Mercurial > hg > vamp-plugin-sdk
view vamp-sdk/hostext/PluginInputDomainAdapter.cpp @ 173:a6981e5dafe5
* make a start on the summarising adapter
author | cannam |
---|---|
date | Mon, 04 Aug 2008 16:13:14 +0000 |
parents | 2cb46126ef59 |
children | 1982246a3902 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp An API for audio analysis and feature extraction plugins. Centre for Digital Music, Queen Mary, University of London. Copyright 2006-2007 Chris Cannam and QMUL. This file is based in part on Don Cross's public domain FFT implementation. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "PluginInputDomainAdapter.h" #include <cmath> /** * If you want to compile using FFTW instead of the built-in FFT * implementation for the PluginInputDomainAdapter, define HAVE_FFTW3 * in the Makefile. * * Be aware that FFTW is licensed under the GPL -- unlike this SDK, * which is provided under a more liberal BSD license in order to * permit use in closed source applications. The use of FFTW would * mean that your code would need to be licensed under the GPL as * well. Do not define this symbol unless you understand and accept * the implications of this. * * Parties such as Linux distribution packagers who redistribute this * SDK for use in other programs should _not_ define this symbol, as * it would change the effective licensing terms under which the SDK * was available to third party developers. * * The default is not to use FFTW, and to use the built-in FFT instead. * * Note: The FFTW code uses FFTW_MEASURE, and so will perform badly on * its first invocation unless the host has saved and restored FFTW * wisdom (see the FFTW documentation). */ #ifdef HAVE_FFTW3 #include <fftw3.h> #endif namespace Vamp { namespace HostExt { class PluginInputDomainAdapter::Impl { public: Impl(Plugin *plugin, float inputSampleRate); ~Impl(); bool initialise(size_t channels, size_t stepSize, size_t blockSize); size_t getPreferredStepSize() const; size_t getPreferredBlockSize() const; FeatureSet process(const float *const *inputBuffers, RealTime timestamp); protected: Plugin *m_plugin; float m_inputSampleRate; int m_channels; int m_blockSize; float **m_freqbuf; double *m_ri; double *m_window; #ifdef HAVE_FFTW3 fftw_plan m_plan; fftw_complex *m_cbuf; #else double *m_ro; double *m_io; void fft(unsigned int n, bool inverse, double *ri, double *ii, double *ro, double *io); #endif size_t makeBlockSizeAcceptable(size_t) const; }; PluginInputDomainAdapter::PluginInputDomainAdapter(Plugin *plugin) : PluginWrapper(plugin) { m_impl = new Impl(plugin, m_inputSampleRate); } PluginInputDomainAdapter::~PluginInputDomainAdapter() { delete m_impl; } bool PluginInputDomainAdapter::initialise(size_t channels, size_t stepSize, size_t blockSize) { return m_impl->initialise(channels, stepSize, blockSize); } Plugin::InputDomain PluginInputDomainAdapter::getInputDomain() const { return TimeDomain; } size_t PluginInputDomainAdapter::getPreferredStepSize() const { return m_impl->getPreferredStepSize(); } size_t PluginInputDomainAdapter::getPreferredBlockSize() const { return m_impl->getPreferredBlockSize(); } Plugin::FeatureSet PluginInputDomainAdapter::process(const float *const *inputBuffers, RealTime timestamp) { return m_impl->process(inputBuffers, timestamp); } PluginInputDomainAdapter::Impl::Impl(Plugin *plugin, float inputSampleRate) : m_plugin(plugin), m_inputSampleRate(inputSampleRate), m_channels(0), m_blockSize(0), m_freqbuf(0), m_ri(0), m_window(0), #ifdef HAVE_FFTW3 m_plan(0), m_cbuf(0) #else m_ro(0), m_io(0) #endif { } PluginInputDomainAdapter::Impl::~Impl() { // the adapter will delete the plugin if (m_channels > 0) { for (int c = 0; c < m_channels; ++c) { delete[] m_freqbuf[c]; } delete[] m_freqbuf; #ifdef HAVE_FFTW3 if (m_plan) { fftw_destroy_plan(m_plan); fftw_free(m_ri); fftw_free(m_cbuf); m_plan = 0; } #else delete[] m_ri; delete[] m_ro; delete[] m_io; #endif delete[] m_window; } } // for some visual studii apparently #ifndef M_PI #define M_PI 3.14159265358979232846 #endif bool PluginInputDomainAdapter::Impl::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (m_plugin->getInputDomain() == TimeDomain) { m_blockSize = int(blockSize); m_channels = int(channels); return m_plugin->initialise(channels, stepSize, blockSize); } if (blockSize < 2) { std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not supported" << std::endl; return false; } if (blockSize & (blockSize-1)) { std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported" << std::endl; return false; } if (m_channels > 0) { for (int c = 0; c < m_channels; ++c) { delete[] m_freqbuf[c]; } delete[] m_freqbuf; #ifdef HAVE_FFTW3 if (m_plan) { fftw_destroy_plan(m_plan); fftw_free(m_ri); fftw_free(m_cbuf); m_plan = 0; } #else delete[] m_ri; delete[] m_ro; delete[] m_io; #endif delete[] m_window; } m_blockSize = int(blockSize); m_channels = int(channels); m_freqbuf = new float *[m_channels]; for (int c = 0; c < m_channels; ++c) { m_freqbuf[c] = new float[m_blockSize + 2]; } m_window = new double[m_blockSize]; for (int i = 0; i < m_blockSize; ++i) { // Hanning window m_window[i] = (0.50 - 0.50 * cos((2.0 * M_PI * i) / m_blockSize)); } #ifdef HAVE_FFTW3 m_ri = (double *)fftw_malloc(blockSize * sizeof(double)); m_cbuf = (fftw_complex *)fftw_malloc((blockSize/2 + 1) * sizeof(fftw_complex)); m_plan = fftw_plan_dft_r2c_1d(blockSize, m_ri, m_cbuf, FFTW_MEASURE); #else m_ri = new double[m_blockSize]; m_ro = new double[m_blockSize]; m_io = new double[m_blockSize]; #endif return m_plugin->initialise(channels, stepSize, blockSize); } size_t PluginInputDomainAdapter::Impl::getPreferredStepSize() const { size_t step = m_plugin->getPreferredStepSize(); if (step == 0 && (m_plugin->getInputDomain() == FrequencyDomain)) { step = getPreferredBlockSize() / 2; } return step; } size_t PluginInputDomainAdapter::Impl::getPreferredBlockSize() const { size_t block = m_plugin->getPreferredBlockSize(); if (m_plugin->getInputDomain() == FrequencyDomain) { if (block == 0) { block = 1024; } else { block = makeBlockSizeAcceptable(block); } } return block; } size_t PluginInputDomainAdapter::Impl::makeBlockSizeAcceptable(size_t blockSize) const { if (blockSize < 2) { std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not" << std::endl << "supported, increasing from " << blockSize << " to 2" << std::endl; blockSize = 2; } else if (blockSize & (blockSize-1)) { #ifdef HAVE_FFTW3 // not an issue with FFTW #else // not a power of two, can't handle that with our built-in FFT // implementation size_t nearest = blockSize; size_t power = 0; while (nearest > 1) { nearest >>= 1; ++power; } nearest = 1; while (power) { nearest <<= 1; --power; } if (blockSize - nearest > (nearest*2) - blockSize) { nearest = nearest*2; } std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported, using blocksize " << nearest << " instead" << std::endl; blockSize = nearest; #endif } return blockSize; } Plugin::FeatureSet PluginInputDomainAdapter::Impl::process(const float *const *inputBuffers, RealTime timestamp) { if (m_plugin->getInputDomain() == TimeDomain) { return m_plugin->process(inputBuffers, timestamp); } // The timestamp supplied should be (according to the Vamp::Plugin // spec) the time of the start of the time-domain input block. // However, we want to pass to the plugin an FFT output calculated // from the block of samples _centred_ on that timestamp. // // We have two options: // // 1. Buffer the input, calculating the fft of the values at the // passed-in block minus blockSize/2 rather than starting at the // passed-in block. So each time we call process on the plugin, // we are passing in the same timestamp as was passed to our own // process plugin, but not (the frequency domain representation // of) the same set of samples. Advantages: avoids confusion in // the host by ensuring the returned values have timestamps // comparable with that passed in to this function (in fact this // is pretty much essential for one-value-per-block outputs); // consistent with hosts such as SV that deal with the // frequency-domain transform themselves. Disadvantages: means // making the not necessarily correct assumption that the samples // preceding the first official block are all zero (or some other // known value). // // 2. Increase the passed-in timestamps by half the blocksize. So // when we call process, we are passing in the frequency domain // representation of the same set of samples as passed to us, but // with a different timestamp. Advantages: simplicity; avoids // iffy assumption mentioned above. Disadvantages: inconsistency // with SV in cases where stepSize != blockSize/2; potential // confusion arising from returned timestamps being calculated // from the adjusted input timestamps rather than the original // ones (and inaccuracy where the returned timestamp is implied, // as in one-value-per-block). // // Neither way is ideal, but I don't think either is strictly // incorrect either. I think this is just a case where the same // plugin can legitimately produce differing results from the same // input data, depending on how that data is packaged. // // We'll go for option 2, adjusting the timestamps. Note in // particular that this means some results can differ from those // produced by SV. // std::cerr << "PluginInputDomainAdapter: sampleRate " << m_inputSampleRate << ", blocksize " << m_blockSize << ", adjusting time from " << timestamp; timestamp = timestamp + RealTime::frame2RealTime (m_blockSize/2, int(m_inputSampleRate + 0.5)); // std::cerr << " to " << timestamp << std::endl; for (int c = 0; c < m_channels; ++c) { for (int i = 0; i < m_blockSize; ++i) { m_ri[i] = double(inputBuffers[c][i]) * m_window[i]; } for (int i = 0; i < m_blockSize/2; ++i) { // FFT shift double value = m_ri[i]; m_ri[i] = m_ri[i + m_blockSize/2]; m_ri[i + m_blockSize/2] = value; } #ifdef HAVE_FFTW3 fftw_execute(m_plan); for (int i = 0; i <= m_blockSize/2; ++i) { m_freqbuf[c][i * 2] = float(m_cbuf[i][0]); m_freqbuf[c][i * 2 + 1] = float(m_cbuf[i][1]); } #else fft(m_blockSize, false, m_ri, 0, m_ro, m_io); for (int i = 0; i <= m_blockSize/2; ++i) { m_freqbuf[c][i * 2] = float(m_ro[i]); m_freqbuf[c][i * 2 + 1] = float(m_io[i]); } #endif } return m_plugin->process(m_freqbuf, timestamp); } #ifndef HAVE_FFTW3 void PluginInputDomainAdapter::Impl::fft(unsigned int n, bool inverse, double *ri, double *ii, double *ro, double *io) { if (!ri || !ro || !io) return; unsigned int bits; unsigned int i, j, k, m; unsigned int blockSize, blockEnd; double tr, ti; if (n < 2) return; if (n & (n-1)) return; double angle = 2.0 * M_PI; if (inverse) angle = -angle; for (i = 0; ; ++i) { if (n & (1 << i)) { bits = i; break; } } static unsigned int tableSize = 0; static int *table = 0; if (tableSize != n) { delete[] table; table = new int[n]; for (i = 0; i < n; ++i) { m = i; for (j = k = 0; j < bits; ++j) { k = (k << 1) | (m & 1); m >>= 1; } table[i] = k; } tableSize = n; } if (ii) { for (i = 0; i < n; ++i) { ro[table[i]] = ri[i]; io[table[i]] = ii[i]; } } else { for (i = 0; i < n; ++i) { ro[table[i]] = ri[i]; io[table[i]] = 0.0; } } blockEnd = 1; for (blockSize = 2; blockSize <= n; blockSize <<= 1) { double delta = angle / (double)blockSize; double sm2 = -sin(-2 * delta); double sm1 = -sin(-delta); double cm2 = cos(-2 * delta); double cm1 = cos(-delta); double w = 2 * cm1; double ar[3], ai[3]; for (i = 0; i < n; i += blockSize) { ar[2] = cm2; ar[1] = cm1; ai[2] = sm2; ai[1] = sm1; for (j = i, m = 0; m < blockEnd; j++, m++) { ar[0] = w * ar[1] - ar[2]; ar[2] = ar[1]; ar[1] = ar[0]; ai[0] = w * ai[1] - ai[2]; ai[2] = ai[1]; ai[1] = ai[0]; k = j + blockEnd; tr = ar[0] * ro[k] - ai[0] * io[k]; ti = ar[0] * io[k] + ai[0] * ro[k]; ro[k] = ro[j] - tr; io[k] = io[j] - ti; ro[j] += tr; io[j] += ti; } } blockEnd = blockSize; } if (inverse) { double denom = (double)n; for (i = 0; i < n; i++) { ro[i] /= denom; io[i] /= denom; } } } #endif } }