The Vamp Audio Analysis Plugin API: A Programmer's Guide

Revision 1.1, covering the Vamp plugin SDK version 1.3.
Written by Chris Cannam at the Centre for Digital Music, Queen Mary, University of London.

1. Overview

A Vamp plugin is a chunk of compiled program code that carries out analysis of a digital audio signal,
returning results in some form other than an audio signal. These results are often called audio features.

Vamp plugins are distributed in shared library files with extension .dll, .so, or .dylib depending on the
platform, with one or more plugins in each library. A plugin is usually identified to the computer using
the shared library name plus a short text identifier naming the plugin within the library. The plugin
cannot be used on its own, but only with a conforming “host” application which loads the plugin from its
shared library and calls functions within the plugin code to configure it, supply it with data, and run it.

Mest

el e
VTN e —
o .

(oua O MORE CAtAMNELS) (MuLTipe

POCS 1BLE

outTeuTs
AND ourPuT

TvPes)

I ——

Plugins are not supplied with the whole of their audio input at once, but instead are fed it as a series of
short blocks: in this respect they resemble real-time audio processing plugins, but in all other respects
they are executed “off-line”, meaning that they are not expected to run in real-time and are not obliged to
return features as they occur.

The Vamp plugin binary interface is defined in C, and the plugin SDK (software development kit) which
will be described here is written in C++. Plugin authors are recommended to use the C++ interfaces in
preference to plain C. This document explains the concepts and structures necessary to write Vamp

plugins; it is not an API reference, which can be found at http://www.vamp-plugins.org/code-doc/, and it

does not cover host programming.

Vamp is not an acronym. It contains letters suggestive of audio, plugins, visualisation and so on, but not in
the right order.

http://www.vamp-plugins.org/code-doc/

Examples

Throughout this document we will use as examples three types of feature extractor that already
exist as Vamp plugins. We will not consider the real processing work necessary to implement these
techniques, only describe how they communicate with the host as plugins. These examples will
appear occasionally in boxes like this one. They are:

Note onset detector. This estimates the times at which new note events begin in the signal, and
returns those times as results. There are no particular values associated with the times. For the
purposes of this example, our onset detector will actually have two outputs - the first will report the
times as described above, and the second will report a measure of the likelihood that there is an
onset within the current input block.

Chromagram. This example of a visualisation data extractor analyses audio and produces from it
a grid of values, with a time step as the X coordinate and a pitch bin within the octave as the Y
coordinate. Each value in the grid describes the “strength” of the corresponding pitch in the music
within the given time range. Another way to describe this is to say that it returns a single column
containing a fixed number of pitch strength values, from each of a series of frames or blocks of input
audio.

Amplitude follower. This calculates structurally simple two-dimensional data (time and value)
from the audio, to be displayed by the host as a data plot or used for some other purpose.

As these examples show, Vamp plugins do not actually do any display or user interaction: they just
return data. In most cases, these data are not the final result of the work the host is doing, but are
useful for something else - either for a host to display and the user to interact with in some way, or
as intermediate calculations for a particular purpose such as semantically meaningful audio editing.
Vamp plugins do not do swirly visualisation and are typically not useful in real-time contexts such
as interacting with musical performers.

2. What does a Plugin Contain?
A Vamp plugin needs to make a certain amount of information available to the host.
Every plugin, no matter how simple, should provide the following:

1. Theidentifier,name, and description of the plugin itself.
See Identifiers, Names and Descriptions below.

2. The name of the maker of the plugin, and the plugin's copyright status and version number.

3. Theinput domain which the plugin would like its audio provided in.
See Inputs below.

4. The plugin's preferred step size and block size for audio input.
See Step and Block Size below.

5. The minimum and maximum number of input audio channels the plugin is capable of
handling.
See Inputs below for discussion of these.

6. Alist of output descriptors that contain information about the structure of the results that the
plugin may produce.
See Outputs below.

7. Implementations of standard functions that set up, reset, and run the plugin.
See Inputs below for discussion of these.

Some plugins have parameters that can be set to adjust the way they do their processing. These plugins
will also need to provide:

8. Alist of parameter descriptors that contain information about the editable parameters of the
plugin. The host may use these descriptors to show the user a control window for the plugin, for
example.

See Parameters below.

9. Implementations of standard functions that retrieve and set the values of parameters.

A plugin may also have a set of pre-defined configurations that can be offered to the user by name. These
are known as programs and a plugin that supports them will also need to provide:

10. Alist of program names.
See Programs below.

11. Implementations of standard functions that retrieve the current program name andselect
a new program. The C++ base class provides virtual methods to override for these.

Base classes

The Vamp SDK contains one class from which plugin implementation classes should be derived. This class,
Plugin, exposes pure virtual methods for most of the accessor and action functions that a plugin class
needs to implement. Those that are not directly defined in Plugin are themselves inherited from a
further class called PluginBase, which contains virtual methods for things that are not specific to the
output structures used in Vamp - plugin name, maker, parameters, program names, etc. These classes,
like everything in the SDK, are found in the vamp namespace.

The Plugin and PluginBase classes also contain a number of data classes that are used when returning
bundles of information about features (Feature, FeaturelList, FeatureSet), outputs (OutputDescriptor),
parameters (ParameterDescriptor) and so on. These will be referred to in the appropriate sections of
this document.

3. Identifiers, Names and Descriptions

M«

Vamp uses a combination of “identifier”, “name” and “description” strings to describe several sorts of
object. Most obviously, the plugin itself must implement getIdentifier, getName and getDescription
methods (inheriting from pure virtual methods in PluginBase) that return textual information about the
plugin. Similar data are included as public data members in the ParameterDescriptor and
OutputDescriptor classes.

In all of these cases, the purposes of the three strings are:

e identifier - This should contain a short string that the host can use to refer to the object, within
the immediate surrounding scope. That is, the plugin identifier needs to be unique within the
plugin's library; an output descriptor's identifier needs to be unique among output descriptors for
the plugin; similarly for parameter descriptors. Identifiers are very limited in the characters they
may include: upper and lower case ASCII alphabetical characters, digits 0 to 9, and the hyphen
(minus sign, “-”) and underscore (“_") characters only.

e name - This is a text that may be shown to the user by the host as the normal label for the object.

e description - This is optional, and may contain extra text to describe the purpose of the object
in a way that adds to the information in the name. Hosts that show the description to the user will
normally do so in addition to the name, so it should not duplicate information already in the
name.

Categories

The Vamp API itself does not provide any way for the host to categorise plugins by type or purpose.
However, the host extension classes in the SDK do include a method to load plugin categories from
category files (with . cat extension) that may be found in the Vamp plugin load path alongside the plugin
libraries. These are text files which contain lines of the form

vamp:libraryname:pluginidentifier::category

The category string is a series of category names separated by “ > ”, which describe a possibly multi-level
path into a category tree. For example,

vamp:vamp-example-plugins:percussiononsets::Time > Onsets

4. Inputs

The input to a Vamp plugin is audio data, with one or more channels. The audio is non-interleaved, so the
plugin receives a set of pointers to data, one per channel. The plugin can specify how many channels it
will accept using its getMinChannelCount and getMaxChannelCount methods.

The number of channels, as well as the block size and step size that will be used when running the plugin,
are fixed when the plugin's initalise method is called.

bool initialise(size_t inputChannels, size_t stepSize, size_t blockSize);

If the plugin finds the values supplied to initialise unacceptable, it should return false to indicate that
initialisation has failed.

After initialisation, to supply audio data and run the plugin, the host calls the plugin's process method
repeatedly. The process method receives a set of input pointers, and a timestamp.

FeatureSet process(const float *const *inputBuffers, RealTime timestamp);

Each time process is called, it is passed a single block of audio of size in samples equal to the block size
that was passed to initialise. The difference in sample count between the input to one process call and
that to the next is equal to the step size.

As with channel count, the plugin can influence the step and block size by returning its desired values
through its getPreferredStepSize and getPreferredBlockSize methods; unlike channel count, the
preferred step and block size are only hints, so you should always check the actual values used in
initialise if they are important to your code. You don't have to specify a preference for these if you
don't want to: return zero for the host to use its defaults, and see Default Step and Block Sizes below.

The audio may be provided in either time domain or frequency domain form. Time domain audio input is
conventional PCM sampled digital audio with a floating-point sample type; frequency domain input is the
result of applying a windowed short-time Fourier transform to each input block. The input domain is
specified by the plugin using its get InputDomain method.

Examples

Note onset detector. The input domain and preferred step and block sizes are likely to depend
on the method used for onset detection. The example plugin in the SDK, which is also annotated in
the Appendix of this guide, requires frequency-domain input and can in theory handle any input
step or block size. In practice it declares a preference for block size and expects the host to set the
step size to something sensible accordingly.

Chromagram. The constant Q transform used for a chromagram needs, as input, the result of a
short-time Fourier transform whose size depends on the sample rate, Q factor, and minimum output
frequency of the constant Q transform. The chromagram plugin can therefore ask for a frequency-
domain input, and make its preferred block size depend on the sample rate it was constructed with
and on its bins-per-octave parameter. (See also What Can Depend on a Parameter? below.) It can not
accept a different block size, and its initialise function will fail if provided with one. It may
reasonably choose to leave the preferred step size unspecified.

Amplitude follower. This time-domain method is likely to work with any input step and block
size, and so will probably leave them unspecified.

Time Domain Input

When a plugin requests time domain input, the host divides the audio input stream up into a series of
blocks of equal size, and feeds one to each successive call to process. The process call may then return
features derived from that audio input block, according to its whim. The inputBuffers argument to
process will point to one array of floats for each input channel. For example, inputBuffers[0]
[blockSize-1] will be the last audio sample in the current block for the first input channel.

When all of the audio data has been supplied, the host calls getRemainingFeatures, and the plugin

returns any features that are now known and not yet been returned from earlier process calls.

EACKH PROCESS cALL mAr
RETULN SOME FTATULES. .,

ConSECUTHE PROCESS CALLS
~ RN

- .- AND SomE mAY
ERuUATD RE LEFT AT THE B2 .

1
SN S S A
FxED i
| Ruocic<ipe | Ster i ! %@

When supplying time domain input, it is most usual for the step size to be equal to the block size as shown
above. This means that the plugin is receiving every sample in the audio input exactly once, in a series of
contiguous blocks of data.

This does not have to be the case - the plugin can return a different value for getPreferredStepSize to
that returned from getPreferredBlockSize if for any reason it would prefer to receive overlapping or
non-contiguous blocks.

Vamp currently makes no provision for partial input blocks. If the audio input ends in the middle of a
block, the host will fill the block with zero values up to the block size.

Frequency Domain Input

C.oISECTIVE PROCESS CALLS ouwtPi T
e /
4 —_—
— ~>
FFT ‘ * \)
{
i

'
.

AT
Senfr

SHAPED
WINDOW ete.

ete.

! : (X | : ' :
) . : : ;
\ . \ : | . [)
|

| ! ' .

s N ‘ \ .
“AuD o MWWWMM‘
‘ - [N t M
1 . . . ;
) : ‘ ' : ! :
N { . . v
v . : , :
Step Size
F1ED
Trocl Size MAY DiIFFer
G_J Seo¥, ov‘e(Z.LAP)

I
f
[
(
t

If the plugin requests frequency domain input, each block of audio input is processed by the host using a
windowed short time Fourier transform before being supplied to the process function.

In this situation, it is most usual for the input blocks to overlap - that is, for the step size to be half of the

block size, or less. This is because the original time-domain data needs to be shaped using a cosine or
similar window before the Fourier transform is applied, in order to avoid generating spectral noise
because of the discontinuities at the edges of the input blocks. This windowing is the host's responsibility,
but the plugin needs to be aware that it will happen so that it can choose sensible preferred step and block
sizes.

The plugin does not get any control over what shape of window is used, or any other details of the time- to
frequency-domain processing apart from the step and block size. If more control is needed, you will need
to ask for time domain input and carry out the processing in the plugin instead.

When receiving frequency domain input, the inputBuffers argument to process will point to one array
of floats for each input channel as for time domain input, but the arrays of float have a particular layout.
Each channel contains blockSize+2 floats, which are alternately real and imaginary components of the
Fourier transform's complex output bins.

For example:

® inputBuffers[0][0] and inputBuffers[0][1] contain the real and imaginary components of the
DC bin for this block in the first input channel. The imaginary component for this bin should be
Zero.

® inputBuffers[0][2] and inputBuffers[0][3] contain the real and imaginary components of the
bin with frequency sampleRate / blockSize for the first input channel.

® inputBuffers[0] [blockSize] and inputBuffers[0] [blockSize+1] contain the real and
imaginary components of the bin with “Nyquist” frequency sampleRate / 2. Again, this imaginary
component should be zero.

Default Step and Block Sizes
If the plugin does not care about either the step or block size, it should return zero as its preference.

If the plugin returns zero as its block size preference, the host will pick a block size that is practical for its
own processing purposes. For time domain inputs this could reasonably be almost anything, from
relatively small (e.g. 512) to huge (e.g. the length in sample frames of the entire audio file that the host is
processing). For frequency domain inputs of course the host can reasonably be expected to use some
block size that is generally considered appropriate for block-by-block short-time Fourier transform
processing, such as 1024 or 2048.

If the plugin returns zero as its step size preference, the host will typically use a step size equal to the
block size for time domain inputs, or half the block size for frequency domain inputs.

In either case, the host may alternatively offer the choice of step or block size to the user.

5. Outputs

Feature Structure

A plugin may return features in two places: from the process call, and from getRemainingFeatures. The
process call is made repeatedly to provide the plugin with input data; see “Input” above. When all of the
input has been consumed, getRemainingFeatures is called once, and the plugin should return any other
features that it has computed or can now compute but has not yet returned.

EATURE LIST

AF
o
B .
2ER0 OR MORE
FeATunRes
:: Prodably Similar i for
ADlo O I

INPAT : :

=0

ouUTPUTS a FEATURE SET
— oNE FEATTURE WST
PER OUTEWNT

(om e 'BLoC‘)A)

The return type from process and getRemainingFeatures is called FeatureSet. This is an STL map whose
key is an output number and whose value is a FeaturelList, which is an STL vector of Feature objects.
The use of a FeatureList allows the plugin to return features with more than one timestamp from a
single process call, or to return all features for the entire audio input in a single FeatureSet from
getRemainingFeatures.

A Feature has an optional timestamp (see “Sample Types and Timestamps”, below), a vector of zero or
more values, and an optional label. Note that even a Feature with zero values, no timestamp, and no label
could still be a valid feature; it may indicate that “something happened in the block of audio passed to this
process call”, with the interpretation of “something” depending on which output of the plugin was
returning the feature.

A lot about the interpretation of returned features depends on which output the feature is associated with.
A plugin has a fixed number of outputs, and it must provide a getOutputDescriptors method that returns
data about all of them, as a vector of OutputDescriptor objects. The descriptor with index zero in this
vector contains information about the output whose values are found with a key of zero in the feature sets
returned by the plugin, and so on.

Output Descriptors

For a plugin to be of any use, it must provide at least one OutputDescriptor (that is, have at least one
output). This contains all of the information provided by the plugin about the “meaning” of values
associated with an output of the plugin. OutputDescriptors for all of the plugin's outputs, in order, must
be returned by a call to getOutputDescriptors.

The OutputDescriptor contains:
e The identifier, name and description of this output (see Identifiers, Names and Descriptions above).
e Optionally, the unit (as a string) of all of the values associated with this output.

e Optionally, the number of value “bins” that features associated with this output have (via
hasFixedBinCount and binCount). The bin count might be zero for “time only” features like the
simple onset detector, one for “time and value” features like an amplitude tracker, or many for
“column” features like a chromagram that have a series of a fixed number of values in each
feature. Some features might have a variable number of values, and they will need to leave
hasFixedBinCount false.

e Optionally, if hasFixedBinCount is true, names for the value bins (in binNames). For example, a
chromagram plugin might have bin names describing the frequencies whose strengths are
represented in the bin values.

e Optionally, the extents for values associated with this output (i.e. their minimum and maximum
values), via hasknownExtents, minValue and maxValue. Like the unit, these apply to values in all
bins, if the output has more than one bin.

e Optionally, the quantization of the values associated with this output, via isQuantized and
quantizeStep. A feature whose values can only fall within a certain subset of real numbers (for
example, a feature whose values are always integers) may wish to set these. They are analogous to
the quantization for parameters described in Parameters below, except that it is not possible to
associate names with the quantize steps as it is for parameters.

e The sample type and rate for the output, via sampleType and sampleRate. See Sample Types and
Timestamps below for discussion of these.

Sample Types and Timestamps

Every feature that is returned from a Vamp plugin has a time associated with it. This is the time at which
the feature is considered to “start”, as a fractional number of seconds since the start of the audio input.

The time may be explicit - stored in the timestamp of the feature structure itself - or implicit - omitted
from the feature itself and instead deduced by the host on the basis of the sample type and rate defined for
the output in which the feature is returned. Whether the time is implicit or explicit depends on the
sampleType field of the output and the hasTimestamp field of the feature.

The permitted sampleType values for an output are:

® OneSamplePerStep - Implicit time. The effective time of any feature returned by process for
that output is the same as the time that was passed in to the process function by the host. The
plugin should not set a timestamp on the output feature, and should set the feature's
hasTimestamp field to false. The host should not read the timestamp from the output feature,
even if the feature's hasTimestamp field is erroneously found to be true. Any features returned
from getRemainingFeatures will all be effectively timed to the end of the input audio.

® FixedSampleRate - Implicit or explicit time. If the output feature's hasTimestamp field is true,
the host should read and use the output feature's timestamp. The host may round the timestamp
according to the sample rate given in the output descriptor's sampleRate field (wWhich must be
non-zero). If the feature's hasTimestamp field is false, its time will be implicitly calculated by
incrementing the time of the previous feature according to the sample rate.

e VariableSampleRate - Explicit time. The time of each feature is returned in the timestamp of
the feature, and the feature's hasTimestamp field must be set to true. The feature may have a
“resolution” given by the sampleRate value for that output, but the host may ignore it. The

sampleRate should be zero if there is no sensible resolution.

The hasTimestanmp field in the feature structure is only significant when using FixedSampleRate. If the
sample type is VariableSampleRate, the host must always read and use the timestamp; if the sample type
is OneSamplePerStep, the host should never read the timestamp.

The difference between FixedSampleRate and VariableSampleRate is more significant than it may at first
appear. An output whose sample type is FixedSampleRate can be said to be “dense” and, for example,
may be plotted naturally on a grid if it has a constant number of output bins. An output whose sample
type is VariableSampleRate is in principle sparse, may need a different representation, and may be
treated differently by a host - even if its features are in fact evenly spaced in time.

Examples

Note onset detector. Our onset detector as described has two outputs, one for the note onsets
and the other for a function describing the likelihood that there is a note onset in a given block of
audio. One thing to observe here is that the note onsets should be the first output, so that a host
which defaults to using the first available output will get the results it expects, given the stated
purpose of the plugin.

The note onsets output is most likely to have VariableSampleRate, with each feature
timestamped explicitly with the estimated note onset position. If the plugin's detection method has
a limited resolution in audio samples (for example if it can only detect whether an onset happened
“during this block” but not where exactly within the block), then the plugin may also wish to report
that by setting the sampleRate field of its output descriptor.

The onset detection function output could use either OneSamplePerStep or FixedSampleRate. If
the detection function is always calculated directly from the input data block given to the process
call, and thus results in one result for each input block, then OneSamplePerStep is the natural
sample type. If the input block is subdivided within the plugin for analysis purposes, or the
processing block size is otherwise different from the input block size, then it may use
FixedSampleRate, giving the input sample rate divided by the processing block size as the
output's sampleRate.

Chromagram. If the chromagram plugin demands frequency domain input with a block size equal
to the expected FFT size for its constant Q transform, then OneSamplePerStep is the natural
sampleType for the chroma data output, because one column of output data is produced for every
input block.

Amplitude follower. The output sampleType may depend on the processing method, but as with
the onset detector's detection function output, OneSamplePerStep or FixedSampleRate is likely.

6. Configuration

Parameters

The principal method for users and hosts to adjust the working of a Vamp plugins is via parameters. A
parameter is a named value that may be set (and retrieved) by the host at any point between instantiation
and initialisation of the plugin.

The plugin must provide a getParameterDescriptors method, which returns a list of
ParameterDescriptor objects describing the available parameters of the plugin. The host refers to a
parameter using the identifier given in its descriptor, and the plugin must provide getParameter and
setParameter methods to retrieve and set the current value of the parameter.

Parameter values for Vamp plugins are always floating-point numbers. The parameter descriptor must
provide limits for the permissible values through its minvalue and maxvatlue fields. It may also provide a
quantization for values, through its 1sQuantized and quantizeStep fields; if, for example, a parameter
has isQuantized set to true and quantizeStep is set to 1. 0f, then the host will only provide integer
values for this parameter (or, strictly, floating point values that are the closest to integers). The descriptor
may also include names to be associated with the quantize steps for a quantized parameter through its
valueNames field: a graphical host may use these names to offer the user a list of named options instead of
a numeric entry field or controller for the parameter.

Programs

Some plugins may have combinations of parameters that are known to be effective for particular sorts of
tasks. For example, an onset detector may have certain parameter settings that work well for music with
only soft onsets, other parameters that work well with percussive onsets, and so on. This things can be
encapsulated to some degree using programs. A program is simply a name that a host may select or query,
such that at most one program may be active at once.

A plugin that supports programs should provide a getProgramNames method that returns the names of all
known programs, a getCurrentProgram method that returns the name of the currently selected program
if any (or an empty string otherwise), and a selectProgram method that configures the plugin for the
given program. The plugin is free to rewrite its own parameter values when a new program is selected; it's
the host's responsibility to read the new parameter values afterwards if necessary.

What Can Depend on a Parameter?

One difference between Vamp plugins and most real-time audio processing plugin APIs is that the Vamp
plugin may need to make significant aspects of its inputs and outputs dependent upon the parameters
used to configure it.

For this reason, a Vamp plugin must be completely configured by the host, with its parameters and
programs set, before it is initialised; the parameters cannot be changed afterwards. Furthermore, some
properties of the plugin can depend on the values passed in to the initialise function, so the host must
query these again after initialisation but before calling process.

A plugin may change the following at any time, up to and including during its initialise function:

e The sampleType and sampleRate for an output (in the OutputDescriptor as returned from
getOutputDescriptors).

e The number of bin values a feature associated with an output may have (hasFixedBinCount,
binCount, and binNames in the OutputDescriptor).

e The extents of values taken by features associated with an output (hasknownExtents, minvalue,
maxValue, isQuantized and quantizeStep in the OutputDescriptor).

e The units of values taken by features associated with an output (unit in the OutputDescriptor).

In addition, the plugin may change its mind about the following at any point before initialise has been
called:

Its preferred input step size and block size (returned from getPreferredStepSize and
getPreferredBlockSize).

Although a plugin may change these properties after construction, it should not do so unless it is
necessary. The plugin should ensure that these properties have plausible default values right from the
moment of construction, so that the host can make reasonable observations about the default or likely
behaviour of the plugin without needing to initalise it. If the host does not in fact change any parameters
or programs, and supplies the plugin with its preferred step and block size, then any values it has already
queried from the plugin should remain valid after initialisation.

Example

Chromagram. The chromagram plugin produces a series of columns of output data, with each
column containing a certain number of constant Q (pitch) bins spanning a range of an octave.

It is desirable to make the bins-per-octave value for the chromagram adjustable as a parameter.
This means that the number of bin values declared for each output feature should be variable
depending on the state of the plugin parameters.

Also, the processing block size for the chromagram depends upon factors including the bins-per-
octave value, as well as on the input sample rate. This means that the preferred block size for the
plugin should be variable depending on the sample rate given at construction time, as well as on the
plugin parameters. Similarly if the plugin chooses to declare any FixedSampleRate outputs, that
rate will also likely depend on the processing block size and therefore on the input sample rate and
plugin parameters.

Finally, it is useful to offer column normalization as an option in the plugin, selectable through a
parameter. For this to be possible, the extents of feature values should also be variable depending
on plugin parameters.

The plugin may not change any of the following after construction:

Its total number of outputs.
The minimum and maximum number of audio input channels it accepts.
The input domain it requires audio to be supplied in.

The set of available parameters returned through getParameterDescriptors, nor anything in any
of the ParameterDescriptors themselves.

The set of available programs returned through getPrograms.

Any other descriptive data, such as the identifier, name or description text for the plugin itself or
for any of its parameters or outputs.

Appendix: An Annotated Example Plugin

In this section we take a look at an example plugin, with explanatory annotations. The plugin is
essentially the “simple percussion onset detector” example plugin found in the Vamp plugin SDK, with a
little reformatting in places. We choose to look at this plugin because its actual processing code is very
simple, but it uses several features of the Vamp SDK including parameters and multiple outputs, and its
input is in the frequency domain.

The header and implementation code for the plugin follow, and then the code for the plugin library entry
point. Notes are in italics to the right of the code.

Header

#ifndef PERCUSSION ONSET DETECTOR PLUGIN H_
#define _PERCUSSION_ONSET DETECTOR_PLUGIN H_

#include "vamp-sdk/Plugin.h"

class PercussionOnsetDetector : public Vamp::Plugin A plugin is implemented as a single C++ class.
{
public:

PercussionOnsetDetector (float inputSampleRate);

virtual ~PercussionOnsetDetector();

bool initialise(size_t channels, size_t stepSize, size_t blockSize);
void reset();

std::string getIdentifier() const; All of the “basic data” methods in this block are inherited
std::string getName() const; from pure virtual methods in Vamp: : PluginBase.
std::string getDescription() const;

std::string getMaker () const;

std::string getCopyright() const;

int getPluginVersion() const;

size_t getMinChannelCount() const; These “input data preference” methods are inherited from
size_t getMaxChannelCount() const; virtual methods in Vamp: : Plugin. Apart from the pure
InputDomain getInputDomain() const; virtual getInputDomain, the base class implementations all
size_t getPreferredStepSize() const; return simple defaults (1 for the channel counts, 0 for the step
size_t getPreferredBlockSize() const; and block size to indicate “no preference”).

ParameterList getParameterDescriptors() const; The “parameters” methods are inherited from virtual methods
float getParameter(std::string id) const; inVamp: : PluginBase, with default implementations that
void setParameter(std::string id, float value); declare no parameters.

This plugin does not support programs, so it can inherit the
default implementations of getPrograms,
getCurrentProgram and selectProgram.

OutputList getOutputDescriptors() const; This method is pure virtual in Vamp: : Plugin.

FeatureSet process(const float *const *inputBuffers, Thismethod is pure virtual in Vamp: : Plugin.
Vamp::RealTime timestamp);

FeatureSet getRemainingFeatures(); This method is pure virtual in Vamp: : Plugin.

protected: Implementation data members start here.
size_t m_stepSize;
size_t m_blockSize;
float m_threshold;
float m_sensitivity;
float *m_priorMagnitudes;
float m_dfMinusl;
float m_dfMinus2;
b

#endif
Plugin Implementation

#include "PercussionOnsetDetector.h"

using std::string;

using std::vector;
using std::cerr;
using std::endl;

#include <cmath>

PercussionOnsetDetector::PercussionOnsetDetector
(float inputSampleRate)
Plugin(inputSampleRate),
m_stepSize(0),
m_blockSize(0),
m_threshold(3),
m_sensitivity(40),
m_priorMagnitudes(0),
m_dfMinus1(0),
m_dfMinus2(0)

PercussionOnsetDetector::~PercussionOnsetDetector ()
{

delete[] m_priorMagnitudes;

}

string
PercussionOnsetDetector::getIdentifier() const
{

return "percussiononsets";

}

string
PercussionOnsetDetector::getName() const
{

return "Simple Percussion Onset Detector";

}

string
PercussionOnsetDetector::getDescription() const

{

The sample rate at which a plugin runs is fixed at instantiation;
the plugin has no control over this, and must accept any rate.

We are using 0 for step and block size to indicate “not yet set”.
Default values for our public parameters.

Basic initialisation of internal processing data.

A host needs to instantiate (construct) a plugin just to find out
what outputs it provides, and other basic information. The plugin

therefore needs to make its constructor as cheap to run as
possible and should defer expensive setup work to initialise.

Clean up processing data. delete[] is safe even if the data

were never initialised and the pointer is still NULL.

Identifier for this plugin within its shared library.

Name of this plugin, as far as the user is concerned.

Description of what the plugin does, to accompany its name.

return "Detect percussive note onsets by identifying broadband energy rises";

}

string
PercussionOnsetDetector::getMaker () const
{

return "Vamp SDK Example Plugins";

}

string
PercussionOnsetDetector::getCopyright() const

{

Normally, the company, institution, or developer of the plugin.

Concise summary of copyright and distribution license.

return "Code copyright 2006 Queen Mary, University of London, after Dan Barry et al 2005. Freely

redistributable (BSD license)";
}
int
PercussionOnsetDetector::getPluginVersion() const
{
return 2;

}

size_t
PercussionOnsetDetector::getMinChannelCount() const
{

return 1;

}

size_t
PercussionOnsetDetector::getMaxChannelCount() const
{

return 1;

}

PercussionOnsetDetector::InputDomain
PercussionOnsetDetector::getInputDomain() const
{

return FrequencyDomain;

}

Newer versions of the plugin must have larger version numbers.
The host may use this to warn the user the the plugin has been
updated since they last used it, or that it may be out of date.

Smallest number of input audio channels plugin can accept.
The base class implementation of this method returns 1, so we
don't strictly need to define it for this plugin.

Largest number of input audio channels plugin can accept.
Again, the base class implementation also returns 1 - a plugin
that doesn't declare otherwise always gets one channel.

The form in which audio input must be provided
(time or frequency domain).

size_t
PercussionOnsetDetector::getPreferredStepSize() const

{ This plugin works with any step size. Since the plugin demands
return 0; frequency domain input, most hosts will use a step size equal to
} half the block size.
size_t
PercussionOnsetDetector::getPreferredBlockSize() const
{
return 1024; Preferred block size (i.e. FFT size, for frequency domain input).
}
bool
PercussionOnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
{ This function does the real work of setting up the plugin's
if (channels < getMinChannelCount() || internal processing. If any of the values provided are
channels > getMaxChannelCount()) { unacceptable, it should return false to indicate failure.
return false;
}
m_stepSize = stepSize;
m_blockSize = blockSize; Although we had a preferred block size, we can accept anything.
m_priorMagnitudes = new float[m_blockSize/2]; Properly initialise our processing data...

for (size_t i = 0; i < m_blockSize/2; ++i) {
m_priorMagnitudes[i] = 0.f;

}
m_dfMinusl = 0.f
m_dfMinus2 = 0.f
return true; True indicates success.
}
void
PercussionOnsetDetector::reset()
{ After reset is called, the plugin should behave as if it has
for (size_t i = 0; i < m_blockSize/2; ++i) { just been initialised.
m_priorMagnitudes[i] = 0.f;
}
m_dfMinusl = 0.f;
m_dfMinus2 = 0.f;
}

PercussionOnsetDetector::ParameterList

PercussionOnsetDetector::getParameterDescriptors() const

{ Host calls this to find out what adjustable parameters the plugin
ParameterList list; has. These are returned as a ParameterList, which is an STL

vector ofPa rameterDescriptors.

ParameterDescriptor d;

d.identifier = "threshold";

d.name = "Energy rise threshold";

d.description = "Energy rise within a frequency bin necessary to count toward broadband total";

d.unit = "dB";

d.minValue = 0;

d.maxValue = 20;

d.defaultValue = 3;

d.isQuantized = false;

list.push_back(d);

d.identifier = "sensitivity";

d.name = "Sensitivity";

d.description = "Sensitivity of peak detector applied to broadband detection function";
d.unit = "%";

d.minValue = 0;

d.maxValue = 100;

d.defaultValue = 40;

d.isQuantized = false;

list.push_back(d);

return list;

}

float

PercussionOnsetDetector::getParameter(std::string id) const

{ Return the current value of the parameter whose identifier
if (id == "threshold") return m_threshold; is given in the id argument.
if (id == "sensitivity") return m_sensitivity;
return 0.f;

void
PercussionOnsetDetector::setParameter(std::string id,
{
if (id == "threshold") {
if (value < 0) value = 0;
if (value > 20) value = 20;
m_threshold = value;
} else if (id == "sensitivity") {
if (value < 0) value = 0;
if (value > 100) value =
m_sensitivity = value;

100;

}

PercussionOnsetDetector: :QutputList
PercussionOnsetDetector::getOutputDescriptors() const

{
OutputlList 1list;

OutputDescriptor d;

d.identifier = "onsets";

d.name = "Onsets";

d.description = "Percussive note onset locations";
d.unit = "";

d.hasFixedBinCount = true;
d.binCount = 0;

d.hasKnownExtents = false;
d.isQuantized = false;
d.sampleType =

d.sampleRate = m_inputSampleRate;
1

ist.push_back(d);

d.identifier = "detectionfunction";
d.name = "Detection Function";

d.description =
d.binCount = 1;

d.isQuantized = true;
d.quantizeStep = 1.0;
d.sampleType =
list.push_back(d);

return list;

}

PercussionOnsetDetector::FeatureSet

OutputDescriptor::0neSamplePerStep;

float value)
Set the value of the parameter whose identifier is given in
the id argument.

Host calls this to find out what outputs a plugin has. A single
plugin may have any number of outputs. The host does not
specify which outputs it is going to use; the plugin always
computes and returns value from all of them.

This output has a fixed number of values per feature ...
... and that is zero: only the time of the feature is relevant here.

OutputDescriptor::VariableSampleRate; Each feature will have its own timestamp ...

... which is accurate to 1/ the input sample rate, in seconds.
The first descriptor in the list corresponds to output 0 in the
features returned from the process call below.

"Broadband energy rise detection function";

This output has one value per feature ...

... and that value is quantized ...

... to 1: that is, the output values are converted from integers.
Each process call returns a single implicitly-timed feature.
The second descriptor in the list corresponds to output 1 in the
features returned from the process call.

PercussionOnsetDetector::process(const float *const *inputBuffers,

Vamp::RealTime ts)
{

if (m_stepSize == 0)

The function that does the bulk of the work. This function
receives non-interleaved floating-point audio data through
inputBuffers and the timestamp of the first audio frame for
this process call in ts. The input audio has the same number
of channels as reported to the initialise function earlier:
this number will be within the range the plugin returns

from its getMinChannelCount and getMaxChannelCount
methods. In the case of this plugin, that means it will always
have exactly one channel.

cerr << "ERROR: PercussionOnsetDetector::process: "

This part is our actual algorithm; see the referenced paper
for details. Essentially, because we asked for frequency-domain

<< "PercussionOnsetDetector has not been initialised"
<< endl;
return FeatureSet();
}
int count = 0;
for (size_t i = 1; i < m_blockSize/2; ++i) {

float real =
float imag =

inputBuffers[0] [1*2];

inputBuffers[@][i*2 + 11;
float sqrmag = real * real + imag * imag;
if (m_priorMagnitudes[i]

float diff =
if (diff >= m_threshold) ++count;

> 0.f) {

input through getInputDomain earlier, the input to process
will be a series of m_blockSize/2 + 1 real+imaginary floating
point number pairs containing DFT bin values for the input
block. We count the number of bins whose power exceeds
that of the corresponding bin in the previous process block by
more than m_threshold dB, and if this number exceeds a
quantity calculated from the sensitivity value, we declare an
onset to have been detected. This loop does the counting.

10.f * loglOf(sqrmag / m_priorMagnitudes[il);

}

m_priorMagnitudes[i] = sqrmag;

}

FeatureSet returnFeatures;

Feature detectionFunction;
detectionFunction.hasTimestamp = false;
detectionFunction.values.push_back(count);
returnFeatures[1].push_back(detectionFunction);

if (m_dfMinus2 < m_dfMinusl &&
m_dfMinusl >= count &%
m_dfMinusl >
((100 - m_sensitivity) * m_blockSize) / 200) ({

Feature onset;

onset.hasTimestamp = true;

Save the bin power for comparison in the following call.

The FeatureSet maps from output number to list of features.

Feature for onset detection probability function. Its time is
implicit, based on the timestamp of the input block, as the
corresponding OutputDescriptor says OneSamplePerStep.
This is the only feature returned for output 1.

Now use the detection function to guess whether an onset is
happening. We actually examine the prior input block, and call
it an onset if that block's detection function value was both
greater than a certain quantity, and greater than the values
appearing before and after it.

This feature is explicity timed, to correspond to the prior block.

onset.timestamp = ts - Vamp::RealTime::frame2RealTime

(m_stepSize, lrintf(m_inputSampleRate));
returnFeatures[0].push_back(onset);

}

m_dfMinus2 m_dfMinusl;
m_dfMinusl = count;

return returnFeatures;

PercussionOnsetDetector::FeatureSet
PercussionOnsetDetector::getRemainingFeatures()

{

}

return FeatureSet();

Plugin library entry point

Time is the input timestamp for this block, minus the step size.
If this feature exists, it is the only feature returned for output 0.
So if no onset detected, this feature will not be returned at all.

Save previous detection function values for comparison.

Return any features that could not be returned from process
calls, after all data has been received. Some plugins may do all
of their real work from this function. This one has nothing

to do here; all results were returned from process.

This is how the examples/plugins. cpp file from the Vamp plugin SDK might appear, if the library in question contained
only one plugin (the percussion onsets one just described). There is not much scope for creativity in this file - cut-and-paste is the
recommended way to write it!

#include "vamp/vamp.h"
#include "vamp-sdk/PluginAdapter.h"
#include "PercussionOnsetDetector.h"

static Vamp::PluginAdapter<PercussionOnsetDetector>

percussionOnsetAdapter;

The PluginAdapter class takes a C++ plugin implementation
and provides a descriptor structure for it that conforms with
the official Vamp plugin API, which uses C linkage. You should
never need to know anything about how it works!

const VampPluginDescriptor *vampGetPluginDescriptor(unsigned int version,
unsigned int index)

{

if (version < 1) return 0;

switch (index) {
case 0:

return percussionOnsetAdapter.getDescriptor();
default:

return 0;

This function should fail if the library was built using a version
of the Vamp API that is both incompatible with and more recent
than the version number provided to this function. Since the
only existing Vamp API at the moment is version 1, the correct
incantation is as shown here.

This function is called by the host repeatedly with increasing
index values starting at zero, until it returns a null result, in
order to discover how many plugins are in the library and to
retrieve their descriptors. We only have one plugin, so we
return its descriptor for index 0 and null otherwise.

	Base classes
	Categories
	Time Domain Input
	Frequency Domain Input
	Default Step and Block Sizes
	Feature Structure
	Output Descriptors
	Sample Types and Timestamps
	Parameters
	Programs
	What Can Depend on a Parameter?
	Header
	Plugin Implementation
	Plugin library entry point

