lighthill’s Theory and the free field Green’s function Gy which implies
that we should take surface contributions in equation 22 into account, (the second integral). An
advantage of Curle’s Method is that we can still use the symmetry properties of Gy like:
0G) _ _ 0Gy (24)
The surface terms have for compact rigid bodies quite simple physical meaning. The pulsation
of the volume of the body is a volume source while the force on the body is an aero-acoustic
dipole. In this way we can in fact say that if we know the aerodynamic (lift and drag) force
on a small propeller we can represent the system by the reaction force acting on the fluid as an
aero-acoustic source, ignoring further the presence of the body in the calculation of the radiation.
The first step in this method is to look at equations 11 and 16, we can see that

O*Ty; | P(Bpm) Of;

_ — 25
Ignoring external mass sources and force fields gives:
0T,
. (26)

q(y,7) =
9y;0y;
Substituting for ¢(y, 7) in equation 22 and taking ty = —oo gives:
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Intergration by parts:
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applied to the first integral in 33:
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where u = Gy and v = Tj;.
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Partial integration is then applied to the integral in the right hand side of equation 30, where
U= %1 and v = Tj;.
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therefore the complete equation is:
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Equation 33 then becomes:
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Now we use equation 12 to substitute values for Tj;,

where po has no effect (?7)
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Using equation 2 and setting external forces to 0:

8
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and the symmetry of Gy, (equation 24):
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The spatial derivatives (0/0z;) do not refer to y and can be moved out of the integral. This

gives:
t+ t+ ] 19
_ P
o= o 8x] / /// T;;Gody dr / // [Go } do dt
t+
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In the far field the spatial derivatives (0/0x;) can be approximated by the time derivatives
—(z;/|x|)Cy*(8/0t). Equation 38 then becomes:
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Employing integration by parts, (equation 28) on the second integral to move the time
derivative (0/07) from pv; towards Gy, giving:

p Oy 0 [ s 0Gy
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The third integral in over the surface only and this disregarded as it is not time varying. (?)
Green’s Functions have a general symmetry in the time coordinate, (The effect of listening later
is the same as shooting earlier)

(37)
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Using 41, equation 42 is obtained:
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Gy has the following property:
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which we use to carry out the time integrals and obtain Curle’s Theorem:
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The first term in equation 44 is simply the turbulence noise as it would occur in absence of
a foreign body (except for the fact that the control volume V excludes the body).

The second term is the result of movement of the body. For a rigid body at a fixed position
we have

This term is important when the body is pulsating. For a compact body we have then a
simple volume source term. This term can be used to describe the flow out of a pipe. Note that
p is the fluid density just outside the control surface so that we consider the displacement of
fluid around the body, rather than a mass injection.

The last integral in equation 44 is the momentum flux through the surface and the pressure
and viscous forces. For a fixed rigid body pvJ;i; = 0 because ¢ = 0 at a surface (no slip condition
in viscous flow). In the case of a compact, fixed, and rigid body, we can neglect the emission
time variation along the body, and we have r ~ |x|. The instantaneous force F; of the fluid on

the body (lift and drag) then:
= | /S (Py),_, njdo (47)

Hence, for a fixed rigid compact body we have:

Ox;0x; 0 0?
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2.2 Aeolian Sounds
2.3 Cavity Sounds
2.4 State of the Art

3 Current Work

3.1 Wind Model
3.1.1 Model Description

This model presented here is a lightweight physical model of the sound created as air passes a
solid cylinder. The equations presented in section 3.1.2 are taken from [8] which are reproductions
of the relationships discovered by Strouhal. The variable wind speed model is taken from [9].
The underlying oscillation time is set to 100 seconds. The creation of gusts and squalls has not
been altered.

A snapshot out the output signal is taken that converts the audio output to a signal. This
is sampled from a metro object banging every 10 milliseconds. The output is then scaled by an
underlying base wind speed value. The base wind speed value is set with an ordinary horizontal

10
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Figure 1: Pure Data patch calculating output frequency from physics

slider, ranging from 0 - 31 metres per second. With both the base wind speed and variable wind
speed values are added together to give a range from approximately 0 - 39 metres per second.
This ranges equates from no wind up to a hurricane.

The final wind speed value is used as an input to a patch that calculates the output frequency.
A second input to the maths, (see subsection 3.1.2), is the diameter of the cylinder. The patch
which calculates the frequency is shown in figure 1.

Once the frequency of the tone had been calculated the sound is generated. The patch
showing the generation of this is shown in figure 2 and the q value of the bandpass filter is
calculated in the patch shown in figure 3.

The final patch shows the patch that is presented to the user, figure 4. There are 4 cylinders
that are available for the user to use. The user can change the diamater of each of the cylinders
as well as adjust the underlying windspeed. The pan value of each cylinder has been set as can
be seen in figure 2.

3.1.2 Maths behind the model

The equations used in this Pure Data model were taken from the original work by Vincenz
Strouhal (1850-1922). The relationships used in the equations below were reproduced in [8] and
shown below.

First we calculate the wind speed that is the force behind the sound source:

Wyn] + Wyln] = W{n] (49)

where Wy[n] is the current base wind speed, W, [n| is the current variable wind speed and
W n] is the total wind speed. All values in metres per second.

The Reynolds Number gives an indication of the turbulence in the fluid flow. It is calculated
as shown in equation 50:
o Pair d W[n]

Rn
[ ] Hair

(50)
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where R[n] is the current dimensionless Reynolds Number, p,;, is the Mass Density of air.
This is given in [10] as 1.225 kilograms per square metre at sea level and 15°C. fi4;, is the
Dynamic Viscosity of Air, taken from [11] as 1.81 * 107> Newton - second per square metre. d
is the diameter of the cylinder in metres.
Once the Reynolds Number is known it is possible to calculate the Strouhal Number:
19.7
Sln| =0.198 1 — —— 51
] = 0.198 1 1) (1)
where S[n] is the current dimensionless Strouhal Number. With the Strouhal Number cal-

culated it possible to calculate the frequency of the aeolian tone produced by the wind moving
past a solid cylinder. This is given by:

Sin]Win
) = 2T (52)
where f;[n] is the frequency of the aeolian tone. This value obtained for the frequency of the

aeolian tone is then used as the input frequency of an oscillator, giving an output of:
Yi[n] = 0.1 cos[27 fi[n]] (53)

where Y¢[n] is the oscillator output. The value is multiplied by 0.1 to scale the tone the
final output. As explained in [8], once the Reynolds Number increases about 5000 the pure tone
changes to a spectrum with a central peak about the calculated frequency. In order to replicate
this in Pure Data, a white noise source was mixed in with the oscillator. The noise was placed
through a bandpass filter, with the centre frequency given by the calculated frequency and the
Q value proportional to the Reynolds Number . The calculation for this is given below:

[101,00], Reln| < 5000
7.5,101], 5000 < Re[n] < 10000 (54)
0.01,9], 10000 < Re[n] < 300000

q:

Thereafter the output of the bandpass filter is as follows:

Bln] = N[n]? (55)

where N[n] is the output from a white noise generator and B[n] is the output of the bandpass
filter with centre frequency determined by f;[n] and q value set as in equation 54. The final
output from the Pure Data patch to the digital to analogue converter is the sum of the pure
tone and filtered noise outputs, as given in equation 56.

output[n] = B[n] + fi[n] (56)

3.1.3 Future Developments

One of the first points to highlight is that I am using one source per cylinder. In [12] similar
sounds are created and they use a new sound source every three times the diameter. For example
if the diameter of a cylinder is 5mm and 300 mm long, the number of sources required would be
20. This is worth further investigation and the differences of sound quality verses computational
efficiency measured.

The main calculated parameter that is missing from the physical model is the calculation
of the sound intensity from each source. This is calculated per source in [12] and it will be of
benefit to examine this and implement this in Pure Data.
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3.2 Sword Model
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