c@0
|
1
|
c@0
|
2 // This is a skeleton file for use in creating your own plugin
|
c@0
|
3 // libraries. Replace MyPlugin and myPlugin throughout with the name
|
c@0
|
4 // of your first plugin class, and fill in the gaps as appropriate.
|
c@0
|
5
|
c@0
|
6
|
c@14
|
7 #include "TempogramPlugin.h"
|
c@9
|
8 #include <sstream>
|
c@9
|
9 #include <stdexcept>
|
c@4
|
10
|
c@0
|
11 using Vamp::FFT;
|
c@7
|
12 using Vamp::RealTime;
|
c@0
|
13 using namespace std;
|
c@0
|
14
|
c@14
|
15 TempogramPlugin::TempogramPlugin(float inputSampleRate) :
|
c@0
|
16 Plugin(inputSampleRate),
|
c@18
|
17 m_inputBlockSize(0), //host parameter
|
c@18
|
18 m_inputStepSize(0), //host parameter
|
c@19
|
19 m_noveltyCurveMinDB(pow(10,(float)-74/20)), //set in initialise()
|
c@18
|
20 m_noveltyCurveCompressionConstant(1000), //parameter
|
c@18
|
21 m_tempogramLog2WindowLength(10), //parameter
|
c@18
|
22 m_tempogramWindowLength(pow((float)2,m_tempogramLog2WindowLength)),
|
c@18
|
23 m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter
|
c@18
|
24 m_tempogramFftLength(m_tempogramWindowLength),
|
c@18
|
25 m_tempogramLog2HopSize(6), //parameter
|
c@18
|
26 m_tempogramHopSize(pow((float)2,m_tempogramLog2HopSize)),
|
c@18
|
27 m_tempogramMinBPM(30), //parameter
|
c@18
|
28 m_tempogramMaxBPM(480), //parameter
|
c@18
|
29 m_tempogramMinBin(0), //set in initialise()
|
c@18
|
30 m_tempogramMaxBin(0), //set in initialise()
|
c@18
|
31 m_cyclicTempogramMinBPM(30), //reset in initialise()
|
c@18
|
32 m_cyclicTempogramNumberOfOctaves(0), //set in initialise()
|
c@18
|
33 m_cyclicTempogramOctaveDivider(30) //parameter
|
c@0
|
34
|
c@0
|
35 // Also be sure to set your plugin parameters (presumably stored
|
c@0
|
36 // in member variables) to their default values here -- the host
|
c@0
|
37 // will not do that for you
|
c@0
|
38 {
|
c@0
|
39 }
|
c@0
|
40
|
c@14
|
41 TempogramPlugin::~TempogramPlugin()
|
c@0
|
42 {
|
c@0
|
43 //delete stuff
|
c@19
|
44
|
c@0
|
45 }
|
c@0
|
46
|
c@0
|
47 string
|
c@14
|
48 TempogramPlugin::getIdentifier() const
|
c@0
|
49 {
|
c@0
|
50 return "tempogram";
|
c@0
|
51 }
|
c@0
|
52
|
c@0
|
53 string
|
c@14
|
54 TempogramPlugin::getName() const
|
c@0
|
55 {
|
c@0
|
56 return "Tempogram";
|
c@0
|
57 }
|
c@0
|
58
|
c@0
|
59 string
|
c@14
|
60 TempogramPlugin::getDescription() const
|
c@0
|
61 {
|
c@0
|
62 // Return something helpful here!
|
c@0
|
63 return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller";
|
c@0
|
64 }
|
c@0
|
65
|
c@0
|
66 string
|
c@14
|
67 TempogramPlugin::getMaker() const
|
c@0
|
68 {
|
c@0
|
69 //Your name here
|
c@0
|
70 return "Carl Bussey";
|
c@0
|
71 }
|
c@0
|
72
|
c@0
|
73 int
|
c@14
|
74 TempogramPlugin::getPluginVersion() const
|
c@0
|
75 {
|
c@0
|
76 // Increment this each time you release a version that behaves
|
c@0
|
77 // differently from the previous one
|
c@0
|
78 return 1;
|
c@0
|
79 }
|
c@0
|
80
|
c@0
|
81 string
|
c@14
|
82 TempogramPlugin::getCopyright() const
|
c@0
|
83 {
|
c@0
|
84 // This function is not ideally named. It does not necessarily
|
c@0
|
85 // need to say who made the plugin -- getMaker does that -- but it
|
c@0
|
86 // should indicate the terms under which it is distributed. For
|
c@0
|
87 // example, "Copyright (year). All Rights Reserved", or "GPL"
|
c@0
|
88 return "";
|
c@0
|
89 }
|
c@0
|
90
|
c@14
|
91 TempogramPlugin::InputDomain
|
c@14
|
92 TempogramPlugin::getInputDomain() const
|
c@0
|
93 {
|
c@0
|
94 return FrequencyDomain;
|
c@0
|
95 }
|
c@0
|
96
|
c@0
|
97 size_t
|
c@14
|
98 TempogramPlugin::getPreferredBlockSize() const
|
c@0
|
99 {
|
c@9
|
100 return 2048; // 0 means "I can handle any block size"
|
c@0
|
101 }
|
c@0
|
102
|
c@0
|
103 size_t
|
c@14
|
104 TempogramPlugin::getPreferredStepSize() const
|
c@0
|
105 {
|
c@9
|
106 return 1024; // 0 means "anything sensible"; in practice this
|
c@0
|
107 // means the same as the block size for TimeDomain
|
c@0
|
108 // plugins, or half of it for FrequencyDomain plugins
|
c@0
|
109 }
|
c@0
|
110
|
c@0
|
111 size_t
|
c@14
|
112 TempogramPlugin::getMinChannelCount() const
|
c@0
|
113 {
|
c@0
|
114 return 1;
|
c@0
|
115 }
|
c@0
|
116
|
c@0
|
117 size_t
|
c@14
|
118 TempogramPlugin::getMaxChannelCount() const
|
c@0
|
119 {
|
c@0
|
120 return 1;
|
c@0
|
121 }
|
c@0
|
122
|
c@14
|
123 TempogramPlugin::ParameterList
|
c@14
|
124 TempogramPlugin::getParameterDescriptors() const
|
c@0
|
125 {
|
c@0
|
126 ParameterList list;
|
c@0
|
127
|
c@0
|
128 // If the plugin has no adjustable parameters, return an empty
|
c@0
|
129 // list here (and there's no need to provide implementations of
|
c@0
|
130 // getParameter and setParameter in that case either).
|
c@0
|
131
|
c@0
|
132 // Note that it is your responsibility to make sure the parameters
|
c@0
|
133 // start off having their default values (e.g. in the constructor
|
c@0
|
134 // above). The host needs to know the default value so it can do
|
c@0
|
135 // things like provide a "reset to default" function, but it will
|
c@0
|
136 // not explicitly set your parameters to their defaults for you if
|
c@0
|
137 // they have not changed in the mean time.
|
c@0
|
138
|
c@14
|
139 ParameterDescriptor d1;
|
c@14
|
140 d1.identifier = "C";
|
c@15
|
141 d1.name = "Novelty Curve Spectrogram Compression Constant";
|
c@14
|
142 d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio.";
|
c@14
|
143 d1.unit = "";
|
c@14
|
144 d1.minValue = 2;
|
c@14
|
145 d1.maxValue = 10000;
|
c@14
|
146 d1.defaultValue = 1000;
|
c@14
|
147 d1.isQuantized = false;
|
c@14
|
148 list.push_back(d1);
|
c@9
|
149
|
c@14
|
150 ParameterDescriptor d2;
|
c@14
|
151 d2.identifier = "log2TN";
|
c@14
|
152 d2.name = "Tempogram Window Length";
|
c@14
|
153 d2.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function.";
|
c@14
|
154 d2.unit = "";
|
c@14
|
155 d2.minValue = 7;
|
c@14
|
156 d2.maxValue = 12;
|
c@14
|
157 d2.defaultValue = 10;
|
c@14
|
158 d2.isQuantized = true;
|
c@14
|
159 d2.quantizeStep = 1;
|
c@14
|
160 for (int i = d2.minValue; i <= d2.maxValue; i++){
|
c@14
|
161 d2.valueNames.push_back(floatToString(pow((float)2,(float)i)));
|
c@13
|
162 }
|
c@14
|
163 list.push_back(d2);
|
c@0
|
164
|
c@14
|
165 ParameterDescriptor d3;
|
c@14
|
166 d3.identifier = "log2HopSize";
|
c@14
|
167 d3.name = "Tempogram Hopsize";
|
c@14
|
168 d3.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function.";
|
c@14
|
169 d3.unit = "";
|
c@14
|
170 d3.minValue = 6;
|
c@14
|
171 d3.maxValue = 12;
|
c@14
|
172 d3.defaultValue = 6;
|
c@14
|
173 d3.isQuantized = true;
|
c@14
|
174 d3.quantizeStep = 1;
|
c@14
|
175 for (int i = d3.minValue; i <= d3.maxValue; i++){
|
c@14
|
176 d3.valueNames.push_back(floatToString(pow((float)2,(float)i)));
|
c@14
|
177 }
|
c@14
|
178 list.push_back(d3);
|
c@9
|
179
|
c@14
|
180 ParameterDescriptor d4;
|
c@14
|
181 d4.identifier = "log2FftLength";
|
c@14
|
182 d4.name = "Tempogram FFT Length";
|
c@14
|
183 d4.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding.";
|
c@14
|
184 d4.unit = "";
|
c@14
|
185 d4.minValue = 6;
|
c@14
|
186 d4.maxValue = 12;
|
c@14
|
187 d4.defaultValue = d2.defaultValue;
|
c@14
|
188 d4.isQuantized = true;
|
c@14
|
189 d4.quantizeStep = 1;
|
c@14
|
190 for (int i = d4.minValue; i <= d4.maxValue; i++){
|
c@14
|
191 d4.valueNames.push_back(floatToString(pow((float)2,(float)i)));
|
c@14
|
192 }
|
c@14
|
193 list.push_back(d4);
|
c@14
|
194
|
c@14
|
195 ParameterDescriptor d5;
|
c@14
|
196 d5.identifier = "minBPM";
|
c@18
|
197 d5.name = "(Cyclic) Tempogram Minimum BPM";
|
c@14
|
198 d5.description = "The minimum BPM of the tempogram output bins.";
|
c@14
|
199 d5.unit = "";
|
c@14
|
200 d5.minValue = 0;
|
c@14
|
201 d5.maxValue = 2000;
|
c@14
|
202 d5.defaultValue = 30;
|
c@14
|
203 d5.isQuantized = true;
|
c@14
|
204 d5.quantizeStep = 5;
|
c@14
|
205 list.push_back(d5);
|
c@14
|
206
|
c@14
|
207 ParameterDescriptor d6;
|
c@14
|
208 d6.identifier = "maxBPM";
|
c@18
|
209 d6.name = "(Cyclic) Tempogram Maximum BPM";
|
c@18
|
210 d6.description = "The maximum BPM of the tempogram output bins.";
|
c@14
|
211 d6.unit = "";
|
c@14
|
212 d6.minValue = 30;
|
c@14
|
213 d6.maxValue = 2000;
|
c@14
|
214 d6.defaultValue = 480;
|
c@14
|
215 d6.isQuantized = true;
|
c@14
|
216 d6.quantizeStep = 5;
|
c@14
|
217 list.push_back(d6);
|
c@18
|
218
|
c@18
|
219 ParameterDescriptor d7;
|
c@18
|
220 d7.identifier = "octDiv";
|
c@18
|
221 d7.name = "Cyclic Tempogram Octave Divider";
|
c@18
|
222 d7.description = "The number bins within each octave.";
|
c@18
|
223 d7.unit = "";
|
c@18
|
224 d7.minValue = 5;
|
c@18
|
225 d7.maxValue = 60;
|
c@18
|
226 d7.defaultValue = 30;
|
c@18
|
227 d7.isQuantized = true;
|
c@18
|
228 d7.quantizeStep = 1;
|
c@18
|
229 list.push_back(d7);
|
c@0
|
230
|
c@0
|
231 return list;
|
c@0
|
232 }
|
c@0
|
233
|
c@0
|
234 float
|
c@14
|
235 TempogramPlugin::getParameter(string identifier) const
|
c@0
|
236 {
|
c@0
|
237 if (identifier == "C") {
|
c@18
|
238 return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here!
|
c@0
|
239 }
|
c@14
|
240 else if (identifier == "log2TN"){
|
c@18
|
241 return m_tempogramLog2WindowLength;
|
c@9
|
242 }
|
c@14
|
243 else if (identifier == "log2HopSize"){
|
c@18
|
244 return m_tempogramLog2HopSize;
|
c@14
|
245 }
|
c@14
|
246 else if (identifier == "log2FftLength"){
|
c@18
|
247 return m_tempogramLog2FftLength;
|
c@14
|
248 }
|
c@14
|
249 else if (identifier == "minBPM") {
|
c@18
|
250 return m_tempogramMinBPM;
|
c@9
|
251 }
|
c@14
|
252 else if (identifier == "maxBPM"){
|
c@18
|
253 return m_tempogramMaxBPM;
|
c@18
|
254 }
|
c@18
|
255 else if (identifier == "octDiv"){
|
c@18
|
256 return m_cyclicTempogramOctaveDivider;
|
c@0
|
257 }
|
c@0
|
258
|
c@0
|
259 return 0;
|
c@0
|
260 }
|
c@0
|
261
|
c@0
|
262 void
|
c@14
|
263 TempogramPlugin::setParameter(string identifier, float value)
|
c@0
|
264 {
|
c@9
|
265
|
c@0
|
266 if (identifier == "C") {
|
c@18
|
267 m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter
|
c@0
|
268 }
|
c@14
|
269 else if (identifier == "log2TN") {
|
c@18
|
270 m_tempogramWindowLength = pow(2,value);
|
c@18
|
271 m_tempogramLog2WindowLength = value;
|
c@0
|
272 }
|
c@14
|
273 else if (identifier == "log2HopSize"){
|
c@18
|
274 m_tempogramHopSize = pow(2,value);
|
c@18
|
275 m_tempogramLog2HopSize = value;
|
c@14
|
276 }
|
c@18
|
277 else if (identifier == "log2FftLength"){
|
c@18
|
278 m_tempogramFftLength = pow(2,value);
|
c@18
|
279 m_tempogramLog2FftLength = value;
|
c@14
|
280 }
|
c@14
|
281 else if (identifier == "minBPM") {
|
c@18
|
282 m_tempogramMinBPM = value;
|
c@9
|
283 }
|
c@14
|
284 else if (identifier == "maxBPM"){
|
c@18
|
285 m_tempogramMaxBPM = value;
|
c@18
|
286 }
|
c@18
|
287 else if (identifier == "octDiv"){
|
c@18
|
288 m_cyclicTempogramOctaveDivider = value;
|
c@9
|
289 }
|
c@9
|
290
|
c@9
|
291 }
|
c@9
|
292
|
c@14
|
293 TempogramPlugin::ProgramList
|
c@14
|
294 TempogramPlugin::getPrograms() const
|
c@0
|
295 {
|
c@0
|
296 ProgramList list;
|
c@0
|
297
|
c@0
|
298 // If you have no programs, return an empty list (or simply don't
|
c@0
|
299 // implement this function or getCurrentProgram/selectProgram)
|
c@0
|
300
|
c@0
|
301 return list;
|
c@0
|
302 }
|
c@0
|
303
|
c@0
|
304 string
|
c@14
|
305 TempogramPlugin::getCurrentProgram() const
|
c@0
|
306 {
|
c@0
|
307 return ""; // no programs
|
c@0
|
308 }
|
c@0
|
309
|
c@0
|
310 void
|
c@14
|
311 TempogramPlugin::selectProgram(string name)
|
c@0
|
312 {
|
c@0
|
313 }
|
c@0
|
314
|
c@14
|
315 TempogramPlugin::OutputList
|
c@14
|
316 TempogramPlugin::getOutputDescriptors() const
|
c@0
|
317 {
|
c@0
|
318 OutputList list;
|
c@0
|
319
|
c@0
|
320 // See OutputDescriptor documentation for the possibilities here.
|
c@0
|
321 // Every plugin must have at least one output.
|
c@1
|
322
|
c@7
|
323 float d_sampleRate;
|
c@18
|
324 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
|
c@7
|
325
|
c@21
|
326 OutputDescriptor d3;
|
c@21
|
327 d3.identifier = "cyclicTempogram";
|
c@21
|
328 d3.name = "Cyclic Tempogram";
|
c@21
|
329 d3.description = "Cyclic Tempogram";
|
c@21
|
330 d3.unit = "";
|
c@21
|
331 d3.hasFixedBinCount = true;
|
c@21
|
332 d3.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0;
|
c@21
|
333 d3.hasKnownExtents = false;
|
c@21
|
334 d3.isQuantized = false;
|
c@21
|
335 d3.sampleType = OutputDescriptor::FixedSampleRate;
|
c@21
|
336 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
|
c@21
|
337 d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
|
c@21
|
338 d3.hasDuration = false;
|
c@21
|
339 list.push_back(d3);
|
c@21
|
340
|
c@21
|
341 OutputDescriptor d1;
|
c@18
|
342 d1.identifier = "tempogram";
|
c@18
|
343 d1.name = "Tempogram";
|
c@18
|
344 d1.description = "Tempogram";
|
c@18
|
345 d1.unit = "BPM";
|
c@18
|
346 d1.hasFixedBinCount = true;
|
c@18
|
347 d1.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1;
|
c@18
|
348 d1.hasKnownExtents = false;
|
c@18
|
349 d1.isQuantized = false;
|
c@18
|
350 d1.sampleType = OutputDescriptor::FixedSampleRate;
|
c@18
|
351 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
|
c@18
|
352 d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
|
c@18
|
353 for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){
|
c@18
|
354 float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate);
|
c@18
|
355 d1.binNames.push_back(floatToString(w*60));
|
c@9
|
356 }
|
c@18
|
357 d1.hasDuration = false;
|
c@18
|
358 list.push_back(d1);
|
c@7
|
359
|
c@18
|
360 OutputDescriptor d2;
|
c@18
|
361 d2.identifier = "nc";
|
c@18
|
362 d2.name = "Novelty Curve";
|
c@18
|
363 d2.description = "Novelty Curve";
|
c@18
|
364 d2.unit = "";
|
c@18
|
365 d2.hasFixedBinCount = true;
|
c@18
|
366 d2.binCount = 1;
|
c@18
|
367 d2.hasKnownExtents = false;
|
c@18
|
368 d2.isQuantized = false;
|
c@18
|
369 d2.sampleType = OutputDescriptor::FixedSampleRate;
|
c@9
|
370 d_sampleRate = tempogramInputSampleRate;
|
c@18
|
371 d2.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
|
c@18
|
372 d2.hasDuration = false;
|
c@18
|
373 list.push_back(d2);
|
c@18
|
374
|
c@0
|
375 return list;
|
c@0
|
376 }
|
c@0
|
377
|
c@20
|
378 bool
|
c@20
|
379 TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@20
|
380 {
|
c@20
|
381 if (channels < getMinChannelCount() ||
|
c@20
|
382 channels > getMaxChannelCount()) return false;
|
c@20
|
383
|
c@20
|
384 // Real initialisation work goes here!
|
c@20
|
385 m_inputBlockSize = blockSize;
|
c@20
|
386 m_inputStepSize = stepSize;
|
c@20
|
387
|
c@21
|
388 if (!handleParameterValues()) return false;
|
c@19
|
389 //cout << m_cyclicTempogramOctaveDivider << endl;
|
c@4
|
390
|
c@0
|
391 return true;
|
c@0
|
392 }
|
c@0
|
393
|
c@0
|
394 void
|
c@14
|
395 TempogramPlugin::reset()
|
c@0
|
396 {
|
c@0
|
397 // Clear buffers, reset stored values, etc
|
c@19
|
398 m_spectrogram.clear();
|
c@21
|
399 handleParameterValues();
|
c@0
|
400 }
|
c@0
|
401
|
c@14
|
402 TempogramPlugin::FeatureSet
|
c@14
|
403 TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
|
c@0
|
404 {
|
c@0
|
405
|
c@23
|
406 int n = m_inputBlockSize/2 + 1;
|
c@0
|
407 const float *in = inputBuffers[0];
|
c@3
|
408
|
c@9
|
409 //calculate magnitude of FrequencyDomain input
|
c@22
|
410 vector<float> fftCoefficients;
|
c@23
|
411 for (int i = 0; i < n; i++){
|
c@0
|
412 float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]);
|
c@18
|
413 magnitude = magnitude > m_noveltyCurveMinDB ? magnitude : m_noveltyCurveMinDB;
|
c@22
|
414 fftCoefficients.push_back(magnitude);
|
c@0
|
415 }
|
c@22
|
416 m_spectrogram.push_back(fftCoefficients);
|
c@21
|
417
|
c@23
|
418 return FeatureSet();
|
c@0
|
419 }
|
c@0
|
420
|
c@14
|
421 TempogramPlugin::FeatureSet
|
c@14
|
422 TempogramPlugin::getRemainingFeatures()
|
c@11
|
423 {
|
c@0
|
424
|
c@18
|
425 float * hannWindow = new float[m_tempogramWindowLength];
|
c@20
|
426 for (int i = 0; i < (int)m_tempogramWindowLength; i++){
|
c@14
|
427 hannWindow[i] = 0.0;
|
c@4
|
428 }
|
c@11
|
429
|
c@1
|
430 FeatureSet featureSet;
|
c@0
|
431
|
c@19
|
432 //initialise novelty curve processor
|
c@23
|
433 int numberOfBlocks = m_spectrogram.size();
|
c@20
|
434 //cerr << numberOfBlocks << endl;
|
c@22
|
435 NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, m_noveltyCurveCompressionConstant);
|
c@21
|
436 vector<float> noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curvefrom magnitude data
|
c@20
|
437 //if(noveltyCurve.size() > 50) for (int i = 0; i < 50; i++) cerr << noveltyCurve[i] << endl;
|
c@4
|
438
|
c@9
|
439 //push novelty curve data to featureset 1 and set timestamps
|
c@23
|
440 for (int i = 0; i < numberOfBlocks; i++){
|
c@19
|
441 Feature noveltyCurveFeature;
|
c@19
|
442 noveltyCurveFeature.values.push_back(noveltyCurve[i]);
|
c@19
|
443 noveltyCurveFeature.hasTimestamp = false;
|
c@21
|
444 featureSet[2].push_back(noveltyCurveFeature);
|
c@21
|
445 assert(!isnan(noveltyCurveFeature.values.back()));
|
c@4
|
446 }
|
c@4
|
447
|
c@9
|
448 //window function for spectrogram
|
c@18
|
449 WindowFunction::hanning(hannWindow, m_tempogramWindowLength);
|
c@9
|
450
|
c@9
|
451 //initialise spectrogram processor
|
c@18
|
452 SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize);
|
c@9
|
453 //compute spectrogram from novelty curve data (i.e., tempogram)
|
c@19
|
454 Tempogram tempogram = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow);
|
c@18
|
455 delete []hannWindow;
|
c@18
|
456 hannWindow = 0;
|
c@0
|
457
|
c@14
|
458 int tempogramLength = tempogram.size();
|
c@7
|
459
|
c@9
|
460 //push tempogram data to featureset 0 and set timestamps.
|
c@7
|
461 for (int block = 0; block < tempogramLength; block++){
|
c@19
|
462 Feature tempogramFeature;
|
c@0
|
463
|
c@18
|
464 assert(tempogram[block].size() == (m_tempogramFftLength/2 + 1));
|
c@18
|
465 for(int k = m_tempogramMinBin; k < (int)m_tempogramMaxBin; k++){
|
c@19
|
466 tempogramFeature.values.push_back(tempogram[block][k]);
|
c@21
|
467 assert(!isnan(tempogramFeature.values.back()));
|
c@0
|
468 }
|
c@19
|
469 tempogramFeature.hasTimestamp = false;
|
c@21
|
470 featureSet[1].push_back(tempogramFeature);
|
c@0
|
471 }
|
c@0
|
472
|
c@18
|
473 //Calculate cyclic tempogram
|
c@22
|
474 vector< vector<unsigned int> > logBins = calculateTempogramNearestNeighbourLogBins();
|
c@18
|
475
|
c@22
|
476 //assert((int)logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves);
|
c@18
|
477 for (int block = 0; block < tempogramLength; block++){
|
c@19
|
478 Feature cyclicTempogramFeature;
|
c@18
|
479
|
c@23
|
480 for (int i = 0; i < m_cyclicTempogramOctaveDivider; i++){
|
c@18
|
481 float sum = 0;
|
c@21
|
482
|
c@23
|
483 for (int j = 0; j < m_cyclicTempogramNumberOfOctaves; j++){
|
c@22
|
484 sum += tempogram[block][logBins[j][i]];
|
c@18
|
485 }
|
c@19
|
486 cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves);
|
c@21
|
487 assert(!isnan(cyclicTempogramFeature.values.back()));
|
c@18
|
488 }
|
c@18
|
489
|
c@19
|
490 cyclicTempogramFeature.hasTimestamp = false;
|
c@21
|
491 featureSet[0].push_back(cyclicTempogramFeature);
|
c@18
|
492 }
|
c@0
|
493
|
c@0
|
494 return featureSet;
|
c@0
|
495 }
|
c@22
|
496
|
c@22
|
497 vector< vector<unsigned int> > TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const
|
c@22
|
498 {
|
c@22
|
499 vector< vector<unsigned int> > logBins;
|
c@22
|
500
|
c@22
|
501 for (int octave = 0; octave < (int)m_cyclicTempogramNumberOfOctaves; octave++){
|
c@22
|
502 vector<unsigned int> octaveBins;
|
c@22
|
503
|
c@22
|
504 for (int bin = 0; bin < (int)m_cyclicTempogramOctaveDivider; bin++){
|
c@22
|
505 float bpm = m_cyclicTempogramMinBPM*pow(2.0f, octave+(float)bin/m_cyclicTempogramOctaveDivider);
|
c@22
|
506 octaveBins.push_back(bpmToBin(bpm));
|
c@23
|
507 //cout << octaveBins.back() << endl;
|
c@22
|
508 }
|
c@22
|
509 logBins.push_back(octaveBins);
|
c@22
|
510 }
|
c@22
|
511
|
c@22
|
512 //cerr << logBins.size() << endl;
|
c@22
|
513
|
c@22
|
514 return logBins;
|
c@22
|
515 }
|
c@22
|
516
|
c@22
|
517 unsigned int TempogramPlugin::bpmToBin(const float &bpm) const
|
c@22
|
518 {
|
c@22
|
519 float w = (float)bpm/60;
|
c@22
|
520 float sampleRate = m_inputSampleRate/m_inputStepSize;
|
c@22
|
521 int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5);
|
c@22
|
522
|
c@22
|
523 if(bin < 0) bin = 0;
|
c@22
|
524 else if(bin > m_tempogramFftLength/2.0f) bin = m_tempogramFftLength;
|
c@22
|
525
|
c@22
|
526 return bin;
|
c@22
|
527 }
|
c@22
|
528
|
c@22
|
529 float TempogramPlugin::binToBPM(const int &bin) const
|
c@22
|
530 {
|
c@22
|
531 float sampleRate = m_inputSampleRate/m_inputStepSize;
|
c@22
|
532
|
c@22
|
533 return (bin*sampleRate/m_tempogramFftLength)*60;
|
c@22
|
534 }
|
c@22
|
535
|
c@22
|
536 bool TempogramPlugin::handleParameterValues(){
|
c@22
|
537
|
c@22
|
538 if (m_tempogramHopSize <= 0) return false;
|
c@22
|
539 if (m_tempogramLog2FftLength <= 0) return false;
|
c@22
|
540
|
c@22
|
541 if (m_tempogramFftLength < m_tempogramWindowLength){
|
c@22
|
542 m_tempogramFftLength = m_tempogramWindowLength;
|
c@22
|
543 }
|
c@22
|
544 if (m_tempogramMinBPM >= m_tempogramMaxBPM){
|
c@22
|
545 m_tempogramMinBPM = 30;
|
c@22
|
546 m_tempogramMaxBPM = 480;
|
c@22
|
547 }
|
c@22
|
548
|
c@22
|
549 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
|
c@22
|
550 m_tempogramMinBin = (max(floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)0.0));
|
c@22
|
551 m_tempogramMaxBin = (min(ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)m_tempogramFftLength/2));
|
c@22
|
552
|
c@22
|
553 if (m_tempogramMinBPM > m_cyclicTempogramMinBPM) m_cyclicTempogramMinBPM = m_tempogramMinBPM;
|
c@22
|
554 float cyclicTempogramMaxBPM = 480;
|
c@22
|
555 if (m_tempogramMaxBPM < cyclicTempogramMaxBPM) cyclicTempogramMaxBPM = m_tempogramMaxBPM;
|
c@22
|
556
|
c@22
|
557 m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM));
|
c@22
|
558
|
c@22
|
559 return true;
|
c@22
|
560 }
|
c@22
|
561
|
c@22
|
562 string TempogramPlugin::floatToString(float value) const
|
c@22
|
563 {
|
c@22
|
564 ostringstream ss;
|
c@22
|
565
|
c@22
|
566 if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string");
|
c@22
|
567 return ss.str();
|
c@22
|
568 }
|