cannam@233: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ cannam@233: cannam@233: /* cannam@233: Vamp cannam@233: cannam@233: An API for audio analysis and feature extraction plugins. cannam@233: cannam@233: Centre for Digital Music, Queen Mary, University of London. cannam@233: Copyright 2006-2007 Chris Cannam and QMUL. cannam@233: cannam@233: This file is based in part on Don Cross's public domain FFT cannam@233: implementation. cannam@233: cannam@233: Permission is hereby granted, free of charge, to any person cannam@233: obtaining a copy of this software and associated documentation cannam@233: files (the "Software"), to deal in the Software without cannam@233: restriction, including without limitation the rights to use, copy, cannam@233: modify, merge, publish, distribute, sublicense, and/or sell copies cannam@233: of the Software, and to permit persons to whom the Software is cannam@233: furnished to do so, subject to the following conditions: cannam@233: cannam@233: The above copyright notice and this permission notice shall be cannam@233: included in all copies or substantial portions of the Software. cannam@233: cannam@233: THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, cannam@233: EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF cannam@233: MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND cannam@233: NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR cannam@233: ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF cannam@233: CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION cannam@233: WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. cannam@233: cannam@233: Except as contained in this notice, the names of the Centre for cannam@233: Digital Music; Queen Mary, University of London; and Chris Cannam cannam@233: shall not be used in advertising or otherwise to promote the sale, cannam@233: use or other dealings in this Software without prior written cannam@233: authorization. cannam@233: */ cannam@233: cannam@233: #include cannam@233: cannam@233: #include cannam@233: cannam@233: cannam@233: /** cannam@233: * If you want to compile using FFTW instead of the built-in FFT cannam@233: * implementation for the PluginInputDomainAdapter, define HAVE_FFTW3 cannam@233: * in the Makefile. cannam@233: * cannam@233: * Be aware that FFTW is licensed under the GPL -- unlike this SDK, cannam@233: * which is provided under a more liberal BSD license in order to cannam@233: * permit use in closed source applications. The use of FFTW would cannam@233: * mean that your code would need to be licensed under the GPL as cannam@233: * well. Do not define this symbol unless you understand and accept cannam@233: * the implications of this. cannam@233: * cannam@233: * Parties such as Linux distribution packagers who redistribute this cannam@233: * SDK for use in other programs should _not_ define this symbol, as cannam@233: * it would change the effective licensing terms under which the SDK cannam@233: * was available to third party developers. cannam@233: * cannam@233: * The default is not to use FFTW, and to use the built-in FFT instead. cannam@233: * cannam@233: * Note: The FFTW code uses FFTW_MEASURE, and so will perform badly on cannam@233: * its first invocation unless the host has saved and restored FFTW cannam@233: * wisdom (see the FFTW documentation). cannam@233: */ cannam@233: #ifdef HAVE_FFTW3 cannam@233: #include cannam@233: #endif cannam@233: cannam@233: cannam@233: namespace Vamp { cannam@233: cannam@233: namespace HostExt { cannam@233: cannam@233: class PluginInputDomainAdapter::Impl cannam@233: { cannam@233: public: cannam@233: Impl(Plugin *plugin, float inputSampleRate); cannam@233: ~Impl(); cannam@233: cannam@233: bool initialise(size_t channels, size_t stepSize, size_t blockSize); cannam@233: cannam@233: size_t getPreferredStepSize() const; cannam@233: size_t getPreferredBlockSize() const; cannam@233: cannam@233: FeatureSet process(const float *const *inputBuffers, RealTime timestamp); cannam@233: cannam@233: RealTime getTimestampAdjustment() const; cannam@233: cannam@233: protected: cannam@233: Plugin *m_plugin; cannam@233: float m_inputSampleRate; cannam@233: int m_channels; cannam@233: int m_blockSize; cannam@233: float **m_freqbuf; cannam@233: cannam@233: double *m_ri; cannam@233: double *m_window; cannam@233: cannam@233: #ifdef HAVE_FFTW3 cannam@233: fftw_plan m_plan; cannam@233: fftw_complex *m_cbuf; cannam@233: #else cannam@233: double *m_ro; cannam@233: double *m_io; cannam@233: void fft(unsigned int n, bool inverse, cannam@233: double *ri, double *ii, double *ro, double *io); cannam@233: #endif cannam@233: cannam@233: size_t makeBlockSizeAcceptable(size_t) const; cannam@233: }; cannam@233: cannam@233: PluginInputDomainAdapter::PluginInputDomainAdapter(Plugin *plugin) : cannam@233: PluginWrapper(plugin) cannam@233: { cannam@233: m_impl = new Impl(plugin, m_inputSampleRate); cannam@233: } cannam@233: cannam@233: PluginInputDomainAdapter::~PluginInputDomainAdapter() cannam@233: { cannam@233: delete m_impl; cannam@233: } cannam@233: cannam@233: bool cannam@233: PluginInputDomainAdapter::initialise(size_t channels, size_t stepSize, size_t blockSize) cannam@233: { cannam@233: return m_impl->initialise(channels, stepSize, blockSize); cannam@233: } cannam@233: cannam@233: Plugin::InputDomain cannam@233: PluginInputDomainAdapter::getInputDomain() const cannam@233: { cannam@233: return TimeDomain; cannam@233: } cannam@233: cannam@233: size_t cannam@233: PluginInputDomainAdapter::getPreferredStepSize() const cannam@233: { cannam@233: return m_impl->getPreferredStepSize(); cannam@233: } cannam@233: cannam@233: size_t cannam@233: PluginInputDomainAdapter::getPreferredBlockSize() const cannam@233: { cannam@233: return m_impl->getPreferredBlockSize(); cannam@233: } cannam@233: cannam@233: Plugin::FeatureSet cannam@233: PluginInputDomainAdapter::process(const float *const *inputBuffers, RealTime timestamp) cannam@233: { cannam@233: return m_impl->process(inputBuffers, timestamp); cannam@233: } cannam@233: cannam@233: RealTime cannam@233: PluginInputDomainAdapter::getTimestampAdjustment() const cannam@233: { cannam@233: return m_impl->getTimestampAdjustment(); cannam@233: } cannam@233: cannam@233: cannam@233: PluginInputDomainAdapter::Impl::Impl(Plugin *plugin, float inputSampleRate) : cannam@233: m_plugin(plugin), cannam@233: m_inputSampleRate(inputSampleRate), cannam@233: m_channels(0), cannam@233: m_blockSize(0), cannam@233: m_freqbuf(0), cannam@233: m_ri(0), cannam@233: m_window(0), cannam@233: #ifdef HAVE_FFTW3 cannam@233: m_plan(0), cannam@233: m_cbuf(0) cannam@233: #else cannam@233: m_ro(0), cannam@233: m_io(0) cannam@233: #endif cannam@233: { cannam@233: } cannam@233: cannam@233: PluginInputDomainAdapter::Impl::~Impl() cannam@233: { cannam@233: // the adapter will delete the plugin cannam@233: cannam@233: if (m_channels > 0) { cannam@233: for (int c = 0; c < m_channels; ++c) { cannam@233: delete[] m_freqbuf[c]; cannam@233: } cannam@233: delete[] m_freqbuf; cannam@233: #ifdef HAVE_FFTW3 cannam@233: if (m_plan) { cannam@233: fftw_destroy_plan(m_plan); cannam@233: fftw_free(m_ri); cannam@233: fftw_free(m_cbuf); cannam@233: m_plan = 0; cannam@233: } cannam@233: #else cannam@233: delete[] m_ri; cannam@233: delete[] m_ro; cannam@233: delete[] m_io; cannam@233: #endif cannam@233: delete[] m_window; cannam@233: } cannam@233: } cannam@233: cannam@233: // for some visual studii apparently cannam@233: #ifndef M_PI cannam@233: #define M_PI 3.14159265358979232846 cannam@233: #endif cannam@233: cannam@233: bool cannam@233: PluginInputDomainAdapter::Impl::initialise(size_t channels, size_t stepSize, size_t blockSize) cannam@233: { cannam@233: if (m_plugin->getInputDomain() == TimeDomain) { cannam@233: cannam@233: m_blockSize = int(blockSize); cannam@233: m_channels = int(channels); cannam@233: cannam@233: return m_plugin->initialise(channels, stepSize, blockSize); cannam@233: } cannam@233: cannam@233: if (blockSize < 2) { cannam@233: std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not supported" << std::endl; cannam@233: return false; cannam@233: } cannam@233: cannam@233: if (blockSize & (blockSize-1)) { cannam@233: std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported" << std::endl; cannam@233: return false; cannam@233: } cannam@233: cannam@233: if (m_channels > 0) { cannam@233: for (int c = 0; c < m_channels; ++c) { cannam@233: delete[] m_freqbuf[c]; cannam@233: } cannam@233: delete[] m_freqbuf; cannam@233: #ifdef HAVE_FFTW3 cannam@233: if (m_plan) { cannam@233: fftw_destroy_plan(m_plan); cannam@233: fftw_free(m_ri); cannam@233: fftw_free(m_cbuf); cannam@233: m_plan = 0; cannam@233: } cannam@233: #else cannam@233: delete[] m_ri; cannam@233: delete[] m_ro; cannam@233: delete[] m_io; cannam@233: #endif cannam@233: delete[] m_window; cannam@233: } cannam@233: cannam@233: m_blockSize = int(blockSize); cannam@233: m_channels = int(channels); cannam@233: cannam@233: m_freqbuf = new float *[m_channels]; cannam@233: for (int c = 0; c < m_channels; ++c) { cannam@233: m_freqbuf[c] = new float[m_blockSize + 2]; cannam@233: } cannam@233: m_window = new double[m_blockSize]; cannam@233: cannam@233: for (int i = 0; i < m_blockSize; ++i) { cannam@233: // Hanning window cannam@233: m_window[i] = (0.50 - 0.50 * cos((2.0 * M_PI * i) / m_blockSize)); cannam@233: } cannam@233: cannam@233: #ifdef HAVE_FFTW3 cannam@233: m_ri = (double *)fftw_malloc(blockSize * sizeof(double)); cannam@233: m_cbuf = (fftw_complex *)fftw_malloc((blockSize/2 + 1) * sizeof(fftw_complex)); cannam@233: m_plan = fftw_plan_dft_r2c_1d(blockSize, m_ri, m_cbuf, FFTW_MEASURE); cannam@233: #else cannam@233: m_ri = new double[m_blockSize]; cannam@233: m_ro = new double[m_blockSize]; cannam@233: m_io = new double[m_blockSize]; cannam@233: #endif cannam@233: cannam@233: return m_plugin->initialise(channels, stepSize, blockSize); cannam@233: } cannam@233: cannam@233: size_t cannam@233: PluginInputDomainAdapter::Impl::getPreferredStepSize() const cannam@233: { cannam@233: size_t step = m_plugin->getPreferredStepSize(); cannam@233: cannam@233: if (step == 0 && (m_plugin->getInputDomain() == FrequencyDomain)) { cannam@233: step = getPreferredBlockSize() / 2; cannam@233: } cannam@233: cannam@233: return step; cannam@233: } cannam@233: cannam@233: size_t cannam@233: PluginInputDomainAdapter::Impl::getPreferredBlockSize() const cannam@233: { cannam@233: size_t block = m_plugin->getPreferredBlockSize(); cannam@233: cannam@233: if (m_plugin->getInputDomain() == FrequencyDomain) { cannam@233: if (block == 0) { cannam@233: block = 1024; cannam@233: } else { cannam@233: block = makeBlockSizeAcceptable(block); cannam@233: } cannam@233: } cannam@233: cannam@233: return block; cannam@233: } cannam@233: cannam@233: size_t cannam@233: PluginInputDomainAdapter::Impl::makeBlockSizeAcceptable(size_t blockSize) const cannam@233: { cannam@233: if (blockSize < 2) { cannam@233: cannam@233: std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not" << std::endl cannam@233: << "supported, increasing from " << blockSize << " to 2" << std::endl; cannam@233: blockSize = 2; cannam@233: cannam@233: } else if (blockSize & (blockSize-1)) { cannam@233: cannam@233: #ifdef HAVE_FFTW3 cannam@233: // not an issue with FFTW cannam@233: #else cannam@233: cannam@233: // not a power of two, can't handle that with our built-in FFT cannam@233: // implementation cannam@233: cannam@233: size_t nearest = blockSize; cannam@233: size_t power = 0; cannam@233: while (nearest > 1) { cannam@233: nearest >>= 1; cannam@233: ++power; cannam@233: } cannam@233: nearest = 1; cannam@233: while (power) { cannam@233: nearest <<= 1; cannam@233: --power; cannam@233: } cannam@233: cannam@233: if (blockSize - nearest > (nearest*2) - blockSize) { cannam@233: nearest = nearest*2; cannam@233: } cannam@233: cannam@233: std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported, using blocksize " << nearest << " instead" << std::endl; cannam@233: blockSize = nearest; cannam@233: cannam@233: #endif cannam@233: } cannam@233: cannam@233: return blockSize; cannam@233: } cannam@233: cannam@233: RealTime cannam@233: PluginInputDomainAdapter::Impl::getTimestampAdjustment() const cannam@233: { cannam@233: if (m_plugin->getInputDomain() == TimeDomain) { cannam@233: return RealTime::zeroTime; cannam@233: } else { cannam@233: return RealTime::frame2RealTime cannam@233: (m_blockSize/2, int(m_inputSampleRate + 0.5)); cannam@233: } cannam@233: } cannam@233: cannam@233: Plugin::FeatureSet cannam@233: PluginInputDomainAdapter::Impl::process(const float *const *inputBuffers, cannam@233: RealTime timestamp) cannam@233: { cannam@233: if (m_plugin->getInputDomain() == TimeDomain) { cannam@233: return m_plugin->process(inputBuffers, timestamp); cannam@233: } cannam@233: cannam@233: // The timestamp supplied should be (according to the Vamp::Plugin cannam@233: // spec) the time of the start of the time-domain input block. cannam@233: // However, we want to pass to the plugin an FFT output calculated cannam@233: // from the block of samples _centred_ on that timestamp. cannam@233: // cannam@233: // We have two options: cannam@233: // cannam@233: // 1. Buffer the input, calculating the fft of the values at the cannam@233: // passed-in block minus blockSize/2 rather than starting at the cannam@233: // passed-in block. So each time we call process on the plugin, cannam@233: // we are passing in the same timestamp as was passed to our own cannam@233: // process plugin, but not (the frequency domain representation cannam@233: // of) the same set of samples. Advantages: avoids confusion in cannam@233: // the host by ensuring the returned values have timestamps cannam@233: // comparable with that passed in to this function (in fact this cannam@233: // is pretty much essential for one-value-per-block outputs); cannam@233: // consistent with hosts such as SV that deal with the cannam@233: // frequency-domain transform themselves. Disadvantages: means cannam@233: // making the not necessarily correct assumption that the samples cannam@233: // preceding the first official block are all zero (or some other cannam@233: // known value). cannam@233: // cannam@233: // 2. Increase the passed-in timestamps by half the blocksize. So cannam@233: // when we call process, we are passing in the frequency domain cannam@233: // representation of the same set of samples as passed to us, but cannam@233: // with a different timestamp. Advantages: simplicity; avoids cannam@233: // iffy assumption mentioned above. Disadvantages: inconsistency cannam@233: // with SV in cases where stepSize != blockSize/2; potential cannam@233: // confusion arising from returned timestamps being calculated cannam@233: // from the adjusted input timestamps rather than the original cannam@233: // ones (and inaccuracy where the returned timestamp is implied, cannam@233: // as in one-value-per-block). cannam@233: // cannam@233: // Neither way is ideal, but I don't think either is strictly cannam@233: // incorrect either. I think this is just a case where the same cannam@233: // plugin can legitimately produce differing results from the same cannam@233: // input data, depending on how that data is packaged. cannam@233: // cannam@233: // We'll go for option 2, adjusting the timestamps. Note in cannam@233: // particular that this means some results can differ from those cannam@233: // produced by SV. cannam@233: cannam@233: // std::cerr << "PluginInputDomainAdapter: sampleRate " << m_inputSampleRate << ", blocksize " << m_blockSize << ", adjusting time from " << timestamp; cannam@233: cannam@233: timestamp = timestamp + getTimestampAdjustment(); cannam@233: cannam@233: // std::cerr << " to " << timestamp << std::endl; cannam@233: cannam@233: for (int c = 0; c < m_channels; ++c) { cannam@233: cannam@233: for (int i = 0; i < m_blockSize; ++i) { cannam@233: m_ri[i] = double(inputBuffers[c][i]) * m_window[i]; cannam@233: } cannam@233: cannam@233: for (int i = 0; i < m_blockSize/2; ++i) { cannam@233: // FFT shift cannam@233: double value = m_ri[i]; cannam@233: m_ri[i] = m_ri[i + m_blockSize/2]; cannam@233: m_ri[i + m_blockSize/2] = value; cannam@233: } cannam@233: cannam@233: #ifdef HAVE_FFTW3 cannam@233: cannam@233: fftw_execute(m_plan); cannam@233: cannam@233: for (int i = 0; i <= m_blockSize/2; ++i) { cannam@233: m_freqbuf[c][i * 2] = float(m_cbuf[i][0]); cannam@233: m_freqbuf[c][i * 2 + 1] = float(m_cbuf[i][1]); cannam@233: } cannam@233: cannam@233: #else cannam@233: cannam@233: fft(m_blockSize, false, m_ri, 0, m_ro, m_io); cannam@233: cannam@233: for (int i = 0; i <= m_blockSize/2; ++i) { cannam@233: m_freqbuf[c][i * 2] = float(m_ro[i]); cannam@233: m_freqbuf[c][i * 2 + 1] = float(m_io[i]); cannam@233: } cannam@233: cannam@233: #endif cannam@233: } cannam@233: cannam@233: return m_plugin->process(m_freqbuf, timestamp); cannam@233: } cannam@233: cannam@233: #ifndef HAVE_FFTW3 cannam@233: cannam@233: void cannam@233: PluginInputDomainAdapter::Impl::fft(unsigned int n, bool inverse, cannam@233: double *ri, double *ii, double *ro, double *io) cannam@233: { cannam@233: if (!ri || !ro || !io) return; cannam@233: cannam@233: unsigned int bits; cannam@233: unsigned int i, j, k, m; cannam@233: unsigned int blockSize, blockEnd; cannam@233: cannam@233: double tr, ti; cannam@233: cannam@233: if (n < 2) return; cannam@233: if (n & (n-1)) return; cannam@233: cannam@233: double angle = 2.0 * M_PI; cannam@233: if (inverse) angle = -angle; cannam@233: cannam@233: for (i = 0; ; ++i) { cannam@233: if (n & (1 << i)) { cannam@233: bits = i; cannam@233: break; cannam@233: } cannam@233: } cannam@233: cannam@233: static unsigned int tableSize = 0; cannam@233: static int *table = 0; cannam@233: cannam@233: if (tableSize != n) { cannam@233: cannam@233: delete[] table; cannam@233: cannam@233: table = new int[n]; cannam@233: cannam@233: for (i = 0; i < n; ++i) { cannam@233: cannam@233: m = i; cannam@233: cannam@233: for (j = k = 0; j < bits; ++j) { cannam@233: k = (k << 1) | (m & 1); cannam@233: m >>= 1; cannam@233: } cannam@233: cannam@233: table[i] = k; cannam@233: } cannam@233: cannam@233: tableSize = n; cannam@233: } cannam@233: cannam@233: if (ii) { cannam@233: for (i = 0; i < n; ++i) { cannam@233: ro[table[i]] = ri[i]; cannam@233: io[table[i]] = ii[i]; cannam@233: } cannam@233: } else { cannam@233: for (i = 0; i < n; ++i) { cannam@233: ro[table[i]] = ri[i]; cannam@233: io[table[i]] = 0.0; cannam@233: } cannam@233: } cannam@233: cannam@233: blockEnd = 1; cannam@233: cannam@233: for (blockSize = 2; blockSize <= n; blockSize <<= 1) { cannam@233: cannam@233: double delta = angle / (double)blockSize; cannam@233: double sm2 = -sin(-2 * delta); cannam@233: double sm1 = -sin(-delta); cannam@233: double cm2 = cos(-2 * delta); cannam@233: double cm1 = cos(-delta); cannam@233: double w = 2 * cm1; cannam@233: double ar[3], ai[3]; cannam@233: cannam@233: for (i = 0; i < n; i += blockSize) { cannam@233: cannam@233: ar[2] = cm2; cannam@233: ar[1] = cm1; cannam@233: cannam@233: ai[2] = sm2; cannam@233: ai[1] = sm1; cannam@233: cannam@233: for (j = i, m = 0; m < blockEnd; j++, m++) { cannam@233: cannam@233: ar[0] = w * ar[1] - ar[2]; cannam@233: ar[2] = ar[1]; cannam@233: ar[1] = ar[0]; cannam@233: cannam@233: ai[0] = w * ai[1] - ai[2]; cannam@233: ai[2] = ai[1]; cannam@233: ai[1] = ai[0]; cannam@233: cannam@233: k = j + blockEnd; cannam@233: tr = ar[0] * ro[k] - ai[0] * io[k]; cannam@233: ti = ar[0] * io[k] + ai[0] * ro[k]; cannam@233: cannam@233: ro[k] = ro[j] - tr; cannam@233: io[k] = io[j] - ti; cannam@233: cannam@233: ro[j] += tr; cannam@233: io[j] += ti; cannam@233: } cannam@233: } cannam@233: cannam@233: blockEnd = blockSize; cannam@233: } cannam@233: cannam@233: if (inverse) { cannam@233: cannam@233: double denom = (double)n; cannam@233: cannam@233: for (i = 0; i < n; i++) { cannam@233: ro[i] /= denom; cannam@233: io[i] /= denom; cannam@233: } cannam@233: } cannam@233: } cannam@233: cannam@233: #endif cannam@233: cannam@233: } cannam@233: cannam@233: } cannam@233: