Mercurial > hg > vamp-plugin-sdk
view examples/FixedTempoEstimator.cpp @ 199:84c4bb209227
* A few tweaks to fixed-tempo estimator
author | cannam |
---|---|
date | Wed, 08 Oct 2008 19:48:21 +0000 |
parents | e3e61b7e9661 |
children | a86e777bf9a6 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp An API for audio analysis and feature extraction plugins. Centre for Digital Music, Queen Mary, University of London. Copyright 2006-2008 Chris Cannam and QMUL. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "FixedTempoEstimator.h" using std::string; using std::vector; using std::cerr; using std::endl; using Vamp::RealTime; #include <cmath> FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) : Plugin(inputSampleRate), m_stepSize(0), m_blockSize(0), m_priorMagnitudes(0), m_df(0) { } FixedTempoEstimator::~FixedTempoEstimator() { delete[] m_priorMagnitudes; delete[] m_df; } string FixedTempoEstimator::getIdentifier() const { return "fixedtempo"; } string FixedTempoEstimator::getName() const { return "Simple Fixed Tempo Estimator"; } string FixedTempoEstimator::getDescription() const { return "Study a short section of audio and estimate its tempo, assuming the tempo is constant"; } string FixedTempoEstimator::getMaker() const { return "Vamp SDK Example Plugins"; } int FixedTempoEstimator::getPluginVersion() const { return 1; } string FixedTempoEstimator::getCopyright() const { return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)"; } size_t FixedTempoEstimator::getPreferredStepSize() const { return 0; } size_t FixedTempoEstimator::getPreferredBlockSize() const { return 128; } bool FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; m_stepSize = stepSize; m_blockSize = blockSize; float dfLengthSecs = 8.f; m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize; m_priorMagnitudes = new float[m_blockSize/2]; m_df = new float[m_dfsize]; for (size_t i = 0; i < m_blockSize/2; ++i) { m_priorMagnitudes[i] = 0.f; } for (size_t i = 0; i < m_dfsize; ++i) { m_df[i] = 0.f; } m_n = 0; return true; } void FixedTempoEstimator::reset() { std::cerr << "FixedTempoEstimator: reset called" << std::endl; if (!m_priorMagnitudes) return; std::cerr << "FixedTempoEstimator: resetting" << std::endl; for (size_t i = 0; i < m_blockSize/2; ++i) { m_priorMagnitudes[i] = 0.f; } for (size_t i = 0; i < m_dfsize; ++i) { m_df[i] = 0.f; } m_n = 0; m_start = RealTime::zeroTime; m_lasttime = RealTime::zeroTime; } FixedTempoEstimator::ParameterList FixedTempoEstimator::getParameterDescriptors() const { ParameterList list; return list; } float FixedTempoEstimator::getParameter(std::string id) const { return 0.f; } void FixedTempoEstimator::setParameter(std::string id, float value) { } FixedTempoEstimator::OutputList FixedTempoEstimator::getOutputDescriptors() const { OutputList list; OutputDescriptor d; d.identifier = "tempo"; d.name = "Tempo"; d.description = "Estimated tempo"; d.unit = "bpm"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = false; d.isQuantized = false; d.sampleType = OutputDescriptor::VariableSampleRate; d.sampleRate = m_inputSampleRate; d.hasDuration = true; // our returned tempo spans a certain range list.push_back(d); d.identifier = "detectionfunction"; d.name = "Detection Function"; d.description = "Onset detection function"; d.unit = ""; d.hasFixedBinCount = 1; d.binCount = 1; d.hasKnownExtents = true; d.minValue = 0.0; d.maxValue = 1.0; d.isQuantized = false; d.quantizeStep = 0.0; d.sampleType = OutputDescriptor::FixedSampleRate; if (m_stepSize) { d.sampleRate = m_inputSampleRate / m_stepSize; } else { d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2); } d.hasDuration = false; list.push_back(d); d.identifier = "acf"; d.name = "Autocorrelation Function"; d.description = "Autocorrelation of onset detection function"; d.hasKnownExtents = false; list.push_back(d); d.identifier = "filtered_acf"; d.name = "Filtered Autocorrelation"; d.description = "Filtered autocorrelation of onset detection function"; list.push_back(d); return list; } FixedTempoEstimator::FeatureSet FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts) { FeatureSet fs; if (m_stepSize == 0) { cerr << "ERROR: FixedTempoEstimator::process: " << "FixedTempoEstimator has not been initialised" << endl; return fs; } if (m_n < m_dfsize) std::cerr << "m_n = " << m_n << std::endl; if (m_n == 0) m_start = ts; m_lasttime = ts; if (m_n == m_dfsize) { fs = calculateFeatures(); ++m_n; return fs; } if (m_n > m_dfsize) return FeatureSet(); int count = 0; for (size_t i = 1; i < m_blockSize/2; ++i) { float real = inputBuffers[0][i*2]; float imag = inputBuffers[0][i*2 + 1]; float sqrmag = real * real + imag * imag; if (m_priorMagnitudes[i] > 0.f) { float diff = 10.f * log10f(sqrmag / m_priorMagnitudes[i]); if (diff >= 3.f) ++count; } m_priorMagnitudes[i] = sqrmag; } m_df[m_n] = float(count) / float(m_blockSize/2); ++m_n; return fs; } FixedTempoEstimator::FeatureSet FixedTempoEstimator::getRemainingFeatures() { FeatureSet fs; if (m_n > m_dfsize) return fs; fs = calculateFeatures(); ++m_n; return fs; } float FixedTempoEstimator::lag2tempo(int lag) { return 60.f / ((lag * m_stepSize) / m_inputSampleRate); } FixedTempoEstimator::FeatureSet FixedTempoEstimator::calculateFeatures() { FeatureSet fs; Feature feature; feature.hasTimestamp = true; feature.hasDuration = false; feature.label = ""; feature.values.clear(); feature.values.push_back(0.f); char buffer[20]; if (m_n < m_dfsize / 4) return fs; // not enough data (perhaps we should return the duration of the input as the "estimated" beat length?) std::cerr << "FixedTempoEstimator::calculateTempo: m_n = " << m_n << std::endl; int n = m_n; float *f = m_df; for (int i = 0; i < n; ++i) { feature.timestamp = RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate); feature.values[0] = f[i]; feature.label = ""; fs[1].push_back(feature); } float *r = new float[n/2]; for (int i = 0; i < n/2; ++i) r[i] = 0.f; int minlag = 10; for (int i = 0; i < n/2; ++i) { for (int j = i; j < n-1; ++j) { r[i] += f[j] * f[j - i]; } r[i] /= n - i - 1; } for (int i = 1; i < n/2; ++i) { feature.timestamp = RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate); feature.values[0] = r[i]; sprintf(buffer, "%.1f bpm", lag2tempo(i)); feature.label = buffer; fs[2].push_back(feature); } float max = 0.f; int maxindex = 0; std::cerr << "n/2 = " << n/2 << std::endl; for (int i = minlag; i < n/2; ++i) { if (i == minlag || r[i] > max) { max = r[i]; maxindex = i; } if (i == 0 || i == n/2-1) continue; if (r[i] > r[i-1] && r[i] > r[i+1]) { std::cerr << "peak at " << i << " (value=" << r[i] << ", tempo would be " << lag2tempo(i) << ")" << std::endl; } } std::cerr << "overall max at " << maxindex << " (value=" << max << ")" << std::endl; float tempo = lag2tempo(maxindex); std::cerr << "provisional tempo = " << tempo << std::endl; float t0 = 60.f; float t1 = 180.f; int p0 = ((60.f / t1) * m_inputSampleRate) / m_stepSize; int p1 = ((60.f / t0) * m_inputSampleRate) / m_stepSize; std::cerr << "p0 = " << p0 << ", p1 = " << p1 << std::endl; int pc = p1 - p0 + 1; std::cerr << "pc = " << pc << std::endl; // float *filtered = new float[pc]; // for (int i = 0; i < pc; ++i) filtered[i] = 0.f; int maxpi = 0; float maxp = 0.f; for (int i = p0; i <= p1; ++i) { // int fi = i - p0; float filtered = 0.f; for (int j = 1; j <= (n/2 - 1)/i; ++j) { // std::cerr << "j = " << j << ", i = " << i << std::endl; filtered += r[i * j]; } filtered /= (n/2 - 1)/i; if (i == p0 || filtered > maxp) { maxp = filtered; maxpi = i; } feature.timestamp = RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate); feature.values[0] = filtered; sprintf(buffer, "%.1f bpm", lag2tempo(i)); feature.label = buffer; fs[3].push_back(feature); } std::cerr << "maxpi = " << maxpi << " for tempo " << lag2tempo(maxpi) << " (value = " << maxp << ")" << std::endl; tempo = lag2tempo(maxpi); delete[] r; feature.hasTimestamp = true; feature.timestamp = m_start; feature.hasDuration = true; feature.duration = m_lasttime - m_start; feature.values[0] = tempo; sprintf(buffer, "%.1f bpm", tempo); feature.label = buffer; fs[0].push_back(feature); return fs; }