Mercurial > hg > vamp-simple-cepstrum
view CepstrumPitchTracker.cpp @ 37:0e4e885408db
Another tidy
author | Chris Cannam |
---|---|
date | Fri, 13 Jul 2012 21:35:29 +0100 |
parents | ce5d04327b98 |
children | c70ebf24b419 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "CepstrumPitchTracker.h" #include "vamp-sdk/FFT.h" #include <vector> #include <algorithm> #include <cstdio> #include <cmath> #include <complex> using std::string; using std::vector; using Vamp::RealTime; CepstrumPitchTracker::Hypothesis::Hypothesis() { m_state = New; } CepstrumPitchTracker::Hypothesis::~Hypothesis() { } bool CepstrumPitchTracker::Hypothesis::isWithinTolerance(Estimate s) const { if (m_pending.empty()) { return true; } // check we are within a relatively close tolerance of the last // candidate Estimate last = m_pending[m_pending.size()-1]; double r = s.freq / last.freq; int cents = lrint(1200.0 * (log(r) / log(2.0))); if (cents < -60 || cents > 60) return false; // and within a slightly bigger tolerance of the current mean double meanFreq = getMeanFrequency(); r = s.freq / meanFreq; cents = lrint(1200.0 * (log(r) / log(2.0))); if (cents < -80 || cents > 80) return false; return true; } bool CepstrumPitchTracker::Hypothesis::isOutOfDateFor(Estimate s) const { if (m_pending.empty()) return false; return ((s.time - m_pending[m_pending.size()-1].time) > RealTime::fromMilliseconds(40)); } bool CepstrumPitchTracker::Hypothesis::isSatisfied() const { if (m_pending.empty()) return false; double meanConfidence = 0.0; for (int i = 0; i < m_pending.size(); ++i) { meanConfidence += m_pending[i].confidence; } meanConfidence /= m_pending.size(); int lengthRequired = 10000; if (meanConfidence > 0.0) { lengthRequired = int(2.0 / meanConfidence + 0.5); } return (m_pending.size() > lengthRequired); } bool CepstrumPitchTracker::Hypothesis::accept(Estimate s) { bool accept = false; switch (m_state) { case New: m_state = Provisional; accept = true; break; case Provisional: if (isOutOfDateFor(s)) { m_state = Rejected; } else if (isWithinTolerance(s)) { accept = true; } break; case Satisfied: if (isOutOfDateFor(s)) { m_state = Expired; } else if (isWithinTolerance(s)) { accept = true; } break; case Rejected: break; case Expired: break; } if (accept) { m_pending.push_back(s); if (m_state == Provisional && isSatisfied()) { m_state = Satisfied; } } return accept; } CepstrumPitchTracker::Hypothesis::State CepstrumPitchTracker::Hypothesis::getState() const { return m_state; } CepstrumPitchTracker::Hypothesis::Estimates CepstrumPitchTracker::Hypothesis::getAcceptedEstimates() const { if (m_state == Satisfied || m_state == Expired) { return m_pending; } else { return Estimates(); } } double CepstrumPitchTracker::Hypothesis::getMeanFrequency() const { double acc = 0.0; for (int i = 0; i < m_pending.size(); ++i) { acc += m_pending[i].freq; } acc /= m_pending.size(); return acc; } CepstrumPitchTracker::Hypothesis::Note CepstrumPitchTracker::Hypothesis::getAveragedNote() const { Note n; if (!(m_state == Satisfied || m_state == Expired)) { n.freq = 0.0; n.time = RealTime::zeroTime; n.duration = RealTime::zeroTime; return n; } n.time = m_pending.begin()->time; Estimates::const_iterator i = m_pending.end(); --i; n.duration = i->time - n.time; // just mean frequency for now, but this isn't at all right perceptually n.freq = getMeanFrequency(); return n; } CepstrumPitchTracker::CepstrumPitchTracker(float inputSampleRate) : Plugin(inputSampleRate), m_channels(0), m_stepSize(256), m_blockSize(1024), m_fmin(50), m_fmax(900), m_vflen(1), m_binFrom(0), m_binTo(0), m_bins(0) { } CepstrumPitchTracker::~CepstrumPitchTracker() { } string CepstrumPitchTracker::getIdentifier() const { return "cepstrum-pitch"; } string CepstrumPitchTracker::getName() const { return "Cepstrum Pitch Tracker"; } string CepstrumPitchTracker::getDescription() const { return "Estimate f0 of monophonic material using a cepstrum method."; } string CepstrumPitchTracker::getMaker() const { return "Chris Cannam"; } int CepstrumPitchTracker::getPluginVersion() const { // Increment this each time you release a version that behaves // differently from the previous one return 1; } string CepstrumPitchTracker::getCopyright() const { return "Freely redistributable (BSD license)"; } CepstrumPitchTracker::InputDomain CepstrumPitchTracker::getInputDomain() const { return FrequencyDomain; } size_t CepstrumPitchTracker::getPreferredBlockSize() const { return 1024; } size_t CepstrumPitchTracker::getPreferredStepSize() const { return 256; } size_t CepstrumPitchTracker::getMinChannelCount() const { return 1; } size_t CepstrumPitchTracker::getMaxChannelCount() const { return 1; } CepstrumPitchTracker::ParameterList CepstrumPitchTracker::getParameterDescriptors() const { ParameterList list; return list; } float CepstrumPitchTracker::getParameter(string identifier) const { return 0.f; } void CepstrumPitchTracker::setParameter(string identifier, float value) { } CepstrumPitchTracker::ProgramList CepstrumPitchTracker::getPrograms() const { ProgramList list; return list; } string CepstrumPitchTracker::getCurrentProgram() const { return ""; // no programs } void CepstrumPitchTracker::selectProgram(string name) { } CepstrumPitchTracker::OutputList CepstrumPitchTracker::getOutputDescriptors() const { OutputList outputs; int n = 0; OutputDescriptor d; d.identifier = "f0"; d.name = "Estimated f0"; d.description = "Estimated fundamental frequency"; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = true; d.minValue = m_fmin; d.maxValue = m_fmax; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); d.identifier = "notes"; d.name = "Notes"; d.description = "Derived fixed-pitch note frequencies"; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = true; d.minValue = m_fmin; d.maxValue = m_fmax; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = true; outputs.push_back(d); return outputs; } bool CepstrumPitchTracker::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; // std::cerr << "CepstrumPitchTracker::initialise: channels = " << channels // << ", stepSize = " << stepSize << ", blockSize = " << blockSize // << std::endl; m_channels = channels; m_stepSize = stepSize; m_blockSize = blockSize; m_binFrom = int(m_inputSampleRate / m_fmax); m_binTo = int(m_inputSampleRate / m_fmin); if (m_binTo >= (int)m_blockSize / 2) { m_binTo = m_blockSize / 2 - 1; } m_bins = (m_binTo - m_binFrom) + 1; reset(); return true; } void CepstrumPitchTracker::reset() { } void CepstrumPitchTracker::addFeaturesFrom(Hypothesis h, FeatureSet &fs) { Hypothesis::Estimates es = h.getAcceptedEstimates(); for (int i = 0; i < es.size(); ++i) { Feature f; f.hasTimestamp = true; f.timestamp = es[i].time; f.values.push_back(es[i].freq); fs[0].push_back(f); } Feature nf; nf.hasTimestamp = true; nf.hasDuration = true; Hypothesis::Note n = h.getAveragedNote(); nf.timestamp = n.time; nf.duration = n.duration; nf.values.push_back(n.freq); fs[1].push_back(nf); } void CepstrumPitchTracker::filter(const double *cep, double *data) { for (int i = 0; i < m_bins; ++i) { double v = 0; int n = 0; // average according to the vertical filter length for (int j = -m_vflen/2; j <= m_vflen/2; ++j) { int ix = i + m_binFrom + j; if (ix >= 0 && ix < m_blockSize) { v += cep[ix]; ++n; } } data[i] = v / n; } } double CepstrumPitchTracker::cubicInterpolate(const double y[4], double x) { double a0 = y[3] - y[2] - y[0] + y[1]; double a1 = y[0] - y[1] - a0; double a2 = y[2] - y[0]; double a3 = y[1]; return a0 * x * x * x + a1 * x * x + a2 * x + a3; } double CepstrumPitchTracker::findInterpolatedPeak(const double *in, int maxbin) { if (maxbin < 2 || maxbin > m_bins - 3) { return maxbin; } double maxval = 0.0; double maxidx = maxbin; const int divisions = 10; double y[4]; y[0] = in[maxbin-1]; y[1] = in[maxbin]; y[2] = in[maxbin+1]; y[3] = in[maxbin+2]; for (int i = 0; i < divisions; ++i) { double probe = double(i) / double(divisions); double value = cubicInterpolate(y, probe); if (value > maxval) { maxval = value; maxidx = maxbin + probe; } } y[3] = y[2]; y[2] = y[1]; y[1] = y[0]; y[0] = in[maxbin-2]; for (int i = 0; i < divisions; ++i) { double probe = double(i) / double(divisions); double value = cubicInterpolate(y, probe); if (value > maxval) { maxval = value; maxidx = maxbin - 1 + probe; } } /* std::cerr << "centre = " << maxbin << ": [" << in[maxbin-2] << "," << in[maxbin-1] << "," << in[maxbin] << "," << in[maxbin+1] << "," << in[maxbin+2] << "] -> " << maxidx << std::endl; */ return maxidx; } CepstrumPitchTracker::FeatureSet CepstrumPitchTracker::process(const float *const *inputBuffers, RealTime timestamp) { FeatureSet fs; int bs = m_blockSize; int hs = m_blockSize/2 + 1; double *rawcep = new double[bs]; double *io = new double[bs]; double *logmag = new double[bs]; // The "inverse symmetric" method. Seems to be the most reliable double magmean = 0.0; for (int i = 0; i < hs; ++i) { double power = inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] + inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]; double mag = sqrt(power); magmean += mag; double lm = log(mag + 0.00000001); logmag[i] = lm; if (i > 0) logmag[bs - i] = lm; } magmean /= hs; double threshold = 0.1; // for magmean Vamp::FFT::inverse(bs, logmag, 0, rawcep, io); delete[] logmag; delete[] io; int n = m_bins; double *data = new double[n]; filter(rawcep, data); delete[] rawcep; double maxval = 0.0; int maxbin = -1; for (int i = 0; i < n; ++i) { if (data[i] > maxval) { maxval = data[i]; maxbin = i; } } if (maxbin < 0) { delete[] data; return fs; } double nextPeakVal = 0.0; for (int i = 1; i+1 < n; ++i) { if (data[i] > data[i-1] && data[i] > data[i+1] && i != maxbin && data[i] > nextPeakVal) { nextPeakVal = data[i]; } } double cimax = findInterpolatedPeak(data, maxbin); double peakfreq = m_inputSampleRate / (cimax + m_binFrom); double confidence = 0.0; if (nextPeakVal != 0.0) { confidence = (maxval - nextPeakVal) * 10.0; if (magmean < threshold) confidence = 0.0; std::cerr << "magmean = " << magmean << ", confidence = " << confidence << std::endl; } Hypothesis::Estimate e; e.freq = peakfreq; e.time = timestamp; e.confidence = confidence; // m_good.advanceTime(); for (int i = 0; i < m_possible.size(); ++i) { // m_possible[i].advanceTime(); } if (!m_good.accept(e)) { int candidate = -1; bool accepted = false; for (int i = 0; i < m_possible.size(); ++i) { if (m_possible[i].accept(e)) { if (m_possible[i].getState() == Hypothesis::Satisfied) { accepted = true; candidate = i; } break; } } if (!accepted) { Hypothesis h; h.accept(e); //!!! must succeed as h is new, so perhaps there should be a ctor for this m_possible.push_back(h); } if (m_good.getState() == Hypothesis::Expired) { addFeaturesFrom(m_good, fs); } if (m_good.getState() == Hypothesis::Expired || m_good.getState() == Hypothesis::Rejected) { if (candidate >= 0) { m_good = m_possible[candidate]; } else { m_good = Hypothesis(); } } // reap rejected/expired hypotheses from possible list Hypotheses toReap = m_possible; m_possible.clear(); for (int i = 0; i < toReap.size(); ++i) { Hypothesis h = toReap[i]; if (h.getState() != Hypothesis::Rejected && h.getState() != Hypothesis::Expired) { m_possible.push_back(h); } } } delete[] data; return fs; } CepstrumPitchTracker::FeatureSet CepstrumPitchTracker::getRemainingFeatures() { FeatureSet fs; if (m_good.getState() == Hypothesis::Satisfied) { addFeaturesFrom(m_good, fs); } return fs; }