Mercurial > hg > vamp-plugin-sdk
diff src/vamp-hostsdk/hostext/PluginInputDomainAdapter.cpp @ 227:6b30e064cab7 distinct-libraries
* more moving
author | cannam |
---|---|
date | Thu, 06 Nov 2008 14:13:12 +0000 |
parents | |
children | 5ee166dccfff |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/vamp-hostsdk/hostext/PluginInputDomainAdapter.cpp Thu Nov 06 14:13:12 2008 +0000 @@ -0,0 +1,578 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +/* + Vamp + + An API for audio analysis and feature extraction plugins. + + Centre for Digital Music, Queen Mary, University of London. + Copyright 2006-2007 Chris Cannam and QMUL. + + This file is based in part on Don Cross's public domain FFT + implementation. + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, copy, + modify, merge, publish, distribute, sublicense, and/or sell copies + of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR + ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF + CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION + WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + Except as contained in this notice, the names of the Centre for + Digital Music; Queen Mary, University of London; and Chris Cannam + shall not be used in advertising or otherwise to promote the sale, + use or other dealings in this Software without prior written + authorization. +*/ + +#include "PluginInputDomainAdapter.h" + +#include <cmath> + + +/** + * If you want to compile using FFTW instead of the built-in FFT + * implementation for the PluginInputDomainAdapter, define HAVE_FFTW3 + * in the Makefile. + * + * Be aware that FFTW is licensed under the GPL -- unlike this SDK, + * which is provided under a more liberal BSD license in order to + * permit use in closed source applications. The use of FFTW would + * mean that your code would need to be licensed under the GPL as + * well. Do not define this symbol unless you understand and accept + * the implications of this. + * + * Parties such as Linux distribution packagers who redistribute this + * SDK for use in other programs should _not_ define this symbol, as + * it would change the effective licensing terms under which the SDK + * was available to third party developers. + * + * The default is not to use FFTW, and to use the built-in FFT instead. + * + * Note: The FFTW code uses FFTW_MEASURE, and so will perform badly on + * its first invocation unless the host has saved and restored FFTW + * wisdom (see the FFTW documentation). + */ +#ifdef HAVE_FFTW3 +#include <fftw3.h> +#endif + + +namespace Vamp { + +namespace HostExt { + +class PluginInputDomainAdapter::Impl +{ +public: + Impl(Plugin *plugin, float inputSampleRate); + ~Impl(); + + bool initialise(size_t channels, size_t stepSize, size_t blockSize); + + size_t getPreferredStepSize() const; + size_t getPreferredBlockSize() const; + + FeatureSet process(const float *const *inputBuffers, RealTime timestamp); + + RealTime getTimestampAdjustment() const; + +protected: + Plugin *m_plugin; + float m_inputSampleRate; + int m_channels; + int m_blockSize; + float **m_freqbuf; + + double *m_ri; + double *m_window; + +#ifdef HAVE_FFTW3 + fftw_plan m_plan; + fftw_complex *m_cbuf; +#else + double *m_ro; + double *m_io; + void fft(unsigned int n, bool inverse, + double *ri, double *ii, double *ro, double *io); +#endif + + size_t makeBlockSizeAcceptable(size_t) const; +}; + +PluginInputDomainAdapter::PluginInputDomainAdapter(Plugin *plugin) : + PluginWrapper(plugin) +{ + m_impl = new Impl(plugin, m_inputSampleRate); +} + +PluginInputDomainAdapter::~PluginInputDomainAdapter() +{ + delete m_impl; +} + +bool +PluginInputDomainAdapter::initialise(size_t channels, size_t stepSize, size_t blockSize) +{ + return m_impl->initialise(channels, stepSize, blockSize); +} + +Plugin::InputDomain +PluginInputDomainAdapter::getInputDomain() const +{ + return TimeDomain; +} + +size_t +PluginInputDomainAdapter::getPreferredStepSize() const +{ + return m_impl->getPreferredStepSize(); +} + +size_t +PluginInputDomainAdapter::getPreferredBlockSize() const +{ + return m_impl->getPreferredBlockSize(); +} + +Plugin::FeatureSet +PluginInputDomainAdapter::process(const float *const *inputBuffers, RealTime timestamp) +{ + return m_impl->process(inputBuffers, timestamp); +} + +RealTime +PluginInputDomainAdapter::getTimestampAdjustment() const +{ + return m_impl->getTimestampAdjustment(); +} + + +PluginInputDomainAdapter::Impl::Impl(Plugin *plugin, float inputSampleRate) : + m_plugin(plugin), + m_inputSampleRate(inputSampleRate), + m_channels(0), + m_blockSize(0), + m_freqbuf(0), + m_ri(0), + m_window(0), +#ifdef HAVE_FFTW3 + m_plan(0), + m_cbuf(0) +#else + m_ro(0), + m_io(0) +#endif +{ +} + +PluginInputDomainAdapter::Impl::~Impl() +{ + // the adapter will delete the plugin + + if (m_channels > 0) { + for (int c = 0; c < m_channels; ++c) { + delete[] m_freqbuf[c]; + } + delete[] m_freqbuf; +#ifdef HAVE_FFTW3 + if (m_plan) { + fftw_destroy_plan(m_plan); + fftw_free(m_ri); + fftw_free(m_cbuf); + m_plan = 0; + } +#else + delete[] m_ri; + delete[] m_ro; + delete[] m_io; +#endif + delete[] m_window; + } +} + +// for some visual studii apparently +#ifndef M_PI +#define M_PI 3.14159265358979232846 +#endif + +bool +PluginInputDomainAdapter::Impl::initialise(size_t channels, size_t stepSize, size_t blockSize) +{ + if (m_plugin->getInputDomain() == TimeDomain) { + + m_blockSize = int(blockSize); + m_channels = int(channels); + + return m_plugin->initialise(channels, stepSize, blockSize); + } + + if (blockSize < 2) { + std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not supported" << std::endl; + return false; + } + + if (blockSize & (blockSize-1)) { + std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported" << std::endl; + return false; + } + + if (m_channels > 0) { + for (int c = 0; c < m_channels; ++c) { + delete[] m_freqbuf[c]; + } + delete[] m_freqbuf; +#ifdef HAVE_FFTW3 + if (m_plan) { + fftw_destroy_plan(m_plan); + fftw_free(m_ri); + fftw_free(m_cbuf); + m_plan = 0; + } +#else + delete[] m_ri; + delete[] m_ro; + delete[] m_io; +#endif + delete[] m_window; + } + + m_blockSize = int(blockSize); + m_channels = int(channels); + + m_freqbuf = new float *[m_channels]; + for (int c = 0; c < m_channels; ++c) { + m_freqbuf[c] = new float[m_blockSize + 2]; + } + m_window = new double[m_blockSize]; + + for (int i = 0; i < m_blockSize; ++i) { + // Hanning window + m_window[i] = (0.50 - 0.50 * cos((2.0 * M_PI * i) / m_blockSize)); + } + +#ifdef HAVE_FFTW3 + m_ri = (double *)fftw_malloc(blockSize * sizeof(double)); + m_cbuf = (fftw_complex *)fftw_malloc((blockSize/2 + 1) * sizeof(fftw_complex)); + m_plan = fftw_plan_dft_r2c_1d(blockSize, m_ri, m_cbuf, FFTW_MEASURE); +#else + m_ri = new double[m_blockSize]; + m_ro = new double[m_blockSize]; + m_io = new double[m_blockSize]; +#endif + + return m_plugin->initialise(channels, stepSize, blockSize); +} + +size_t +PluginInputDomainAdapter::Impl::getPreferredStepSize() const +{ + size_t step = m_plugin->getPreferredStepSize(); + + if (step == 0 && (m_plugin->getInputDomain() == FrequencyDomain)) { + step = getPreferredBlockSize() / 2; + } + + return step; +} + +size_t +PluginInputDomainAdapter::Impl::getPreferredBlockSize() const +{ + size_t block = m_plugin->getPreferredBlockSize(); + + if (m_plugin->getInputDomain() == FrequencyDomain) { + if (block == 0) { + block = 1024; + } else { + block = makeBlockSizeAcceptable(block); + } + } + + return block; +} + +size_t +PluginInputDomainAdapter::Impl::makeBlockSizeAcceptable(size_t blockSize) const +{ + if (blockSize < 2) { + + std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not" << std::endl + << "supported, increasing from " << blockSize << " to 2" << std::endl; + blockSize = 2; + + } else if (blockSize & (blockSize-1)) { + +#ifdef HAVE_FFTW3 + // not an issue with FFTW +#else + + // not a power of two, can't handle that with our built-in FFT + // implementation + + size_t nearest = blockSize; + size_t power = 0; + while (nearest > 1) { + nearest >>= 1; + ++power; + } + nearest = 1; + while (power) { + nearest <<= 1; + --power; + } + + if (blockSize - nearest > (nearest*2) - blockSize) { + nearest = nearest*2; + } + + std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported, using blocksize " << nearest << " instead" << std::endl; + blockSize = nearest; + +#endif + } + + return blockSize; +} + +RealTime +PluginInputDomainAdapter::Impl::getTimestampAdjustment() const +{ + if (m_plugin->getInputDomain() == TimeDomain) { + return RealTime::zeroTime; + } else { + return RealTime::frame2RealTime + (m_blockSize/2, int(m_inputSampleRate + 0.5)); + } +} + +Plugin::FeatureSet +PluginInputDomainAdapter::Impl::process(const float *const *inputBuffers, + RealTime timestamp) +{ + if (m_plugin->getInputDomain() == TimeDomain) { + return m_plugin->process(inputBuffers, timestamp); + } + + // The timestamp supplied should be (according to the Vamp::Plugin + // spec) the time of the start of the time-domain input block. + // However, we want to pass to the plugin an FFT output calculated + // from the block of samples _centred_ on that timestamp. + // + // We have two options: + // + // 1. Buffer the input, calculating the fft of the values at the + // passed-in block minus blockSize/2 rather than starting at the + // passed-in block. So each time we call process on the plugin, + // we are passing in the same timestamp as was passed to our own + // process plugin, but not (the frequency domain representation + // of) the same set of samples. Advantages: avoids confusion in + // the host by ensuring the returned values have timestamps + // comparable with that passed in to this function (in fact this + // is pretty much essential for one-value-per-block outputs); + // consistent with hosts such as SV that deal with the + // frequency-domain transform themselves. Disadvantages: means + // making the not necessarily correct assumption that the samples + // preceding the first official block are all zero (or some other + // known value). + // + // 2. Increase the passed-in timestamps by half the blocksize. So + // when we call process, we are passing in the frequency domain + // representation of the same set of samples as passed to us, but + // with a different timestamp. Advantages: simplicity; avoids + // iffy assumption mentioned above. Disadvantages: inconsistency + // with SV in cases where stepSize != blockSize/2; potential + // confusion arising from returned timestamps being calculated + // from the adjusted input timestamps rather than the original + // ones (and inaccuracy where the returned timestamp is implied, + // as in one-value-per-block). + // + // Neither way is ideal, but I don't think either is strictly + // incorrect either. I think this is just a case where the same + // plugin can legitimately produce differing results from the same + // input data, depending on how that data is packaged. + // + // We'll go for option 2, adjusting the timestamps. Note in + // particular that this means some results can differ from those + // produced by SV. + +// std::cerr << "PluginInputDomainAdapter: sampleRate " << m_inputSampleRate << ", blocksize " << m_blockSize << ", adjusting time from " << timestamp; + + timestamp = timestamp + getTimestampAdjustment(); + +// std::cerr << " to " << timestamp << std::endl; + + for (int c = 0; c < m_channels; ++c) { + + for (int i = 0; i < m_blockSize; ++i) { + m_ri[i] = double(inputBuffers[c][i]) * m_window[i]; + } + + for (int i = 0; i < m_blockSize/2; ++i) { + // FFT shift + double value = m_ri[i]; + m_ri[i] = m_ri[i + m_blockSize/2]; + m_ri[i + m_blockSize/2] = value; + } + +#ifdef HAVE_FFTW3 + + fftw_execute(m_plan); + + for (int i = 0; i <= m_blockSize/2; ++i) { + m_freqbuf[c][i * 2] = float(m_cbuf[i][0]); + m_freqbuf[c][i * 2 + 1] = float(m_cbuf[i][1]); + } + +#else + + fft(m_blockSize, false, m_ri, 0, m_ro, m_io); + + for (int i = 0; i <= m_blockSize/2; ++i) { + m_freqbuf[c][i * 2] = float(m_ro[i]); + m_freqbuf[c][i * 2 + 1] = float(m_io[i]); + } + +#endif + } + + return m_plugin->process(m_freqbuf, timestamp); +} + +#ifndef HAVE_FFTW3 + +void +PluginInputDomainAdapter::Impl::fft(unsigned int n, bool inverse, + double *ri, double *ii, double *ro, double *io) +{ + if (!ri || !ro || !io) return; + + unsigned int bits; + unsigned int i, j, k, m; + unsigned int blockSize, blockEnd; + + double tr, ti; + + if (n < 2) return; + if (n & (n-1)) return; + + double angle = 2.0 * M_PI; + if (inverse) angle = -angle; + + for (i = 0; ; ++i) { + if (n & (1 << i)) { + bits = i; + break; + } + } + + static unsigned int tableSize = 0; + static int *table = 0; + + if (tableSize != n) { + + delete[] table; + + table = new int[n]; + + for (i = 0; i < n; ++i) { + + m = i; + + for (j = k = 0; j < bits; ++j) { + k = (k << 1) | (m & 1); + m >>= 1; + } + + table[i] = k; + } + + tableSize = n; + } + + if (ii) { + for (i = 0; i < n; ++i) { + ro[table[i]] = ri[i]; + io[table[i]] = ii[i]; + } + } else { + for (i = 0; i < n; ++i) { + ro[table[i]] = ri[i]; + io[table[i]] = 0.0; + } + } + + blockEnd = 1; + + for (blockSize = 2; blockSize <= n; blockSize <<= 1) { + + double delta = angle / (double)blockSize; + double sm2 = -sin(-2 * delta); + double sm1 = -sin(-delta); + double cm2 = cos(-2 * delta); + double cm1 = cos(-delta); + double w = 2 * cm1; + double ar[3], ai[3]; + + for (i = 0; i < n; i += blockSize) { + + ar[2] = cm2; + ar[1] = cm1; + + ai[2] = sm2; + ai[1] = sm1; + + for (j = i, m = 0; m < blockEnd; j++, m++) { + + ar[0] = w * ar[1] - ar[2]; + ar[2] = ar[1]; + ar[1] = ar[0]; + + ai[0] = w * ai[1] - ai[2]; + ai[2] = ai[1]; + ai[1] = ai[0]; + + k = j + blockEnd; + tr = ar[0] * ro[k] - ai[0] * io[k]; + ti = ar[0] * io[k] + ai[0] * ro[k]; + + ro[k] = ro[j] - tr; + io[k] = io[j] - ti; + + ro[j] += tr; + io[j] += ti; + } + } + + blockEnd = blockSize; + } + + if (inverse) { + + double denom = (double)n; + + for (i = 0; i < n; i++) { + ro[i] /= denom; + io[i] /= denom; + } + } +} + +#endif + +} + +} +