Mercurial > hg > vamp-simple-cepstrum
view CepstrumPitchTracker.cpp @ 17:edc7f59404da track
Make it, at least broadly, work
author | Chris Cannam |
---|---|
date | Sat, 30 Jun 2012 10:10:05 +0100 |
parents | 63dde216ea37 |
children | 791e5c115b8d |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "CepstrumPitchTracker.h" #include <vector> #include <algorithm> #include <cstdio> #include <cmath> #include <complex> using std::string; using std::vector; CepstrumPitchTracker::Hypothesis::Hypothesis() { m_state = New; m_age = 0; } CepstrumPitchTracker::Hypothesis::~Hypothesis() { } bool CepstrumPitchTracker::Hypothesis::isWithinTolerance(Estimate s) { if (m_pending.empty()) { return true; } Estimate last = m_pending[m_pending.size()-1]; double r = s.freq / last.freq; int cents = lrint(1200.0 * (log(r) / log(2.0))); return (cents > -200 && cents < 200); } bool CepstrumPitchTracker::Hypothesis::isSatisfied() { return (m_pending.size() > 2); } void CepstrumPitchTracker::Hypothesis::advanceTime() { ++m_age; } bool CepstrumPitchTracker::Hypothesis::test(Estimate s) { bool accept = false; switch (m_state) { case New: m_state = Provisional; accept = true; break; case Provisional: if (m_age > 3) { m_state = Rejected; } else if (isWithinTolerance(s)) { accept = true; } break; case Satisfied: if (m_age > 3) { m_state = Expired; } else if (isWithinTolerance(s)) { accept = true; } break; case Rejected: break; case Expired: break; } if (accept) { m_pending.push_back(s); m_age = 0; if (m_state == Provisional && isSatisfied()) { m_state = Satisfied; } } return accept; } CepstrumPitchTracker::Hypothesis::State CepstrumPitchTracker::Hypothesis::getState() { return m_state; } int CepstrumPitchTracker::Hypothesis::getPendingLength() { return m_pending.size(); } CepstrumPitchTracker::Hypothesis::Estimates CepstrumPitchTracker::Hypothesis::getAcceptedEstimates() { if (m_state == Satisfied || m_state == Expired) { return m_pending; } else { return Estimates(); } } void CepstrumPitchTracker::Hypothesis::addFeatures(FeatureList &fl) { for (int i = 0; i < m_pending.size(); ++i) { Feature f; f.hasTimestamp = true; f.timestamp = m_pending[i].time; f.values.push_back(m_pending[i].freq); fl.push_back(f); } } CepstrumPitchTracker::CepstrumPitchTracker(float inputSampleRate) : Plugin(inputSampleRate), m_channels(0), m_stepSize(256), m_blockSize(1024), m_fmin(50), m_fmax(1000), m_histlen(1), m_vflen(3), m_binFrom(0), m_binTo(0), m_bins(0), m_history(0), m_prevpeak(0), m_prevprop(0) { } CepstrumPitchTracker::~CepstrumPitchTracker() { if (m_history) { for (int i = 0; i < m_histlen; ++i) { delete[] m_history[i]; } delete[] m_history; } } string CepstrumPitchTracker::getIdentifier() const { return "cepstrum-pitch"; } string CepstrumPitchTracker::getName() const { return "Cepstrum Pitch Tracker"; } string CepstrumPitchTracker::getDescription() const { return "Estimate f0 of monophonic material using a cepstrum method."; } string CepstrumPitchTracker::getMaker() const { return "Chris Cannam"; } int CepstrumPitchTracker::getPluginVersion() const { // Increment this each time you release a version that behaves // differently from the previous one return 1; } string CepstrumPitchTracker::getCopyright() const { return "Freely redistributable (BSD license)"; } CepstrumPitchTracker::InputDomain CepstrumPitchTracker::getInputDomain() const { return FrequencyDomain; } size_t CepstrumPitchTracker::getPreferredBlockSize() const { return 1024; } size_t CepstrumPitchTracker::getPreferredStepSize() const { return 256; } size_t CepstrumPitchTracker::getMinChannelCount() const { return 1; } size_t CepstrumPitchTracker::getMaxChannelCount() const { return 1; } CepstrumPitchTracker::ParameterList CepstrumPitchTracker::getParameterDescriptors() const { ParameterList list; return list; } float CepstrumPitchTracker::getParameter(string identifier) const { return 0.f; } void CepstrumPitchTracker::setParameter(string identifier, float value) { } CepstrumPitchTracker::ProgramList CepstrumPitchTracker::getPrograms() const { ProgramList list; return list; } string CepstrumPitchTracker::getCurrentProgram() const { return ""; // no programs } void CepstrumPitchTracker::selectProgram(string name) { } CepstrumPitchTracker::OutputList CepstrumPitchTracker::getOutputDescriptors() const { OutputList outputs; int n = 0; OutputDescriptor d; d.identifier = "f0"; d.name = "Estimated f0"; d.description = "Estimated fundamental frequency"; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = true; d.minValue = m_fmin; d.maxValue = m_fmax; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); return outputs; } bool CepstrumPitchTracker::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; // std::cerr << "CepstrumPitchTracker::initialise: channels = " << channels // << ", stepSize = " << stepSize << ", blockSize = " << blockSize // << std::endl; m_channels = channels; m_stepSize = stepSize; m_blockSize = blockSize; m_binFrom = int(m_inputSampleRate / m_fmax); m_binTo = int(m_inputSampleRate / m_fmin); if (m_binTo >= (int)m_blockSize / 2) { m_binTo = m_blockSize / 2 - 1; } m_bins = (m_binTo - m_binFrom) + 1; m_history = new double *[m_histlen]; for (int i = 0; i < m_histlen; ++i) { m_history[i] = new double[m_bins]; } reset(); return true; } void CepstrumPitchTracker::reset() { for (int i = 0; i < m_histlen; ++i) { for (int j = 0; j < m_bins; ++j) { m_history[i][j] = 0.0; } } } void CepstrumPitchTracker::filter(const double *cep, double *result) { int hix = m_histlen - 1; // current history index // roll back the history if (m_histlen > 1) { double *oldest = m_history[0]; for (int i = 1; i < m_histlen; ++i) { m_history[i-1] = m_history[i]; } // and stick this back in the newest spot, to recycle m_history[hix] = oldest; } for (int i = 0; i < m_bins; ++i) { double v = 0; int n = 0; // average according to the vertical filter length for (int j = -m_vflen/2; j <= m_vflen/2; ++j) { int ix = i + m_binFrom + j; if (ix >= 0 && ix < m_blockSize) { v += cep[ix]; ++n; } } m_history[hix][i] = v / n; } for (int i = 0; i < m_bins; ++i) { double mean = 0.0; for (int j = 0; j < m_histlen; ++j) { mean += m_history[j][i]; } mean /= m_histlen; result[i] = mean; } } double CepstrumPitchTracker::calculatePeakProportion(const double *data, double abstot, int n) { double aroundPeak = data[n]; double peakProportion = 0.0; int i = n - 1; while (i > 0 && data[i] <= data[i+1]) { aroundPeak += fabs(data[i]); --i; } i = n + 1; while (i < m_bins && data[i] <= data[i-1]) { aroundPeak += fabs(data[i]); ++i; } peakProportion = aroundPeak / abstot; return peakProportion; } bool CepstrumPitchTracker::acceptPeak(int n, double peakProportion) { bool accept = false; if (abs(n - m_prevpeak) < 10) { //!!! should depend on bin count accept = true; } else if (peakProportion > m_prevprop * 2) { accept = true; } return accept; } CepstrumPitchTracker::FeatureSet CepstrumPitchTracker::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { FeatureSet fs; int bs = m_blockSize; int hs = m_blockSize/2 + 1; double *rawcep = new double[bs]; double *io = new double[bs]; double *logmag = new double[bs]; // The "inverse symmetric" method. Seems to be the most reliable for (int i = 0; i < hs; ++i) { double power = inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] + inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]; double mag = sqrt(power); double lm = log(mag + 0.00000001); logmag[i] = lm; if (i > 0) logmag[bs - i] = lm; } fft(bs, true, logmag, 0, rawcep, io); delete[] logmag; delete[] io; int n = m_bins; double *data = new double[n]; filter(rawcep, data); delete[] rawcep; double abstot = 0.0; for (int i = 0; i < n; ++i) { abstot += fabs(data[i]); } double maxval = 0.0; int maxbin = -1; for (int i = 0; i < n; ++i) { if (data[i] > maxval) { maxval = data[i]; maxbin = i; } } if (maxbin < 0) return fs; double peakfreq = m_inputSampleRate / (maxbin + m_binFrom); Hypothesis::Estimate e; e.freq = peakfreq; e.time = timestamp; m_accepted.advanceTime(); for (int i = 0; i < m_possible.size(); ++i) { m_possible[i].advanceTime(); } if (!m_accepted.test(e)) { int candidate = -1; for (int i = 0; i < m_possible.size(); ++i) { if (m_possible[i].test(e)) { if (m_possible[i].getState() == Hypothesis::Satisfied) { candidate = i; } break; } } if (m_accepted.getState() == Hypothesis::Expired) { m_accepted.addFeatures(fs[0]); } if (m_accepted.getState() == Hypothesis::Expired || m_accepted.getState() == Hypothesis::Rejected) { if (candidate >= 0) { m_accepted = m_possible[candidate]; } else { m_accepted = Hypothesis(); } } std::cerr << "accepted length = " << m_accepted.getPendingLength() << ", state = " << m_accepted.getState() << ", hypothesis count = " << m_possible.size() << std::endl; //!!! and also need to reap rejected/expired hypotheses from the list } /* bool accepted = false; if (maxbin >= 0) { double pp = calculatePeakProportion(data, abstot, maxbin); if (acceptPeak(maxbin, pp)) { accepted = true; } else { // try a secondary peak maxval = 0.0; int secondbin = 0; for (int i = 1; i < n-1; ++i) { if (i != maxbin && data[i] > data[i-1] && data[i] > data[i+1] && data[i] > maxval) { maxval = data[i]; secondbin = i; } } double spp = calculatePeakProportion(data, abstot, secondbin); if (acceptPeak(secondbin, spp)) { maxbin = secondbin; pp = spp; accepted = true; } } if (accepted) { m_prevpeak = maxbin; m_prevprop = pp; } } */ // std::cerr << "peakProportion = " << peakProportion << std::endl; // std::cerr << "peak = " << m_inputSampleRate / (maxbin + m_binFrom) << std::endl; // std::cerr << "bins = " << m_bins << std::endl; // if (peakProportion >= (0.00006 * m_bins)) { /* if (accepted) { Feature f; f.hasTimestamp = true; f.timestamp = timestamp; f.values.push_back(m_inputSampleRate / (maxbin + m_binFrom)); fs[0].push_back(f); } */ delete[] data; return fs; } CepstrumPitchTracker::FeatureSet CepstrumPitchTracker::getRemainingFeatures() { FeatureSet fs; if (m_accepted.getState() != Hypothesis::New) { m_accepted.addFeatures(fs[0]); } return fs; } void CepstrumPitchTracker::fft(unsigned int n, bool inverse, double *ri, double *ii, double *ro, double *io) { if (!ri || !ro || !io) return; unsigned int bits; unsigned int i, j, k, m; unsigned int blockSize, blockEnd; double tr, ti; if (n < 2) return; if (n & (n-1)) return; double angle = 2.0 * M_PI; if (inverse) angle = -angle; for (i = 0; ; ++i) { if (n & (1 << i)) { bits = i; break; } } static unsigned int tableSize = 0; static int *table = 0; if (tableSize != n) { delete[] table; table = new int[n]; for (i = 0; i < n; ++i) { m = i; for (j = k = 0; j < bits; ++j) { k = (k << 1) | (m & 1); m >>= 1; } table[i] = k; } tableSize = n; } if (ii) { for (i = 0; i < n; ++i) { ro[table[i]] = ri[i]; io[table[i]] = ii[i]; } } else { for (i = 0; i < n; ++i) { ro[table[i]] = ri[i]; io[table[i]] = 0.0; } } blockEnd = 1; for (blockSize = 2; blockSize <= n; blockSize <<= 1) { double delta = angle / (double)blockSize; double sm2 = -sin(-2 * delta); double sm1 = -sin(-delta); double cm2 = cos(-2 * delta); double cm1 = cos(-delta); double w = 2 * cm1; double ar[3], ai[3]; for (i = 0; i < n; i += blockSize) { ar[2] = cm2; ar[1] = cm1; ai[2] = sm2; ai[1] = sm1; for (j = i, m = 0; m < blockEnd; j++, m++) { ar[0] = w * ar[1] - ar[2]; ar[2] = ar[1]; ar[1] = ar[0]; ai[0] = w * ai[1] - ai[2]; ai[2] = ai[1]; ai[1] = ai[0]; k = j + blockEnd; tr = ar[0] * ro[k] - ai[0] * io[k]; ti = ar[0] * io[k] + ai[0] * ro[k]; ro[k] = ro[j] - tr; io[k] = io[j] - ti; ro[j] += tr; io[j] += ti; } } blockEnd = blockSize; } }