c@0: c@0: // This is a skeleton file for use in creating your own plugin c@0: // libraries. Replace MyPlugin and myPlugin throughout with the name c@0: // of your first plugin class, and fill in the gaps as appropriate. c@0: c@0: c@14: #include "TempogramPlugin.h" c@9: #include c@9: #include c@4: c@0: using Vamp::FFT; c@7: using Vamp::RealTime; c@0: using namespace std; c@0: c@14: TempogramPlugin::TempogramPlugin(float inputSampleRate) : c@0: Plugin(inputSampleRate), c@18: m_inputBlockSize(0), //host parameter c@18: m_inputStepSize(0), //host parameter c@19: m_noveltyCurveMinDB(pow(10,(float)-74/20)), //set in initialise() c@18: m_noveltyCurveCompressionConstant(1000), //parameter c@18: m_tempogramLog2WindowLength(10), //parameter c@18: m_tempogramWindowLength(pow((float)2,m_tempogramLog2WindowLength)), c@18: m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter c@18: m_tempogramFftLength(m_tempogramWindowLength), c@18: m_tempogramLog2HopSize(6), //parameter c@18: m_tempogramHopSize(pow((float)2,m_tempogramLog2HopSize)), c@18: m_tempogramMinBPM(30), //parameter c@18: m_tempogramMaxBPM(480), //parameter c@18: m_tempogramMinBin(0), //set in initialise() c@18: m_tempogramMaxBin(0), //set in initialise() c@18: m_cyclicTempogramMinBPM(30), //reset in initialise() c@18: m_cyclicTempogramNumberOfOctaves(0), //set in initialise() c@18: m_cyclicTempogramOctaveDivider(30) //parameter c@0: c@0: // Also be sure to set your plugin parameters (presumably stored c@0: // in member variables) to their default values here -- the host c@0: // will not do that for you c@0: { c@0: } c@0: c@14: TempogramPlugin::~TempogramPlugin() c@0: { c@0: //delete stuff c@19: c@0: } c@0: c@0: string c@14: TempogramPlugin::getIdentifier() const c@0: { c@0: return "tempogram"; c@0: } c@0: c@0: string c@14: TempogramPlugin::getName() const c@0: { c@0: return "Tempogram"; c@0: } c@0: c@0: string c@14: TempogramPlugin::getDescription() const c@0: { c@0: // Return something helpful here! c@0: return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller"; c@0: } c@0: c@0: string c@14: TempogramPlugin::getMaker() const c@0: { c@0: //Your name here c@0: return "Carl Bussey"; c@0: } c@0: c@0: int c@14: TempogramPlugin::getPluginVersion() const c@0: { c@0: // Increment this each time you release a version that behaves c@0: // differently from the previous one c@0: return 1; c@0: } c@0: c@0: string c@14: TempogramPlugin::getCopyright() const c@0: { c@0: // This function is not ideally named. It does not necessarily c@0: // need to say who made the plugin -- getMaker does that -- but it c@0: // should indicate the terms under which it is distributed. For c@0: // example, "Copyright (year). All Rights Reserved", or "GPL" c@0: return ""; c@0: } c@0: c@14: TempogramPlugin::InputDomain c@14: TempogramPlugin::getInputDomain() const c@0: { c@0: return FrequencyDomain; c@0: } c@0: c@0: size_t c@14: TempogramPlugin::getPreferredBlockSize() const c@0: { c@9: return 2048; // 0 means "I can handle any block size" c@0: } c@0: c@0: size_t c@14: TempogramPlugin::getPreferredStepSize() const c@0: { c@9: return 1024; // 0 means "anything sensible"; in practice this c@0: // means the same as the block size for TimeDomain c@0: // plugins, or half of it for FrequencyDomain plugins c@0: } c@0: c@0: size_t c@14: TempogramPlugin::getMinChannelCount() const c@0: { c@0: return 1; c@0: } c@0: c@0: size_t c@14: TempogramPlugin::getMaxChannelCount() const c@0: { c@0: return 1; c@0: } c@0: c@14: TempogramPlugin::ParameterList c@14: TempogramPlugin::getParameterDescriptors() const c@0: { c@0: ParameterList list; c@0: c@0: // If the plugin has no adjustable parameters, return an empty c@0: // list here (and there's no need to provide implementations of c@0: // getParameter and setParameter in that case either). c@0: c@0: // Note that it is your responsibility to make sure the parameters c@0: // start off having their default values (e.g. in the constructor c@0: // above). The host needs to know the default value so it can do c@0: // things like provide a "reset to default" function, but it will c@0: // not explicitly set your parameters to their defaults for you if c@0: // they have not changed in the mean time. c@0: c@14: ParameterDescriptor d1; c@14: d1.identifier = "C"; c@15: d1.name = "Novelty Curve Spectrogram Compression Constant"; c@14: d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio."; c@14: d1.unit = ""; c@14: d1.minValue = 2; c@14: d1.maxValue = 10000; c@14: d1.defaultValue = 1000; c@14: d1.isQuantized = false; c@14: list.push_back(d1); c@9: c@14: ParameterDescriptor d2; c@14: d2.identifier = "log2TN"; c@14: d2.name = "Tempogram Window Length"; c@14: d2.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function."; c@14: d2.unit = ""; c@14: d2.minValue = 7; c@14: d2.maxValue = 12; c@14: d2.defaultValue = 10; c@14: d2.isQuantized = true; c@14: d2.quantizeStep = 1; c@14: for (int i = d2.minValue; i <= d2.maxValue; i++){ c@14: d2.valueNames.push_back(floatToString(pow((float)2,(float)i))); c@13: } c@14: list.push_back(d2); c@0: c@14: ParameterDescriptor d3; c@14: d3.identifier = "log2HopSize"; c@14: d3.name = "Tempogram Hopsize"; c@14: d3.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function."; c@14: d3.unit = ""; c@14: d3.minValue = 6; c@14: d3.maxValue = 12; c@14: d3.defaultValue = 6; c@14: d3.isQuantized = true; c@14: d3.quantizeStep = 1; c@14: for (int i = d3.minValue; i <= d3.maxValue; i++){ c@14: d3.valueNames.push_back(floatToString(pow((float)2,(float)i))); c@14: } c@14: list.push_back(d3); c@9: c@14: ParameterDescriptor d4; c@14: d4.identifier = "log2FftLength"; c@14: d4.name = "Tempogram FFT Length"; c@14: d4.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding."; c@14: d4.unit = ""; c@14: d4.minValue = 6; c@14: d4.maxValue = 12; c@14: d4.defaultValue = d2.defaultValue; c@14: d4.isQuantized = true; c@14: d4.quantizeStep = 1; c@14: for (int i = d4.minValue; i <= d4.maxValue; i++){ c@14: d4.valueNames.push_back(floatToString(pow((float)2,(float)i))); c@14: } c@14: list.push_back(d4); c@14: c@14: ParameterDescriptor d5; c@14: d5.identifier = "minBPM"; c@18: d5.name = "(Cyclic) Tempogram Minimum BPM"; c@14: d5.description = "The minimum BPM of the tempogram output bins."; c@14: d5.unit = ""; c@14: d5.minValue = 0; c@14: d5.maxValue = 2000; c@14: d5.defaultValue = 30; c@14: d5.isQuantized = true; c@14: d5.quantizeStep = 5; c@14: list.push_back(d5); c@14: c@14: ParameterDescriptor d6; c@14: d6.identifier = "maxBPM"; c@18: d6.name = "(Cyclic) Tempogram Maximum BPM"; c@18: d6.description = "The maximum BPM of the tempogram output bins."; c@14: d6.unit = ""; c@14: d6.minValue = 30; c@14: d6.maxValue = 2000; c@14: d6.defaultValue = 480; c@14: d6.isQuantized = true; c@14: d6.quantizeStep = 5; c@14: list.push_back(d6); c@18: c@18: ParameterDescriptor d7; c@18: d7.identifier = "octDiv"; c@18: d7.name = "Cyclic Tempogram Octave Divider"; c@18: d7.description = "The number bins within each octave."; c@18: d7.unit = ""; c@18: d7.minValue = 5; c@18: d7.maxValue = 60; c@18: d7.defaultValue = 30; c@18: d7.isQuantized = true; c@18: d7.quantizeStep = 1; c@18: list.push_back(d7); c@0: c@0: return list; c@0: } c@0: c@0: float c@14: TempogramPlugin::getParameter(string identifier) const c@0: { c@0: if (identifier == "C") { c@18: return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here! c@0: } c@14: else if (identifier == "log2TN"){ c@18: return m_tempogramLog2WindowLength; c@9: } c@14: else if (identifier == "log2HopSize"){ c@18: return m_tempogramLog2HopSize; c@14: } c@14: else if (identifier == "log2FftLength"){ c@18: return m_tempogramLog2FftLength; c@14: } c@14: else if (identifier == "minBPM") { c@18: return m_tempogramMinBPM; c@9: } c@14: else if (identifier == "maxBPM"){ c@18: return m_tempogramMaxBPM; c@18: } c@18: else if (identifier == "octDiv"){ c@18: return m_cyclicTempogramOctaveDivider; c@0: } c@0: c@0: return 0; c@0: } c@0: c@0: void c@14: TempogramPlugin::setParameter(string identifier, float value) c@0: { c@9: c@0: if (identifier == "C") { c@18: m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter c@0: } c@14: else if (identifier == "log2TN") { c@18: m_tempogramWindowLength = pow(2,value); c@18: m_tempogramLog2WindowLength = value; c@0: } c@14: else if (identifier == "log2HopSize"){ c@18: m_tempogramHopSize = pow(2,value); c@18: m_tempogramLog2HopSize = value; c@14: } c@18: else if (identifier == "log2FftLength"){ c@18: m_tempogramFftLength = pow(2,value); c@18: m_tempogramLog2FftLength = value; c@14: } c@14: else if (identifier == "minBPM") { c@18: m_tempogramMinBPM = value; c@9: } c@14: else if (identifier == "maxBPM"){ c@18: m_tempogramMaxBPM = value; c@18: } c@18: else if (identifier == "octDiv"){ c@18: m_cyclicTempogramOctaveDivider = value; c@9: } c@9: c@9: } c@9: c@14: TempogramPlugin::ProgramList c@14: TempogramPlugin::getPrograms() const c@0: { c@0: ProgramList list; c@0: c@0: // If you have no programs, return an empty list (or simply don't c@0: // implement this function or getCurrentProgram/selectProgram) c@0: c@0: return list; c@0: } c@0: c@0: string c@14: TempogramPlugin::getCurrentProgram() const c@0: { c@0: return ""; // no programs c@0: } c@0: c@0: void c@14: TempogramPlugin::selectProgram(string name) c@0: { c@0: } c@0: c@14: string TempogramPlugin::floatToString(float value) const c@9: { c@9: ostringstream ss; c@9: c@14: if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string"); c@9: return ss.str(); c@9: } c@9: c@14: TempogramPlugin::OutputList c@14: TempogramPlugin::getOutputDescriptors() const c@0: { c@0: OutputList list; c@0: c@0: // See OutputDescriptor documentation for the possibilities here. c@0: // Every plugin must have at least one output. c@1: c@7: float d_sampleRate; c@18: float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize; c@7: c@21: OutputDescriptor d3; c@21: d3.identifier = "cyclicTempogram"; c@21: d3.name = "Cyclic Tempogram"; c@21: d3.description = "Cyclic Tempogram"; c@21: d3.unit = ""; c@21: d3.hasFixedBinCount = true; c@21: d3.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0; c@21: d3.hasKnownExtents = false; c@21: d3.isQuantized = false; c@21: d3.sampleType = OutputDescriptor::FixedSampleRate; c@21: d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize; c@21: d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0; c@21: d3.hasDuration = false; c@21: list.push_back(d3); c@21: c@21: OutputDescriptor d1; c@18: d1.identifier = "tempogram"; c@18: d1.name = "Tempogram"; c@18: d1.description = "Tempogram"; c@18: d1.unit = "BPM"; c@18: d1.hasFixedBinCount = true; c@18: d1.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1; c@18: d1.hasKnownExtents = false; c@18: d1.isQuantized = false; c@18: d1.sampleType = OutputDescriptor::FixedSampleRate; c@18: d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize; c@18: d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0; c@18: for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){ c@18: float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate); c@18: d1.binNames.push_back(floatToString(w*60)); c@9: } c@18: d1.hasDuration = false; c@18: list.push_back(d1); c@7: c@18: OutputDescriptor d2; c@18: d2.identifier = "nc"; c@18: d2.name = "Novelty Curve"; c@18: d2.description = "Novelty Curve"; c@18: d2.unit = ""; c@18: d2.hasFixedBinCount = true; c@18: d2.binCount = 1; c@18: d2.hasKnownExtents = false; c@18: d2.isQuantized = false; c@18: d2.sampleType = OutputDescriptor::FixedSampleRate; c@9: d_sampleRate = tempogramInputSampleRate; c@18: d2.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0; c@18: d2.hasDuration = false; c@18: list.push_back(d2); c@18: c@0: return list; c@0: } c@0: c@21: bool TempogramPlugin::handleParameterValues(){ c@21: c@21: if (m_tempogramHopSize <= 0) return false; c@21: if (m_tempogramLog2FftLength <= 0) return false; c@0: c@18: if (m_tempogramFftLength < m_tempogramWindowLength){ c@18: m_tempogramFftLength = m_tempogramWindowLength; c@14: } c@18: if (m_tempogramMinBPM > m_tempogramMaxBPM){ c@18: m_tempogramMinBPM = 30; c@18: m_tempogramMaxBPM = 480; c@9: } c@9: c@18: float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize; c@21: m_tempogramMinBin = (max(floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)0.0)); c@21: m_tempogramMaxBin = (min(ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)m_tempogramFftLength/2)); c@18: c@18: if (m_tempogramMinBPM > m_cyclicTempogramMinBPM) m_cyclicTempogramMinBPM = m_tempogramMinBPM; c@18: float cyclicTempogramMaxBPM = 480; c@18: if (m_tempogramMaxBPM < cyclicTempogramMaxBPM) cyclicTempogramMaxBPM = m_tempogramMaxBPM; c@18: c@18: m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM)); c@18: int numberOfBinsInFirstOctave = bpmToBin(m_cyclicTempogramMinBPM); c@19: if (m_cyclicTempogramOctaveDivider > numberOfBinsInFirstOctave) m_cyclicTempogramOctaveDivider = numberOfBinsInFirstOctave; c@19: c@21: return true; c@20: } c@20: c@20: bool c@20: TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize) c@20: { c@20: if (channels < getMinChannelCount() || c@20: channels > getMaxChannelCount()) return false; c@20: c@20: // Real initialisation work goes here! c@20: m_inputBlockSize = blockSize; c@20: m_inputStepSize = stepSize; c@20: c@20: m_spectrogram = SpectrogramTransposed(m_inputBlockSize/2.0f + 1); c@21: if (!handleParameterValues()) return false; c@19: //cout << m_cyclicTempogramOctaveDivider << endl; c@4: c@0: return true; c@0: } c@0: c@0: void c@14: TempogramPlugin::reset() c@0: { c@0: // Clear buffers, reset stored values, etc c@19: m_spectrogram.clear(); c@20: m_spectrogram = SpectrogramTransposed(m_inputBlockSize/2.0f + 1); c@21: handleParameterValues(); c@0: } c@0: c@14: TempogramPlugin::FeatureSet c@14: TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp) c@0: { c@21: //cerr << "Here" << endl; c@21: c@18: size_t n = m_inputBlockSize/2 + 1; c@0: c@0: FeatureSet featureSet; c@0: Feature feature; c@0: c@0: const float *in = inputBuffers[0]; c@3: c@9: //calculate magnitude of FrequencyDomain input c@20: for (int i = 0; i < (int)n; i++){ c@0: float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]); c@18: magnitude = magnitude > m_noveltyCurveMinDB ? magnitude : m_noveltyCurveMinDB; c@13: m_spectrogram[i].push_back(magnitude); c@0: } c@21: c@2: return featureSet; c@0: } c@0: c@18: vector TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const c@18: { c@18: vector logBins; c@18: c@18: for (int i = 0; i < (int)ceil(m_cyclicTempogramNumberOfOctaves*m_cyclicTempogramOctaveDivider); i++){ c@18: float bpm = m_cyclicTempogramMinBPM*pow(2.0f, (float)i/m_cyclicTempogramOctaveDivider); c@18: int bin = bpmToBin(bpm); c@18: c@18: logBins.push_back(bin); c@20: //cerr << bin << endl; c@18: } c@18: c@20: //cerr << logBins.size() << endl; c@19: c@18: return logBins; c@18: } c@18: c@18: int TempogramPlugin::bpmToBin(const float &bpm) const c@18: { c@18: float w = (float)bpm/60; c@18: float sampleRate = m_inputSampleRate/m_inputStepSize; c@18: int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5); c@18: c@18: if(bin < 0) bin = 0; c@20: else if(bin > m_tempogramFftLength/2.0f) bin = m_tempogramFftLength; c@18: c@18: return bin; c@18: } c@18: c@21: float TempogramPlugin::binToBPM(const int &bin) const c@21: { c@21: float sampleRate = m_inputSampleRate/m_inputStepSize; c@21: c@21: return (bin*sampleRate/m_tempogramFftLength)*60; c@21: } c@21: c@14: TempogramPlugin::FeatureSet c@14: TempogramPlugin::getRemainingFeatures() c@11: { c@0: c@18: float * hannWindow = new float[m_tempogramWindowLength]; c@20: for (int i = 0; i < (int)m_tempogramWindowLength; i++){ c@14: hannWindow[i] = 0.0; c@4: } c@11: c@1: FeatureSet featureSet; c@0: c@19: //initialise novelty curve processor c@14: size_t numberOfBlocks = m_spectrogram[0].size(); c@20: //cerr << numberOfBlocks << endl; c@18: NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, numberOfBlocks, m_noveltyCurveCompressionConstant); c@21: vector noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curvefrom magnitude data c@20: //if(noveltyCurve.size() > 50) for (int i = 0; i < 50; i++) cerr << noveltyCurve[i] << endl; c@4: c@9: //push novelty curve data to featureset 1 and set timestamps c@20: for (int i = 0; i < (int)numberOfBlocks; i++){ c@19: Feature noveltyCurveFeature; c@19: noveltyCurveFeature.values.push_back(noveltyCurve[i]); c@19: noveltyCurveFeature.hasTimestamp = false; c@21: featureSet[2].push_back(noveltyCurveFeature); c@21: assert(!isnan(noveltyCurveFeature.values.back())); c@4: } c@4: c@9: //window function for spectrogram c@18: WindowFunction::hanning(hannWindow, m_tempogramWindowLength); c@9: c@9: //initialise spectrogram processor c@18: SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize); c@9: //compute spectrogram from novelty curve data (i.e., tempogram) c@19: Tempogram tempogram = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow); c@18: delete []hannWindow; c@18: hannWindow = 0; c@0: c@14: int tempogramLength = tempogram.size(); c@7: c@9: //push tempogram data to featureset 0 and set timestamps. c@7: for (int block = 0; block < tempogramLength; block++){ c@19: Feature tempogramFeature; c@0: c@18: assert(tempogram[block].size() == (m_tempogramFftLength/2 + 1)); c@18: for(int k = m_tempogramMinBin; k < (int)m_tempogramMaxBin; k++){ c@19: tempogramFeature.values.push_back(tempogram[block][k]); c@21: assert(!isnan(tempogramFeature.values.back())); c@0: } c@19: tempogramFeature.hasTimestamp = false; c@21: featureSet[1].push_back(tempogramFeature); c@0: } c@0: c@18: //Calculate cyclic tempogram c@18: vector logBins = calculateTempogramNearestNeighbourLogBins(); c@18: c@20: assert(logBins.back() <= m_tempogramFftLength/2.0f); c@20: assert((int)logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves); c@18: for (int block = 0; block < tempogramLength; block++){ c@19: Feature cyclicTempogramFeature; c@18: c@20: for (int i = 0; i < (int)m_cyclicTempogramOctaveDivider; i++){ c@18: float sum = 0; c@21: c@21: //mcerr << floor(binToBPM(logBins[i]) + 0.5) << " " << floor(binToBPM(logBins[i + m_cyclicTempogramOctaveDivider]) + 0.5) << endl; c@21: c@20: for (int j = 0; j < (int)m_cyclicTempogramNumberOfOctaves; j++){ c@18: sum += tempogram[block][logBins[i+j*m_cyclicTempogramOctaveDivider]]; c@18: } c@19: cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves); c@21: assert(!isnan(cyclicTempogramFeature.values.back())); c@18: } c@18: c@19: cyclicTempogramFeature.hasTimestamp = false; c@21: featureSet[0].push_back(cyclicTempogramFeature); c@18: } c@0: c@0: return featureSet; c@0: }