Mercurial > hg > vamp-tempogram
view TempogramPlugin.cpp @ 19:e90a4797e579
* Attempted fixing bug which crashes sonic visualizer.
author | Carl Bussey <c.bussey@se10.qmul.ac.uk> |
---|---|
date | Fri, 15 Aug 2014 12:34:07 +0100 |
parents | 89bc9e5199d7 |
children | de7213b35755 |
line wrap: on
line source
// This is a skeleton file for use in creating your own plugin // libraries. Replace MyPlugin and myPlugin throughout with the name // of your first plugin class, and fill in the gaps as appropriate. #include "TempogramPlugin.h" #include <sstream> #include <stdexcept> using Vamp::FFT; using Vamp::RealTime; using namespace std; TempogramPlugin::TempogramPlugin(float inputSampleRate) : Plugin(inputSampleRate), m_inputBlockSize(0), //host parameter m_inputStepSize(0), //host parameter m_noveltyCurveMinDB(pow(10,(float)-74/20)), //set in initialise() m_noveltyCurveCompressionConstant(1000), //parameter m_tempogramLog2WindowLength(10), //parameter m_tempogramWindowLength(pow((float)2,m_tempogramLog2WindowLength)), m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter m_tempogramFftLength(m_tempogramWindowLength), m_tempogramLog2HopSize(6), //parameter m_tempogramHopSize(pow((float)2,m_tempogramLog2HopSize)), m_tempogramMinBPM(30), //parameter m_tempogramMaxBPM(480), //parameter m_tempogramMinBin(0), //set in initialise() m_tempogramMaxBin(0), //set in initialise() m_cyclicTempogramMinBPM(30), //reset in initialise() m_cyclicTempogramNumberOfOctaves(0), //set in initialise() m_cyclicTempogramOctaveDivider(30) //parameter // Also be sure to set your plugin parameters (presumably stored // in member variables) to their default values here -- the host // will not do that for you { } TempogramPlugin::~TempogramPlugin() { //delete stuff } string TempogramPlugin::getIdentifier() const { return "tempogram"; } string TempogramPlugin::getName() const { return "Tempogram"; } string TempogramPlugin::getDescription() const { // Return something helpful here! return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller"; } string TempogramPlugin::getMaker() const { //Your name here return "Carl Bussey"; } int TempogramPlugin::getPluginVersion() const { // Increment this each time you release a version that behaves // differently from the previous one return 1; } string TempogramPlugin::getCopyright() const { // This function is not ideally named. It does not necessarily // need to say who made the plugin -- getMaker does that -- but it // should indicate the terms under which it is distributed. For // example, "Copyright (year). All Rights Reserved", or "GPL" return ""; } TempogramPlugin::InputDomain TempogramPlugin::getInputDomain() const { return FrequencyDomain; } size_t TempogramPlugin::getPreferredBlockSize() const { return 2048; // 0 means "I can handle any block size" } size_t TempogramPlugin::getPreferredStepSize() const { return 1024; // 0 means "anything sensible"; in practice this // means the same as the block size for TimeDomain // plugins, or half of it for FrequencyDomain plugins } size_t TempogramPlugin::getMinChannelCount() const { return 1; } size_t TempogramPlugin::getMaxChannelCount() const { return 1; } TempogramPlugin::ParameterList TempogramPlugin::getParameterDescriptors() const { ParameterList list; // If the plugin has no adjustable parameters, return an empty // list here (and there's no need to provide implementations of // getParameter and setParameter in that case either). // Note that it is your responsibility to make sure the parameters // start off having their default values (e.g. in the constructor // above). The host needs to know the default value so it can do // things like provide a "reset to default" function, but it will // not explicitly set your parameters to their defaults for you if // they have not changed in the mean time. ParameterDescriptor d1; d1.identifier = "C"; d1.name = "Novelty Curve Spectrogram Compression Constant"; d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio."; d1.unit = ""; d1.minValue = 2; d1.maxValue = 10000; d1.defaultValue = 1000; d1.isQuantized = false; list.push_back(d1); ParameterDescriptor d2; d2.identifier = "log2TN"; d2.name = "Tempogram Window Length"; d2.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function."; d2.unit = ""; d2.minValue = 7; d2.maxValue = 12; d2.defaultValue = 10; d2.isQuantized = true; d2.quantizeStep = 1; for (int i = d2.minValue; i <= d2.maxValue; i++){ d2.valueNames.push_back(floatToString(pow((float)2,(float)i))); } list.push_back(d2); ParameterDescriptor d3; d3.identifier = "log2HopSize"; d3.name = "Tempogram Hopsize"; d3.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function."; d3.unit = ""; d3.minValue = 6; d3.maxValue = 12; d3.defaultValue = 6; d3.isQuantized = true; d3.quantizeStep = 1; for (int i = d3.minValue; i <= d3.maxValue; i++){ d3.valueNames.push_back(floatToString(pow((float)2,(float)i))); } list.push_back(d3); ParameterDescriptor d4; d4.identifier = "log2FftLength"; d4.name = "Tempogram FFT Length"; d4.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding."; d4.unit = ""; d4.minValue = 6; d4.maxValue = 12; d4.defaultValue = d2.defaultValue; d4.isQuantized = true; d4.quantizeStep = 1; for (int i = d4.minValue; i <= d4.maxValue; i++){ d4.valueNames.push_back(floatToString(pow((float)2,(float)i))); } list.push_back(d4); ParameterDescriptor d5; d5.identifier = "minBPM"; d5.name = "(Cyclic) Tempogram Minimum BPM"; d5.description = "The minimum BPM of the tempogram output bins."; d5.unit = ""; d5.minValue = 0; d5.maxValue = 2000; d5.defaultValue = 30; d5.isQuantized = true; d5.quantizeStep = 5; list.push_back(d5); ParameterDescriptor d6; d6.identifier = "maxBPM"; d6.name = "(Cyclic) Tempogram Maximum BPM"; d6.description = "The maximum BPM of the tempogram output bins."; d6.unit = ""; d6.minValue = 30; d6.maxValue = 2000; d6.defaultValue = 480; d6.isQuantized = true; d6.quantizeStep = 5; list.push_back(d6); ParameterDescriptor d7; d7.identifier = "octDiv"; d7.name = "Cyclic Tempogram Octave Divider"; d7.description = "The number bins within each octave."; d7.unit = ""; d7.minValue = 5; d7.maxValue = 60; d7.defaultValue = 30; d7.isQuantized = true; d7.quantizeStep = 1; list.push_back(d7); return list; } float TempogramPlugin::getParameter(string identifier) const { if (identifier == "C") { return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here! } else if (identifier == "log2TN"){ return m_tempogramLog2WindowLength; } else if (identifier == "log2HopSize"){ return m_tempogramLog2HopSize; } else if (identifier == "log2FftLength"){ return m_tempogramLog2FftLength; } else if (identifier == "minBPM") { return m_tempogramMinBPM; } else if (identifier == "maxBPM"){ return m_tempogramMaxBPM; } else if (identifier == "octDiv"){ return m_cyclicTempogramOctaveDivider; } return 0; } void TempogramPlugin::setParameter(string identifier, float value) { if (identifier == "C") { m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter } else if (identifier == "log2TN") { m_tempogramWindowLength = pow(2,value); m_tempogramLog2WindowLength = value; } else if (identifier == "log2HopSize"){ m_tempogramHopSize = pow(2,value); m_tempogramLog2HopSize = value; } else if (identifier == "log2FftLength"){ m_tempogramFftLength = pow(2,value); m_tempogramLog2FftLength = value; } else if (identifier == "minBPM") { m_tempogramMinBPM = value; } else if (identifier == "maxBPM"){ m_tempogramMaxBPM = value; } else if (identifier == "octDiv"){ m_cyclicTempogramOctaveDivider = value; } } TempogramPlugin::ProgramList TempogramPlugin::getPrograms() const { ProgramList list; // If you have no programs, return an empty list (or simply don't // implement this function or getCurrentProgram/selectProgram) return list; } string TempogramPlugin::getCurrentProgram() const { return ""; // no programs } void TempogramPlugin::selectProgram(string name) { } string TempogramPlugin::floatToString(float value) const { ostringstream ss; if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string"); return ss.str(); } TempogramPlugin::OutputList TempogramPlugin::getOutputDescriptors() const { OutputList list; // See OutputDescriptor documentation for the possibilities here. // Every plugin must have at least one output. OutputDescriptor d1; float d_sampleRate; float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize; d1.identifier = "tempogram"; d1.name = "Tempogram"; d1.description = "Tempogram"; d1.unit = "BPM"; d1.hasFixedBinCount = true; d1.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1; d1.hasKnownExtents = false; d1.isQuantized = false; d1.sampleType = OutputDescriptor::FixedSampleRate; d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize; d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0; for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){ float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate); d1.binNames.push_back(floatToString(w*60)); } d1.hasDuration = false; list.push_back(d1); OutputDescriptor d2; d2.identifier = "nc"; d2.name = "Novelty Curve"; d2.description = "Novelty Curve"; d2.unit = ""; d2.hasFixedBinCount = true; d2.binCount = 1; d2.hasKnownExtents = false; d2.isQuantized = false; d2.sampleType = OutputDescriptor::FixedSampleRate; d_sampleRate = tempogramInputSampleRate; d2.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0; d2.hasDuration = false; list.push_back(d2); OutputDescriptor d3; d3.identifier = "cyclicTempogram"; d3.name = "Cyclic Tempogram"; d3.description = "Cyclic Tempogram"; d3.unit = ""; d3.hasFixedBinCount = true; d3.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0; d3.hasKnownExtents = false; d3.isQuantized = false; d3.sampleType = OutputDescriptor::FixedSampleRate; d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize; d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0; d3.hasDuration = false; list.push_back(d3); return list; } bool TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; // Real initialisation work goes here! m_inputBlockSize = blockSize; m_inputStepSize = stepSize; m_spectrogram = SpectrogramTransposed(m_inputBlockSize/2 + 1); if (m_tempogramFftLength < m_tempogramWindowLength){ m_tempogramFftLength = m_tempogramWindowLength; } if (m_tempogramMinBPM > m_tempogramMaxBPM){ m_tempogramMinBPM = 30; m_tempogramMaxBPM = 480; } float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize; m_tempogramMinBin = (unsigned int)(max(floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)0.0)); m_tempogramMaxBin = (unsigned int)(min(ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)m_tempogramFftLength/2)); if (m_tempogramMinBPM > m_cyclicTempogramMinBPM) m_cyclicTempogramMinBPM = m_tempogramMinBPM; float cyclicTempogramMaxBPM = 480; if (m_tempogramMaxBPM < cyclicTempogramMaxBPM) cyclicTempogramMaxBPM = m_tempogramMaxBPM; m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM)); int numberOfBinsInFirstOctave = bpmToBin(m_cyclicTempogramMinBPM); if (m_cyclicTempogramOctaveDivider > numberOfBinsInFirstOctave) m_cyclicTempogramOctaveDivider = numberOfBinsInFirstOctave; //cout << m_cyclicTempogramOctaveDivider << endl; return true; } void TempogramPlugin::reset() { // Clear buffers, reset stored values, etc m_spectrogram.clear(); m_spectrogram = SpectrogramTransposed(m_inputBlockSize/2 + 1); } TempogramPlugin::FeatureSet TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { size_t n = m_inputBlockSize/2 + 1; FeatureSet featureSet; Feature feature; const float *in = inputBuffers[0]; //calculate magnitude of FrequencyDomain input for (unsigned int i = 0; i < n; i++){ float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]); magnitude = magnitude > m_noveltyCurveMinDB ? magnitude : m_noveltyCurveMinDB; m_spectrogram[i].push_back(magnitude); } return featureSet; } vector<unsigned int> TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const { vector<unsigned int> logBins; for (int i = 0; i < (int)ceil(m_cyclicTempogramNumberOfOctaves*m_cyclicTempogramOctaveDivider); i++){ float bpm = m_cyclicTempogramMinBPM*pow(2.0f, (float)i/m_cyclicTempogramOctaveDivider); int bin = bpmToBin(bpm); logBins.push_back(bin); cerr << bin << endl; } cerr << logBins.size() << endl; return logBins; } int TempogramPlugin::bpmToBin(const float &bpm) const { float w = (float)bpm/60; float sampleRate = m_inputSampleRate/m_inputStepSize; int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5); if(bin < 0) bin = 0; else if(bin > m_tempogramFftLength/2) bin = m_tempogramFftLength; return bin; } TempogramPlugin::FeatureSet TempogramPlugin::getRemainingFeatures() { float * hannWindow = new float[m_tempogramWindowLength]; for (unsigned int i = 0; i < m_tempogramWindowLength; i++){ hannWindow[i] = 0.0; } FeatureSet featureSet; //initialise novelty curve processor size_t numberOfBlocks = m_spectrogram[0].size(); NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, numberOfBlocks, m_noveltyCurveCompressionConstant); vector<float> noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curve from magnitude data //push novelty curve data to featureset 1 and set timestamps for (unsigned int i = 0; i < numberOfBlocks; i++){ Feature noveltyCurveFeature; noveltyCurveFeature.values.push_back(noveltyCurve[i]); noveltyCurveFeature.hasTimestamp = false; featureSet[1].push_back(noveltyCurveFeature); } //window function for spectrogram WindowFunction::hanning(hannWindow, m_tempogramWindowLength); //initialise spectrogram processor SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize); //compute spectrogram from novelty curve data (i.e., tempogram) Tempogram tempogram = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow); delete []hannWindow; hannWindow = 0; int tempogramLength = tempogram.size(); //push tempogram data to featureset 0 and set timestamps. for (int block = 0; block < tempogramLength; block++){ Feature tempogramFeature; assert(tempogram[block].size() == (m_tempogramFftLength/2 + 1)); for(int k = m_tempogramMinBin; k < (int)m_tempogramMaxBin; k++){ tempogramFeature.values.push_back(tempogram[block][k]); } tempogramFeature.hasTimestamp = false; featureSet[0].push_back(tempogramFeature); } //Calculate cyclic tempogram vector<unsigned int> logBins = calculateTempogramNearestNeighbourLogBins(); assert(logBins.back() <= m_tempogramFftLength/2); assert(logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves); for (int block = 0; block < tempogramLength; block++){ Feature cyclicTempogramFeature; for (int i = 0; i < m_cyclicTempogramOctaveDivider; i++){ float sum = 0; for (int j = 0; j < m_cyclicTempogramNumberOfOctaves; j++){ sum += tempogram[block][logBins[i+j*m_cyclicTempogramOctaveDivider]]; } cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves); } cyclicTempogramFeature.hasTimestamp = false; featureSet[2].push_back(cyclicTempogramFeature); } return featureSet; }