c@0: c@0: // This is a skeleton file for use in creating your own plugin c@0: // libraries. Replace MyPlugin and myPlugin throughout with the name c@0: // of your first plugin class, and fill in the gaps as appropriate. c@0: c@0: c@0: #include "Tempogram.h" c@9: #include c@9: #include c@4: c@0: using Vamp::FFT; c@7: using Vamp::RealTime; c@0: using namespace std; c@0: c@0: Tempogram::Tempogram(float inputSampleRate) : c@0: Plugin(inputSampleRate), c@0: m_blockSize(0), c@1: m_stepSize(0), c@13: m_compressionConstant(1000), //parameter c@13: m_minDB(0), c@13: m_log2WindowLength(10), c@13: m_windowLength(pow((float)2,(float)m_log2WindowLength)), //parameter c@13: m_fftLength(4096), //parameter c@13: m_hopSize(64), //parameter c@13: m_minBPM(30), c@13: m_maxBPM(480), c@13: m_minBin(0), //set in initialise() c@13: m_maxBin(0), //set in initialise() c@13: m_numberOfBlocks(0) //incremented in process() c@0: c@0: // Also be sure to set your plugin parameters (presumably stored c@0: // in member variables) to their default values here -- the host c@0: // will not do that for you c@0: { c@0: } c@0: c@0: Tempogram::~Tempogram() c@0: { c@0: //delete stuff c@7: cleanup(); c@0: } c@0: c@0: string c@0: Tempogram::getIdentifier() const c@0: { c@0: return "tempogram"; c@0: } c@0: c@0: string c@0: Tempogram::getName() const c@0: { c@0: return "Tempogram"; c@0: } c@0: c@0: string c@0: Tempogram::getDescription() const c@0: { c@0: // Return something helpful here! c@0: return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller"; c@0: } c@0: c@0: string c@0: Tempogram::getMaker() const c@0: { c@0: //Your name here c@0: return "Carl Bussey"; c@0: } c@0: c@0: int c@0: Tempogram::getPluginVersion() const c@0: { c@0: // Increment this each time you release a version that behaves c@0: // differently from the previous one c@0: return 1; c@0: } c@0: c@0: string c@0: Tempogram::getCopyright() const c@0: { c@0: // This function is not ideally named. It does not necessarily c@0: // need to say who made the plugin -- getMaker does that -- but it c@0: // should indicate the terms under which it is distributed. For c@0: // example, "Copyright (year). All Rights Reserved", or "GPL" c@0: return ""; c@0: } c@0: c@0: Tempogram::InputDomain c@0: Tempogram::getInputDomain() const c@0: { c@0: return FrequencyDomain; c@0: } c@0: c@0: size_t c@0: Tempogram::getPreferredBlockSize() const c@0: { c@9: return 2048; // 0 means "I can handle any block size" c@0: } c@0: c@0: size_t c@0: Tempogram::getPreferredStepSize() const c@0: { c@9: return 1024; // 0 means "anything sensible"; in practice this c@0: // means the same as the block size for TimeDomain c@0: // plugins, or half of it for FrequencyDomain plugins c@0: } c@0: c@0: size_t c@0: Tempogram::getMinChannelCount() const c@0: { c@0: return 1; c@0: } c@0: c@0: size_t c@0: Tempogram::getMaxChannelCount() const c@0: { c@0: return 1; c@0: } c@0: c@0: Tempogram::ParameterList c@0: Tempogram::getParameterDescriptors() const c@0: { c@0: ParameterList list; c@0: c@0: // If the plugin has no adjustable parameters, return an empty c@0: // list here (and there's no need to provide implementations of c@0: // getParameter and setParameter in that case either). c@0: c@0: // Note that it is your responsibility to make sure the parameters c@0: // start off having their default values (e.g. in the constructor c@0: // above). The host needs to know the default value so it can do c@0: // things like provide a "reset to default" function, but it will c@0: // not explicitly set your parameters to their defaults for you if c@0: // they have not changed in the mean time. c@0: c@9: ParameterDescriptor d; c@9: d.identifier = "C"; c@9: d.name = "C"; c@9: d.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio."; c@9: d.unit = ""; c@9: d.minValue = 2; c@9: d.maxValue = 10000; c@9: d.defaultValue = 1000; c@9: d.isQuantized = false; c@9: list.push_back(d); c@9: c@13: d.identifier = "log2TN"; c@9: d.name = "Tempogram Window Length"; c@9: d.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function."; c@9: d.unit = ""; c@13: d.minValue = 7; c@13: d.maxValue = 12; c@13: d.defaultValue = 10; c@9: d.isQuantized = true; c@13: d.quantizeStep = 1; c@13: for (int i = d.minValue; i <= d.maxValue; i++){ c@13: d.valueNames.push_back(floatToString(pow((float)2,(float)i))); c@13: } c@9: list.push_back(d); c@0: c@9: d.identifier = "minBPM"; c@9: d.name = "Minimum BPM"; c@9: d.description = "The minimum BPM of the tempogram output bins."; c@9: d.unit = ""; c@9: d.minValue = 0; c@9: d.maxValue = 2000; c@9: d.defaultValue = 30; c@9: d.isQuantized = true; c@9: d.quantizeStep = 5; c@9: list.push_back(d); c@9: c@9: d.identifier = "maxBPM"; c@9: d.name = "Maximum BPM"; c@9: d.description = "The minimum BPM of the tempogram output bins."; c@9: d.unit = ""; c@9: d.minValue = 30; c@9: d.maxValue = 2000; c@9: d.defaultValue = 480; c@9: d.isQuantized = true; c@9: d.quantizeStep = 5; c@9: list.push_back(d); c@0: c@0: return list; c@0: } c@0: c@0: float c@0: Tempogram::getParameter(string identifier) const c@0: { c@0: if (identifier == "C") { c@13: return m_compressionConstant; // return the ACTUAL current value of your parameter here! c@0: } c@13: if (identifier == "log2TN"){ c@13: return m_log2WindowLength; c@9: } c@9: if (identifier == "minBPM") { c@13: return m_minBPM; c@9: } c@9: if (identifier == "maxBPM"){ c@13: return m_maxBPM; c@0: } c@0: c@0: return 0; c@0: } c@0: c@0: void c@0: Tempogram::setParameter(string identifier, float value) c@0: { c@9: c@0: if (identifier == "C") { c@13: m_compressionConstant = value; // set the actual value of your parameter c@0: } c@13: if (identifier == "log2TN") { c@13: m_windowLength = pow(2,value); c@13: m_log2WindowLength = value; c@0: } c@9: if (identifier == "minBPM") { c@13: m_minBPM = value; c@9: } c@9: if (identifier == "maxBPM"){ c@13: m_maxBPM = value; c@9: } c@9: c@9: } c@9: c@9: void Tempogram::updateBPMParameters(){ c@9: c@0: } c@0: c@0: Tempogram::ProgramList c@0: Tempogram::getPrograms() const c@0: { c@0: ProgramList list; c@0: c@0: // If you have no programs, return an empty list (or simply don't c@0: // implement this function or getCurrentProgram/selectProgram) c@0: c@0: return list; c@0: } c@0: c@0: string c@0: Tempogram::getCurrentProgram() const c@0: { c@0: return ""; // no programs c@0: } c@0: c@0: void c@0: Tempogram::selectProgram(string name) c@0: { c@0: } c@0: c@9: string Tempogram::floatToString(float value) const c@9: { c@9: ostringstream ss; c@9: c@9: if(!(ss << value)) throw runtime_error("Tempogram::floatToString(): invalid conversion from float to string"); c@9: return ss.str(); c@9: } c@9: c@0: Tempogram::OutputList c@0: Tempogram::getOutputDescriptors() const c@0: { c@0: OutputList list; c@0: c@0: // See OutputDescriptor documentation for the possibilities here. c@0: // Every plugin must have at least one output. c@1: c@0: OutputDescriptor d; c@7: float d_sampleRate; c@9: float tempogramInputSampleRate = (float)m_inputSampleRate/m_stepSize; c@7: c@1: d.identifier = "tempogram"; c@7: d.name = "Tempogram"; c@7: d.description = "Tempogram"; c@9: d.unit = "BPM"; c@1: d.hasFixedBinCount = true; c@13: d.binCount = m_maxBin - m_minBin + 1; c@0: d.hasKnownExtents = false; c@0: d.isQuantized = false; c@1: d.sampleType = OutputDescriptor::FixedSampleRate; c@13: d_sampleRate = tempogramInputSampleRate/m_hopSize; c@1: d.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0; c@13: for(int i = m_minBin; i <= (int)m_maxBin; i++){ c@13: float w = ((float)i/m_fftLength)*(tempogramInputSampleRate); c@9: d.binNames.push_back(floatToString(w*60)); c@9: } c@0: d.hasDuration = false; c@0: list.push_back(d); c@7: c@1: d.identifier = "nc"; c@1: d.name = "Novelty Curve"; c@1: d.description = "Novelty Curve"; c@1: d.unit = ""; c@1: d.hasFixedBinCount = true; c@1: d.binCount = 1; c@1: d.hasKnownExtents = false; c@1: d.isQuantized = false; c@1: d.sampleType = OutputDescriptor::FixedSampleRate; c@9: d_sampleRate = tempogramInputSampleRate; c@1: d.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0; c@1: d.hasDuration = false; c@1: list.push_back(d); c@1: c@0: return list; c@0: } c@0: c@0: bool c@0: Tempogram::initialise(size_t channels, size_t stepSize, size_t blockSize) c@0: { c@0: if (channels < getMinChannelCount() || c@0: channels > getMaxChannelCount()) return false; c@9: c@0: // Real initialisation work goes here! c@0: m_blockSize = blockSize; c@1: m_stepSize = stepSize; c@13: m_minDB = pow(10,(float)-74/20); c@0: c@13: if (m_minBPM > m_maxBPM){ c@13: m_minBPM = 30; c@13: m_maxBPM = 480; c@9: } c@9: float tempogramInputSampleRate = (float)m_inputSampleRate/m_stepSize; c@13: m_minBin = (unsigned int)(max(floor(((m_minBPM/60)/tempogramInputSampleRate)*m_fftLength), (float)0.0)); c@13: m_maxBin = (unsigned int)(min(ceil(((m_maxBPM/60)/tempogramInputSampleRate)*m_fftLength), (float)m_fftLength/2)); c@9: c@13: m_spectrogram = vector< vector >(m_blockSize/2 + 1); c@4: c@0: return true; c@0: } c@0: c@7: void Tempogram::cleanup(){ c@7: c@7: } c@7: c@0: void c@0: Tempogram::reset() c@0: { c@0: // Clear buffers, reset stored values, etc c@7: ncTimestamps.clear(); c@13: m_spectrogram.clear(); c@13: m_spectrogram = vector< vector >(m_blockSize/2 + 1); c@0: } c@0: c@0: Tempogram::FeatureSet c@0: Tempogram::process(const float *const *inputBuffers, Vamp::RealTime timestamp) c@0: { c@0: size_t n = m_blockSize/2 + 1; c@0: c@0: FeatureSet featureSet; c@0: Feature feature; c@0: c@0: const float *in = inputBuffers[0]; c@3: c@9: //calculate magnitude of FrequencyDomain input c@13: for (unsigned int i = 0; i < n; i++){ c@0: float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]); c@13: magnitude = magnitude > m_minDB ? magnitude : m_minDB; c@13: m_spectrogram[i].push_back(magnitude); c@0: } c@0: c@13: m_numberOfBlocks++; c@9: ncTimestamps.push_back(timestamp); //save timestamp c@7: c@2: return featureSet; c@0: } c@0: c@11: Tempogram::FeatureSet c@11: Tempogram::getRemainingFeatures() c@11: { c@0: c@13: float * hannWindowtN = new float[m_windowLength]; c@13: for (unsigned int i = 0; i < m_windowLength; i++){ c@7: hannWindowtN[i] = 0.0; c@4: } c@11: c@1: FeatureSet featureSet; c@0: c@13: //initialise m_noveltyCurve processor c@13: NoveltyCurve nc(m_inputSampleRate, m_blockSize, m_numberOfBlocks, m_compressionConstant); c@13: m_noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curve from magnitude data c@4: c@9: //push novelty curve data to featureset 1 and set timestamps c@13: for (unsigned int i = 0; i < m_numberOfBlocks; i++){ c@7: Feature feature; c@13: feature.values.push_back(m_noveltyCurve[i]); c@7: feature.hasTimestamp = true; c@7: feature.timestamp = ncTimestamps[i]; c@7: featureSet[1].push_back(feature); c@4: } c@4: c@9: //window function for spectrogram c@13: WindowFunction::hanning(hannWindowtN,m_windowLength); c@9: c@9: //initialise spectrogram processor c@13: SpectrogramProcessor spectrogramProcessor(m_numberOfBlocks, m_windowLength, m_fftLength, m_hopSize); c@9: //compute spectrogram from novelty curve data (i.e., tempogram) c@13: Spectrogram tempogram = spectrogramProcessor.process(&m_noveltyCurve[0], hannWindowtN); c@0: c@13: int timePointer = m_hopSize-m_windowLength/2; c@7: int tempogramLength = tempogram[0].size(); c@7: c@9: //push tempogram data to featureset 0 and set timestamps. c@7: for (int block = 0; block < tempogramLength; block++){ c@0: Feature feature; c@0: c@7: int timeMS = floor(1000*(m_stepSize*timePointer)/m_inputSampleRate + 0.5); c@7: c@13: assert(tempogram.size() == (m_fftLength/2 + 1)); c@13: for(int k = m_minBin; k < (int)m_maxBin; k++){ c@7: feature.values.push_back(tempogram[k][block]); c@13: //cout << tempogram[k][block] << endl; c@0: } c@7: feature.hasTimestamp = true; c@7: feature.timestamp = RealTime::fromMilliseconds(timeMS); c@7: featureSet[0].push_back(feature); c@4: c@13: timePointer += m_hopSize; c@0: } c@0: c@11: //float func = [](){ cout << "Hello"; }; c@11: c@11: delete []hannWindowtN; c@13: hannWindowtN = 0; c@0: c@0: return featureSet; c@0: }