Mercurial > hg > vamp-plugin-sdk
diff examples/FixedTempoEstimator.cpp @ 198:e3e61b7e9661
* Beginnings of a simple tempo estimator example plugin
author | cannam |
---|---|
date | Wed, 08 Oct 2008 15:26:50 +0000 |
parents | |
children | 84c4bb209227 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/FixedTempoEstimator.cpp Wed Oct 08 15:26:50 2008 +0000 @@ -0,0 +1,426 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +/* + Vamp + + An API for audio analysis and feature extraction plugins. + + Centre for Digital Music, Queen Mary, University of London. + Copyright 2006-2008 Chris Cannam and QMUL. + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, copy, + modify, merge, publish, distribute, sublicense, and/or sell copies + of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR + ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF + CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION + WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + Except as contained in this notice, the names of the Centre for + Digital Music; Queen Mary, University of London; and Chris Cannam + shall not be used in advertising or otherwise to promote the sale, + use or other dealings in this Software without prior written + authorization. +*/ + +#include "FixedTempoEstimator.h" + +using std::string; +using std::vector; +using std::cerr; +using std::endl; + +using Vamp::RealTime; + +#include <cmath> + + +FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) : + Plugin(inputSampleRate), + m_stepSize(0), + m_blockSize(0), + m_priorMagnitudes(0), + m_df(0) +{ +} + +FixedTempoEstimator::~FixedTempoEstimator() +{ + delete[] m_priorMagnitudes; + delete[] m_df; +} + +string +FixedTempoEstimator::getIdentifier() const +{ + return "fixedtempo"; +} + +string +FixedTempoEstimator::getName() const +{ + return "Simple Fixed Tempo Estimator"; +} + +string +FixedTempoEstimator::getDescription() const +{ + return "Study a short section of audio and estimate its tempo, assuming the tempo is constant"; +} + +string +FixedTempoEstimator::getMaker() const +{ + return "Vamp SDK Example Plugins"; +} + +int +FixedTempoEstimator::getPluginVersion() const +{ + return 1; +} + +string +FixedTempoEstimator::getCopyright() const +{ + return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)"; +} + +size_t +FixedTempoEstimator::getPreferredStepSize() const +{ + return 0; +} + +size_t +FixedTempoEstimator::getPreferredBlockSize() const +{ + return 128; +} + +bool +FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize) +{ + if (channels < getMinChannelCount() || + channels > getMaxChannelCount()) return false; + + m_stepSize = stepSize; + m_blockSize = blockSize; + + float dfLengthSecs = 8.f; + m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize; + + m_priorMagnitudes = new float[m_blockSize/2]; + m_df = new float[m_dfsize]; + + for (size_t i = 0; i < m_blockSize/2; ++i) { + m_priorMagnitudes[i] = 0.f; + } + for (size_t i = 0; i < m_dfsize; ++i) { + m_df[i] = 0.f; + } + + m_n = 0; + + return true; +} + +void +FixedTempoEstimator::reset() +{ + std::cerr << "FixedTempoEstimator: reset called" << std::endl; + + if (!m_priorMagnitudes) return; + + std::cerr << "FixedTempoEstimator: resetting" << std::endl; + + for (size_t i = 0; i < m_blockSize/2; ++i) { + m_priorMagnitudes[i] = 0.f; + } + for (size_t i = 0; i < m_dfsize; ++i) { + m_df[i] = 0.f; + } + + m_n = 0; + + m_start = RealTime::zeroTime; + m_lasttime = RealTime::zeroTime; +} + +FixedTempoEstimator::ParameterList +FixedTempoEstimator::getParameterDescriptors() const +{ + ParameterList list; + return list; +} + +float +FixedTempoEstimator::getParameter(std::string id) const +{ + return 0.f; +} + +void +FixedTempoEstimator::setParameter(std::string id, float value) +{ +} + +FixedTempoEstimator::OutputList +FixedTempoEstimator::getOutputDescriptors() const +{ + OutputList list; + + OutputDescriptor d; + d.identifier = "tempo"; + d.name = "Tempo"; + d.description = "Estimated tempo"; + d.unit = "bpm"; + d.hasFixedBinCount = true; + d.binCount = 1; + d.hasKnownExtents = false; + d.isQuantized = false; + d.sampleType = OutputDescriptor::VariableSampleRate; + d.sampleRate = m_inputSampleRate; + d.hasDuration = true; // our returned tempo spans a certain range + list.push_back(d); + + d.identifier = "detectionfunction"; + d.name = "Detection Function"; + d.description = "Onset detection function"; + d.unit = ""; + d.hasFixedBinCount = 1; + d.binCount = 1; + d.hasKnownExtents = true; + d.minValue = 0.0; + d.maxValue = 1.0; + d.isQuantized = false; + d.quantizeStep = 0.0; + d.sampleType = OutputDescriptor::FixedSampleRate; + if (m_stepSize) { + d.sampleRate = m_inputSampleRate / m_stepSize; + } else { + d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2); + } + d.hasDuration = false; + list.push_back(d); + + d.identifier = "acf"; + d.name = "Autocorrelation Function"; + d.description = "Autocorrelation of onset detection function"; + d.hasKnownExtents = false; + list.push_back(d); + + d.identifier = "filtered_acf"; + d.name = "Filtered Autocorrelation"; + d.description = "Filtered autocorrelation of onset detection function"; + list.push_back(d); + + return list; +} + +FixedTempoEstimator::FeatureSet +FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts) +{ + FeatureSet fs; + + if (m_stepSize == 0) { + cerr << "ERROR: FixedTempoEstimator::process: " + << "FixedTempoEstimator has not been initialised" + << endl; + return fs; + } + + if (m_n < m_dfsize) std::cerr << "m_n = " << m_n << std::endl; + + if (m_n == 0) m_start = ts; + m_lasttime = ts; + + if (m_n == m_dfsize) { + fs = calculateFeatures(); + ++m_n; + return fs; + } + + if (m_n > m_dfsize) return FeatureSet(); + + int count = 0; + + for (size_t i = 1; i < m_blockSize/2; ++i) { + + float real = inputBuffers[0][i*2]; + float imag = inputBuffers[0][i*2 + 1]; + + float sqrmag = real * real + imag * imag; + + if (m_priorMagnitudes[i] > 0.f) { + float diff = 10.f * log10f(sqrmag / m_priorMagnitudes[i]); + if (diff >= 3.f) ++count; + } + + m_priorMagnitudes[i] = sqrmag; + } + + m_df[m_n] = float(count) / float(m_blockSize/2); + ++m_n; + return fs; +} + +FixedTempoEstimator::FeatureSet +FixedTempoEstimator::getRemainingFeatures() +{ + FeatureSet fs; + if (m_n > m_dfsize) return fs; + fs = calculateFeatures(); + ++m_n; + return fs; +} + +float +FixedTempoEstimator::lag2tempo(int lag) { + return 60.f / ((lag * m_stepSize) / m_inputSampleRate); +} + +FixedTempoEstimator::FeatureSet +FixedTempoEstimator::calculateFeatures() +{ + FeatureSet fs; + Feature feature; + feature.hasTimestamp = true; + feature.hasDuration = false; + feature.label = ""; + feature.values.clear(); + feature.values.push_back(0.f); + + char buffer[20]; + + if (m_n < m_dfsize / 4) return fs; // not enough data (perhaps we should return the duration of the input as the "estimated" beat length?) + + std::cerr << "FixedTempoEstimator::calculateTempo: m_n = " << m_n << std::endl; + + int n = m_n; + float *f = m_df; + + for (int i = 0; i < n; ++i) { + feature.timestamp = RealTime::frame2RealTime(i * m_stepSize, + m_inputSampleRate); + std::cerr << "step = " << m_stepSize << ", timestamp = " << feature.timestamp << std::endl; + feature.values[0] = f[i]; + feature.label = ""; + fs[1].push_back(feature); + } + + float *r = new float[n/2]; + for (int i = 0; i < n/2; ++i) r[i] = 0.f; + + int minlag = 10; + + for (int i = 0; i < n/2; ++i) { + for (int j = i; j < n-1; ++j) { + r[i] += f[j] * f[j - i]; + } + r[i] /= n - i - 1; + } + + for (int i = 0; i < n/2; ++i) { + feature.timestamp = RealTime::frame2RealTime(i * m_stepSize, + m_inputSampleRate); + feature.values[0] = r[i]; + sprintf(buffer, "%f bpm", lag2tempo(i)); + feature.label = buffer; + fs[2].push_back(feature); + } + + float max = 0.f; + int maxindex = 0; + + std::cerr << "n/2 = " << n/2 << std::endl; + + for (int i = minlag; i < n/2; ++i) { + + if (i == minlag || r[i] > max) { + max = r[i]; + maxindex = i; + } + + if (i == 0 || i == n/2-1) continue; + + if (r[i] > r[i-1] && r[i] > r[i+1]) { + std::cerr << "peak at " << i << " (value=" << r[i] << ", tempo would be " << lag2tempo(i) << ")" << std::endl; + } + } + + std::cerr << "overall max at " << maxindex << " (value=" << max << ")" << std::endl; + + float tempo = lag2tempo(maxindex); + + std::cerr << "provisional tempo = " << tempo << std::endl; + + float t0 = 60.f; + float t1 = 180.f; + + int p0 = ((60.f / t1) * m_inputSampleRate) / m_stepSize; + int p1 = ((60.f / t0) * m_inputSampleRate) / m_stepSize; + + std::cerr << "p0 = " << p0 << ", p1 = " << p1 << std::endl; + + int pc = p1 - p0 + 1; + std::cerr << "pc = " << pc << std::endl; +// float *filtered = new float[pc]; +// for (int i = 0; i < pc; ++i) filtered[i] = 0.f; + + int maxpi = 0; + float maxp = 0.f; + + for (int i = p0; i <= p1; ++i) { + +// int fi = i - p0; + + float filtered = 0.f; + + for (int j = 1; j <= (n/2)/p1; ++j) { + std::cerr << "j = " << j << ", i = " << i << std::endl; + filtered += r[i * j]; + } + + if (i == p0 || filtered > maxp) { + maxp = filtered; + maxpi = i; + } + + feature.timestamp = RealTime::frame2RealTime(i * m_stepSize, + m_inputSampleRate); + feature.values[0] = filtered; + sprintf(buffer, "%f bpm", lag2tempo(i)); + feature.label = buffer; + fs[3].push_back(feature); + } + + std::cerr << "maxpi = " << maxpi << " for tempo " << lag2tempo(maxpi) << " (value = " << maxp << ")" << std::endl; + + tempo = lag2tempo(maxpi); + + delete[] r; + + feature.hasTimestamp = true; + feature.timestamp = m_start; + + feature.hasDuration = true; + feature.duration = m_lasttime - m_start; + + feature.values[0] = tempo; + + fs[0].push_back(feature); + + return fs; +}