Mercurial > hg > vampy-host
view vamp/collect.py @ 97:06c4afba4fc5
Fix matrix return
author | Chris Cannam |
---|---|
date | Tue, 03 Feb 2015 10:29:21 +0000 |
parents | f0e005248b9a |
children | 7764eb74a3c6 |
line wrap: on
line source
'''A high-level interface to the vampyhost extension module, for quickly and easily running Vamp audio analysis plugins on audio files and buffers.''' import vampyhost import load import process import frames import numpy as np def get_feature_step_time(sample_rate, step_size, output_desc): if output_desc["sample_type"] == vampyhost.ONE_SAMPLE_PER_STEP: return vampyhost.frame_to_realtime(step_size, sample_rate) elif output_desc["sample_type"] == vampyhost.FIXED_SAMPLE_RATE: return vampyhost.RealTime('seconds', 1.0 / output_desc["sample_rate"]) else: return 1 def timestamp_features(sample_rate, step_size, output_desc, features): n = -1 if output_desc["sample_type"] == vampyhost.ONE_SAMPLE_PER_STEP: for f in features: n = n + 1 t = vampyhost.frame_to_realtime(n * step_size, sample_rate) f["timestamp"] = t yield f elif output_desc["sample_type"] == vampyhost.FIXED_SAMPLE_RATE: output_rate = output_desc["sample_rate"] for f in features: if "has_timestamp" in f: n = int(f["timestamp"].to_float() * output_rate + 0.5) else: n = n + 1 f["timestamp"] = vampyhost.RealTime('seconds', float(n) / output_rate) yield f else: for f in features: yield f def fill_timestamps(results, sample_rate, step_size, output_desc): output = output_desc["identifier"] selected = [ r[output] for r in results ] stamped = timestamp_features(sample_rate, step_size, output_desc, selected) for s in stamped: yield s def deduce_shape(output_desc): if output_desc["has_duration"]: return "individual" if output_desc["sample_type"] == vampyhost.VARIABLE_SAMPLE_RATE: return "individual" if not output_desc["has_fixed_bin_count"]: return "individual" if output_desc["bin_count"] == 0: return "individual" if output_desc["bin_count"] == 1: return "vector" return "matrix" def reshape(results, sample_rate, step_size, output_desc): output = output_desc["identifier"] shape = deduce_shape(output_desc) out_step = get_feature_step_time(sample_rate, step_size, output_desc) if shape == "vector": rv = ( out_step, np.array([r[output]["values"][0] for r in results], np.float32) ) elif shape == "matrix": #!!! todo: check that each feature has the right number of bins? outseq = [r[output]["values"] for r in results] rv = ( out_step, np.array(outseq, np.float32) ) else: rv = list(fill_timestamps(results, sample_rate, step_size, output_desc)) return rv def collect(data, sample_rate, key, output = "", parameters = {}): plugin, step_size, block_size = load.load_and_configure(data, sample_rate, key, parameters) if output == "": output_desc = plugin.get_output(0) output = output_desc["identifier"] else: output_desc = plugin.get_output(output) ff = frames.frames_from_array(data, step_size, block_size) results = process.process_frames_with_plugin(ff, sample_rate, step_size, plugin, [output]) rv = reshape(results, sample_rate, step_size, output_desc) plugin.unload() return rv def collect_frames(ff, channels, sample_rate, step_size, key, output = "", parameters = {}): plug = vampyhost.load_plugin(key, sample_rate, vampyhost.ADAPT_INPUT_DOMAIN + vampyhost.ADAPT_BUFFER_SIZE + vampyhost.ADAPT_CHANNEL_COUNT) plug.set_parameter_values(parameters) if not plug.initialise(channels, step_size, block_size): raise "Failed to initialise plugin" if output == "": output_desc = plugin.get_output(0) output = output_desc["identifier"] else: output_desc = plugin.get_output(output) results = process.process_frames_with_plugin(ff, sample_rate, step_size, plugin, [output]) rv = reshape(results, sample_rate, step_size, output_desc) plugin.unload() return rv