Mercurial > hg > vamp-plugin-sdk
view examples/SpectralCentroid.cpp @ 247:7ea95c88caf3 rdf-passing-experiment
* Re-branch
author | cannam |
---|---|
date | Tue, 11 Nov 2008 10:00:35 +0000 (2008-11-11) |
parents | 3cf5bd155e5b |
children | 88ef5ffdbe8d |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp An API for audio analysis and feature extraction plugins. Centre for Digital Music, Queen Mary, University of London. Copyright 2006 Chris Cannam. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "SpectralCentroid.h" using std::string; using std::vector; using std::cerr; using std::endl; #include <math.h> #ifdef WIN32 #define isnan(x) false #define isinf(x) false #endif SpectralCentroid::SpectralCentroid(float inputSampleRate) : Plugin(inputSampleRate), m_stepSize(0), m_blockSize(0) { } SpectralCentroid::~SpectralCentroid() { } string SpectralCentroid::getIdentifier() const { return "spectralcentroid"; } string SpectralCentroid::getName() const { return "Spectral Centroid"; } string SpectralCentroid::getDescription() const { return "Calculate the centroid frequency of the spectrum of the input signal"; } string SpectralCentroid::getMaker() const { return "Vamp SDK Example Plugins"; } int SpectralCentroid::getPluginVersion() const { return 2; } string SpectralCentroid::getCopyright() const { return "Freely redistributable (BSD license)"; } bool SpectralCentroid::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; m_stepSize = stepSize; m_blockSize = blockSize; return true; } void SpectralCentroid::reset() { } SpectralCentroid::OutputList SpectralCentroid::getOutputDescriptors() const { OutputList list; OutputDescriptor d; d.identifier = "logcentroid"; d.name = "Log Frequency Centroid"; d.description = "Centroid of the log weighted frequency spectrum"; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = false; d.isQuantized = false; d.sampleType = OutputDescriptor::OneSamplePerStep; list.push_back(d); d.identifier = "linearcentroid"; d.name = "Linear Frequency Centroid"; d.description = "Centroid of the linear frequency spectrum"; list.push_back(d); return list; } //static int scount = 0; SpectralCentroid::FeatureSet SpectralCentroid::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { if (m_stepSize == 0) { cerr << "ERROR: SpectralCentroid::process: " << "SpectralCentroid has not been initialised" << endl; return FeatureSet(); } // std::cerr << "SpectralCentroid::process: count = " << scount++ << ", timestamp = " << timestamp << ", total power = "; double numLin = 0.0, numLog = 0.0, denom = 0.0; for (size_t i = 1; i <= m_blockSize/2; ++i) { double freq = (double(i) * m_inputSampleRate) / m_blockSize; double real = inputBuffers[0][i*2]; double imag = inputBuffers[0][i*2 + 1]; double scalemag = sqrt(real * real + imag * imag) / (m_blockSize/2); numLin += freq * scalemag; numLog += log10f(freq) * scalemag; denom += scalemag; } // std::cerr << denom << std::endl; FeatureSet returnFeatures; if (denom != 0.0) { float centroidLin = float(numLin / denom); float centroidLog = powf(10, float(numLog / denom)); Feature feature; feature.hasTimestamp = false; if (!isnan(centroidLog) && !isinf(centroidLog)) { feature.values.push_back(centroidLog); } returnFeatures[0].push_back(feature); feature.values.clear(); if (!isnan(centroidLin) && !isinf(centroidLin)) { feature.values.push_back(centroidLin); } returnFeatures[1].push_back(feature); } return returnFeatures; } SpectralCentroid::FeatureSet SpectralCentroid::getRemainingFeatures() { return FeatureSet(); }