Mercurial > hg > vamp-plugin-sdk
view examples/AmplitudeFollower.cpp @ 54:933fee59d33a
* doc updates
author | cannam |
---|---|
date | Fri, 30 Mar 2007 17:14:16 +0000 |
parents | aa64a46320d4 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp An API for audio analysis and feature extraction plugins. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Dan Stowell. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "AmplitudeFollower.h" #include <cmath> #include <string> #include <vector> #include <iostream> using std::string; using std::vector; using std::cerr; using std::endl; /** * An implementation of SuperCollider's amplitude-follower algorithm * as a simple Vamp plugin. */ AmplitudeFollower::AmplitudeFollower(float inputSampleRate) : Plugin(inputSampleRate), m_stepSize(0), m_previn(0.0f), m_clampcoef(0.01f), m_relaxcoef(0.01f) { } AmplitudeFollower::~AmplitudeFollower() { } string AmplitudeFollower::getIdentifier() const { return "amplitudefollower"; } string AmplitudeFollower::getName() const { return "Amplitude Follower"; } string AmplitudeFollower::getDescription() const { return "Track the amplitude of the audio signal"; } string AmplitudeFollower::getMaker() const { return "Vamp SDK Example Plugins"; } int AmplitudeFollower::getPluginVersion() const { return 1; } string AmplitudeFollower::getCopyright() const { return "Code copyright 2006 Dan Stowell; method from SuperCollider. Freely redistributable (BSD license)"; } bool AmplitudeFollower::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; m_stepSize = std::min(stepSize, blockSize); // Translate the coefficients // from their "convenient" 60dB convergence-time values // to real coefficients m_clampcoef = m_clampcoef==0.0 ? 0.0 : exp(log(0.1)/(m_clampcoef * m_inputSampleRate)); m_relaxcoef = m_relaxcoef==0.0 ? 0.0 : exp(log(0.1)/(m_relaxcoef * m_inputSampleRate)); return true; } void AmplitudeFollower::reset() { m_previn = 0.0f; } AmplitudeFollower::OutputList AmplitudeFollower::getOutputDescriptors() const { OutputList list; OutputDescriptor sca; sca.identifier = "amplitude"; sca.name = "Amplitude"; sca.description = ""; sca.unit = "V"; sca.hasFixedBinCount = true; sca.binCount = 1; sca.hasKnownExtents = false; sca.isQuantized = false; sca.sampleType = OutputDescriptor::OneSamplePerStep; list.push_back(sca); return list; } AmplitudeFollower::ParameterList AmplitudeFollower::getParameterDescriptors() const { ParameterList list; ParameterDescriptor att; att.identifier = "attack"; att.name = "Attack time"; att.description = ""; att.unit = "s"; att.minValue = 0.0f; att.maxValue = 1.f; att.defaultValue = 0.01f; att.isQuantized = false; list.push_back(att); ParameterDescriptor dec; dec.identifier = "release"; dec.name = "Release time"; dec.description = ""; dec.unit = "s"; dec.minValue = 0.0f; dec.maxValue = 1.f; dec.defaultValue = 0.01f; dec.isQuantized = false; list.push_back(dec); return list; } void AmplitudeFollower::setParameter(std::string paramid, float newval) { if (paramid == "attack") { m_clampcoef = newval; } else if (paramid == "release") { m_relaxcoef = newval; } } float AmplitudeFollower::getParameter(std::string paramid) const { if (paramid == "attack") { return m_clampcoef; } else if (paramid == "release") { return m_relaxcoef; } return 0.0f; } AmplitudeFollower::FeatureSet AmplitudeFollower::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { if (m_stepSize == 0) { cerr << "ERROR: AmplitudeFollower::process: " << "AmplitudeFollower has not been initialised" << endl; return FeatureSet(); } float previn = m_previn; FeatureSet returnFeatures; float val; float peak = 0.0f; for (size_t i = 0; i < m_stepSize; ++i) { val = fabs(inputBuffers[0][i]); if (val < previn) { val = val + (previn - val) * m_relaxcoef; } else { val = val + (previn - val) * m_clampcoef; } if (val > peak) peak = val; previn = val; } m_previn = previn; // Now store the "feature" (peak amp) for this sample Feature feature; feature.hasTimestamp = false; feature.values.push_back(peak); returnFeatures[0].push_back(feature); return returnFeatures; } AmplitudeFollower::FeatureSet AmplitudeFollower::getRemainingFeatures() { return FeatureSet(); }