Mercurial > hg > vampy
comparison Example VamPy plugins/test/PyMFCC_freq.py @ 37:27bab3a16c9a vampy2final
new branch Vampy2final
author | fazekasgy |
---|---|
date | Mon, 05 Oct 2009 11:28:00 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 37:27bab3a16c9a |
---|---|
1 '''PyMFCC_freq.py - This example Vampy plugin demonstrates | |
2 how to return sprectrogram-like features. | |
3 | |
4 This plugin has frequency domain input and is using | |
5 the numpy array interface. Flag: vf_ARRAY | |
6 | |
7 Centre for Digital Music, Queen Mary University of London. | |
8 Copyright 2006 Gyorgy Fazekas, QMUL. | |
9 (See Vamp API for licence information.) | |
10 | |
11 Constants for Mel frequency conversion and filter | |
12 centre calculation are taken from the GNU GPL licenced | |
13 Freespeech library. Copyright (C) 1999 Jean-Marc Valin | |
14 ''' | |
15 | |
16 import sys,numpy | |
17 from numpy import log,exp,floor,sum | |
18 from numpy import * | |
19 from numpy.fft import * | |
20 import vampy | |
21 from vampy import * | |
22 | |
23 | |
24 class melScaling(object): | |
25 | |
26 def __init__(self,sampleRate,inputSize,numBands,minHz = 0,maxHz = None): | |
27 '''Initialise frequency warping and DCT matrix. | |
28 Parameters: | |
29 sampleRate: audio sample rate | |
30 inputSize: length of magnitude spectrum (half of FFT size assumed) | |
31 numBands: number of mel Bands (MFCCs) | |
32 minHz: lower bound of warping (default = DC) | |
33 maxHz: higher bound of warping (default = Nyquist frequency) | |
34 ''' | |
35 self.sampleRate = sampleRate | |
36 self.NqHz = sampleRate / 2.0 | |
37 self.minHz = minHz | |
38 if maxHz is None : maxHz = self.NqHz | |
39 self.maxHz = maxHz | |
40 self.inputSize = inputSize | |
41 self.numBands = numBands | |
42 self.valid = False | |
43 self.updated = False | |
44 | |
45 | |
46 def update(self): | |
47 # make sure this will run only once if called from a vamp process | |
48 | |
49 if self.updated: return self.valid | |
50 self.updated = True | |
51 self.valid = False | |
52 print 'Updating parameters and recalculating filters: ' | |
53 print 'Nyquist: ',self.NqHz | |
54 | |
55 if self.maxHz > self.NqHz : | |
56 raise Exception('Maximum frequency must be smaller than the Nyquist frequency') | |
57 | |
58 self.maxMel = 1000*log(1+self.maxHz/700.0)/log(1+1000.0/700.0) | |
59 self.minMel = 1000*log(1+self.minHz/700.0)/log(1+1000.0/700.0) | |
60 print 'minHz:%s\nmaxHz:%s\nminMel:%s\nmaxMel:%s\n' %(self.minHz,self.maxHz,self.minMel,self.maxMel) | |
61 self.filterMatrix = self.getFilterMatrix(self.inputSize,self.numBands) | |
62 self.DCTMatrix = self.getDCTMatrix(self.numBands) | |
63 self.filterIter = self.filterMatrix.__iter__() | |
64 self.valid = True | |
65 return self.valid | |
66 | |
67 # try : | |
68 # self.maxMel = 1000*log(1+self.maxHz/700.0)/log(1+1000.0/700.0) | |
69 # self.minMel = 1000*log(1+self.minHz/700.0)/log(1+1000.0/700.0) | |
70 # self.filterMatrix = self.getFilterMatrix(self.inputSize,self.numBands) | |
71 # self.DCTMatrix = self.getDCTMatrix(self.numBands) | |
72 # self.filterIter = self.filterMatrix.__iter__() | |
73 # self.valid = True | |
74 # return True | |
75 # except : | |
76 # print "Invalid parameter setting encountered in MelScaling class." | |
77 # return False | |
78 # return True | |
79 | |
80 def getFilterCentres(self,inputSize,numBands): | |
81 '''Calculate Mel filter centres around FFT bins. | |
82 This function calculates two extra bands at the edges for | |
83 finding the starting and end point of the first and last | |
84 actual filters.''' | |
85 centresMel = numpy.array(xrange(numBands+2)) * (self.maxMel-self.minMel)/(numBands+1) + self.minMel | |
86 centresBin = numpy.floor(0.5 + 700.0*inputSize*(exp(centresMel*log(1+1000.0/700.0)/1000.0)-1)/self.NqHz) | |
87 return numpy.array(centresBin,int) | |
88 | |
89 def getFilterMatrix(self,inputSize,numBands): | |
90 '''Compose the Mel scaling matrix.''' | |
91 filterMatrix = numpy.zeros((numBands,inputSize)) | |
92 self.filterCentres = self.getFilterCentres(inputSize,numBands) | |
93 for i in xrange(numBands) : | |
94 start,centre,end = self.filterCentres[i:i+3] | |
95 self.setFilter(filterMatrix[i],start,centre,end) | |
96 return filterMatrix.transpose() | |
97 | |
98 def setFilter(self,filt,filterStart,filterCentre,filterEnd): | |
99 '''Calculate a single Mel filter.''' | |
100 k1 = numpy.float32(filterCentre-filterStart) | |
101 k2 = numpy.float32(filterEnd-filterCentre) | |
102 up = (numpy.array(xrange(filterStart,filterCentre))-filterStart)/k1 | |
103 dn = (filterEnd-numpy.array(xrange(filterCentre,filterEnd)))/k2 | |
104 filt[filterStart:filterCentre] = up | |
105 filt[filterCentre:filterEnd] = dn | |
106 | |
107 def warpSpectrum(self,magnitudeSpectrum): | |
108 '''Compute the Mel scaled spectrum.''' | |
109 return numpy.dot(magnitudeSpectrum,self.filterMatrix) | |
110 | |
111 def getDCTMatrix(self,size): | |
112 '''Calculate the square DCT transform matrix. Results are | |
113 equivalent to Matlab dctmtx(n) but with 64 bit precision.''' | |
114 DCTmx = numpy.array(xrange(size),numpy.float64).repeat(size).reshape(size,size) | |
115 DCTmxT = numpy.pi * (DCTmx.transpose()+0.5) / size | |
116 DCTmxT = (1.0/sqrt( size / 2.0)) * cos(DCTmx * DCTmxT) | |
117 DCTmxT[0] = DCTmxT[0] * (sqrt(2.0)/2.0) | |
118 return DCTmxT | |
119 | |
120 def dct(self,data_matrix): | |
121 '''Compute DCT of input matrix.''' | |
122 return numpy.dot(self.DCTMatrix,data_matrix) | |
123 | |
124 def getMFCCs(self,warpedSpectrum,cn=True): | |
125 '''Compute MFCC coefficients from Mel warped magnitude spectrum.''' | |
126 mfccs=self.dct(numpy.log(warpedSpectrum)) | |
127 if cn is False : mfccs[0] = 0.0 | |
128 return mfccs | |
129 | |
130 | |
131 class PyMFCC_freq(melScaling): | |
132 | |
133 def __init__(self,inputSampleRate): | |
134 | |
135 # flags for setting some Vampy options | |
136 self.vampy_flags = vf_DEBUG | vf_ARRAY | vf_REALTIME | |
137 | |
138 self.m_inputSampleRate = int(inputSampleRate) | |
139 self.m_stepSize = 512 | |
140 self.m_blockSize = 2048 | |
141 self.m_channels = 1 | |
142 self.numBands = 40 | |
143 self.cnull = 1 | |
144 self.two_ch = False | |
145 melScaling.__init__(self,int(self.m_inputSampleRate),self.m_blockSize/2,self.numBands) | |
146 | |
147 def initialise(self,channels,stepSize,blockSize): | |
148 self.m_channels = channels | |
149 self.m_stepSize = stepSize | |
150 self.m_blockSize = blockSize | |
151 self.window = numpy.hamming(blockSize) | |
152 melScaling.__init__(self,int(self.m_inputSampleRate),self.m_blockSize/2,self.numBands) | |
153 return True | |
154 | |
155 def getMaker(self): | |
156 return 'Vampy Test Plugins' | |
157 | |
158 def getCopyright(self): | |
159 return 'Plugin By George Fazekas' | |
160 | |
161 def getName(self): | |
162 return 'Vampy FrequencyDomain MFCC Plugin' | |
163 | |
164 def getIdentifier(self): | |
165 return 'vampy-mfcc-test-freq' | |
166 | |
167 def getDescription(self): | |
168 return 'A simple MFCC plugin. (FrequencyDomain)' | |
169 | |
170 def getMaxChannelCount(self): | |
171 return 2 | |
172 | |
173 def getInputDomain(self): | |
174 return FrequencyDomain | |
175 | |
176 def getPreferredBlockSize(self): | |
177 return 2048 | |
178 | |
179 def getPreferredStepSize(self): | |
180 return 512 | |
181 | |
182 def getOutputDescriptors(self): | |
183 | |
184 Generic = OutputDescriptor() | |
185 Generic.hasFixedBinCount=True | |
186 Generic.binCount=int(self.numBands)-self.cnull | |
187 Generic.hasKnownExtents=False | |
188 Generic.isQuantized=True | |
189 Generic.sampleType = OneSamplePerStep | |
190 | |
191 # note the inheritance of attributes (use is optional) | |
192 MFCC = OutputDescriptor(Generic) | |
193 MFCC.identifier = 'mfccs' | |
194 MFCC.name = 'MFCCs' | |
195 MFCC.description = 'MFCC Coefficients' | |
196 MFCC.binNames=map(lambda x: 'C '+str(x),range(self.cnull,int(self.numBands))) | |
197 MFCC.unit = None | |
198 if self.two_ch and self.m_channels == 2 : | |
199 MFCC.binCount = self.m_channels * (int(self.numBands)-self.cnull) | |
200 else : | |
201 MFCC.binCount = self.numBands-self.cnull | |
202 | |
203 warpedSpectrum = OutputDescriptor(Generic) | |
204 warpedSpectrum.identifier='warped-fft' | |
205 warpedSpectrum.name='Mel Scaled Spectrum' | |
206 warpedSpectrum.description='Mel Scaled Magnitide Spectrum' | |
207 warpedSpectrum.unit='Mel' | |
208 if self.two_ch and self.m_channels == 2 : | |
209 warpedSpectrum.binCount = self.m_channels * int(self.numBands) | |
210 else : | |
211 warpedSpectrum.binCount = self.numBands | |
212 | |
213 melFilter = OutputDescriptor(Generic) | |
214 melFilter.identifier = 'mel-filter-matrix' | |
215 melFilter.sampleType='FixedSampleRate' | |
216 melFilter.sampleRate=self.m_inputSampleRate/self.m_stepSize | |
217 melFilter.name='Mel Filter Matrix' | |
218 melFilter.description='Returns the created filter matrix in getRemainingFeatures.' | |
219 melFilter.unit = None | |
220 | |
221 return OutputList(MFCC,warpedSpectrum,melFilter) | |
222 | |
223 | |
224 def getParameterDescriptors(self): | |
225 | |
226 melbands = ParameterDescriptor() | |
227 melbands.identifier='melbands' | |
228 melbands.name='Number of bands (coefficients)' | |
229 melbands.description='Set the number of coefficients.' | |
230 melbands.unit = '' | |
231 melbands.minValue = 2 | |
232 melbands.maxValue = 128 | |
233 melbands.defaultValue = 40 | |
234 melbands.isQuantized = True | |
235 melbands.quantizeStep = 1 | |
236 | |
237 cnull = ParameterDescriptor() | |
238 cnull.identifier='cnull' | |
239 cnull.name='Return C0' | |
240 cnull.description='Select if the DC coefficient is required.' | |
241 cnull.unit = None | |
242 cnull.minValue = 0 | |
243 cnull.maxValue = 1 | |
244 cnull.defaultValue = 0 | |
245 cnull.isQuantized = True | |
246 cnull.quantizeStep = 1 | |
247 | |
248 two_ch = ParameterDescriptor(cnull) | |
249 two_ch.identifier='two_ch' | |
250 two_ch.name='Process channels separately' | |
251 two_ch.description='Process two channel files separately.' | |
252 two_ch.defaultValue = False | |
253 | |
254 minHz = ParameterDescriptor() | |
255 minHz.identifier='minHz' | |
256 minHz.name='minimum frequency' | |
257 minHz.description='Set the lower frequency bound.' | |
258 minHz.unit='Hz' | |
259 minHz.minValue = 0 | |
260 minHz.maxValue = 24000 | |
261 minHz.defaultValue = 0 | |
262 minHz.isQuantized = True | |
263 minHz.quantizeStep = 1.0 | |
264 | |
265 maxHz = ParameterDescriptor() | |
266 maxHz.identifier='maxHz' | |
267 maxHz.description='Set the upper frequency bound.' | |
268 maxHz.name='maximum frequency' | |
269 maxHz.unit='Hz' | |
270 maxHz.minValue = 100 | |
271 maxHz.maxValue = 24000 | |
272 maxHz.defaultValue = 11025 | |
273 maxHz.isQuantized = True | |
274 maxHz.quantizeStep = 100 | |
275 | |
276 return ParameterList(melbands,minHz,maxHz,cnull,two_ch) | |
277 | |
278 | |
279 def setParameter(self,paramid,newval): | |
280 self.valid = False | |
281 if paramid == 'minHz' : | |
282 if newval < self.maxHz and newval < self.NqHz : | |
283 self.minHz = float(newval) | |
284 print 'minHz: ', self.minHz | |
285 if paramid == 'maxHz' : | |
286 print 'trying to set maxHz to: ',newval | |
287 if newval < self.NqHz and newval > self.minHz+1000 : | |
288 self.maxHz = float(newval) | |
289 else : | |
290 self.maxHz = self.NqHz | |
291 print 'set to: ',self.maxHz | |
292 if paramid == 'cnull' : | |
293 self.cnull = int(not int(newval)) | |
294 if paramid == 'melbands' : | |
295 self.numBands = int(newval) | |
296 if paramid == 'two_ch' : | |
297 self.two_ch = bool(newval) | |
298 | |
299 return | |
300 | |
301 def getParameter(self,paramid): | |
302 if paramid == 'minHz' : | |
303 return float(self.minHz) | |
304 if paramid == 'maxHz' : | |
305 return float(self.maxHz) | |
306 if paramid == 'cnull' : | |
307 return float(not int(self.cnull)) | |
308 if paramid == 'melbands' : | |
309 return float(self.numBands) | |
310 if paramid == 'two_ch' : | |
311 return float(self.two_ch) | |
312 else: | |
313 return 0.0 | |
314 | |
315 # set numpy process using the 'use_numpy_interface' flag | |
316 def process(self,inputbuffers,timestamp): | |
317 | |
318 if not self.update() : return None | |
319 | |
320 if self.m_channels == 2 and self.two_ch : | |
321 return self.process2ch(inputbuffers,timestamp) | |
322 | |
323 fftsize = self.m_blockSize | |
324 | |
325 if self.m_channels > 1 : | |
326 # take the mean of the two magnitude spectra | |
327 complexSpectrum0 = inputbuffers[0] | |
328 complexSpectrum1 = inputbuffers[1] | |
329 magnitudeSpectrum0 = abs(complexSpectrum0)[0:fftsize/2] | |
330 magnitudeSpectrum1 = abs(complexSpectrum1)[0:fftsize/2] | |
331 magnitudeSpectrum = (magnitudeSpectrum0 + magnitudeSpectrum1) / 2 | |
332 else : | |
333 complexSpectrum = inputbuffers[0] | |
334 magnitudeSpectrum = abs(complexSpectrum)[0:fftsize/2] | |
335 | |
336 # do the computation | |
337 melSpectrum = self.warpSpectrum(magnitudeSpectrum) | |
338 melCepstrum = self.getMFCCs(melSpectrum,cn=True) | |
339 | |
340 outputs = FeatureSet() | |
341 outputs[0] = Feature(melCepstrum[self.cnull:]) | |
342 outputs[1] = Feature(melSpectrum) | |
343 return outputs | |
344 | |
345 | |
346 # process channels separately (stack the returned arrays) | |
347 def process2ch(self,inputbuffers,timestamp): | |
348 | |
349 fftsize = self.m_blockSize | |
350 | |
351 complexSpectrum0 = inputbuffers[0] | |
352 complexSpectrum1 = inputbuffers[1] | |
353 | |
354 magnitudeSpectrum0 = abs(complexSpectrum0)[0:fftsize/2] | |
355 magnitudeSpectrum1 = abs(complexSpectrum1)[0:fftsize/2] | |
356 | |
357 # do the computations | |
358 melSpectrum0 = self.warpSpectrum(magnitudeSpectrum0) | |
359 melCepstrum0 = self.getMFCCs(melSpectrum0,cn=True) | |
360 melSpectrum1 = self.warpSpectrum(magnitudeSpectrum1) | |
361 melCepstrum1 = self.getMFCCs(melSpectrum1,cn=True) | |
362 | |
363 outputs = FeatureSet() | |
364 | |
365 outputs[0] = Feature(hstack((melCepstrum1[self.cnull:],melCepstrum0[self.cnull:]))) | |
366 | |
367 outputs[1] = Feature(hstack((melSpectrum1,melSpectrum0))) | |
368 | |
369 return outputs | |
370 | |
371 | |
372 def getRemainingFeatures(self): | |
373 if not self.update() : return [] | |
374 frameSampleStart = 0 | |
375 | |
376 output_featureSet = FeatureSet() | |
377 | |
378 # the filter is the third output (index starts from zero) | |
379 output_featureSet[2] = flist = FeatureList() | |
380 | |
381 while True: | |
382 f = Feature() | |
383 f.hasTimestamp = True | |
384 f.timestamp = frame2RealTime(frameSampleStart,self.m_inputSampleRate) | |
385 try : | |
386 f.values = self.filterIter.next() | |
387 except StopIteration : | |
388 break | |
389 flist.append(f) | |
390 frameSampleStart += self.m_stepSize | |
391 | |
392 return output_featureSet |