annotate vamp-sdk/hostext/PluginInputDomainAdapter.cpp @ 217:f9b4f60280db

* improve usage printout & command line parsing a bit
author cannam
date Wed, 29 Oct 2008 15:03:32 +0000
parents 1982246a3902
children
rev   line source
cannam@64 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@64 2
cannam@64 3 /*
cannam@64 4 Vamp
cannam@64 5
cannam@64 6 An API for audio analysis and feature extraction plugins.
cannam@64 7
cannam@64 8 Centre for Digital Music, Queen Mary, University of London.
cannam@71 9 Copyright 2006-2007 Chris Cannam and QMUL.
cannam@64 10
cannam@103 11 This file is based in part on Don Cross's public domain FFT
cannam@103 12 implementation.
cannam@103 13
cannam@64 14 Permission is hereby granted, free of charge, to any person
cannam@64 15 obtaining a copy of this software and associated documentation
cannam@64 16 files (the "Software"), to deal in the Software without
cannam@64 17 restriction, including without limitation the rights to use, copy,
cannam@64 18 modify, merge, publish, distribute, sublicense, and/or sell copies
cannam@64 19 of the Software, and to permit persons to whom the Software is
cannam@64 20 furnished to do so, subject to the following conditions:
cannam@64 21
cannam@64 22 The above copyright notice and this permission notice shall be
cannam@64 23 included in all copies or substantial portions of the Software.
cannam@64 24
cannam@64 25 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
cannam@64 26 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
cannam@64 27 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
cannam@64 28 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
cannam@64 29 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
cannam@64 30 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
cannam@64 31 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
cannam@64 32
cannam@64 33 Except as contained in this notice, the names of the Centre for
cannam@64 34 Digital Music; Queen Mary, University of London; and Chris Cannam
cannam@64 35 shall not be used in advertising or otherwise to promote the sale,
cannam@64 36 use or other dealings in this Software without prior written
cannam@64 37 authorization.
cannam@64 38 */
cannam@64 39
cannam@64 40 #include "PluginInputDomainAdapter.h"
cannam@64 41
cannam@64 42 #include <cmath>
cannam@64 43
cannam@101 44
cannam@101 45 /**
cannam@101 46 * If you want to compile using FFTW instead of the built-in FFT
cannam@101 47 * implementation for the PluginInputDomainAdapter, define HAVE_FFTW3
cannam@101 48 * in the Makefile.
cannam@101 49 *
cannam@103 50 * Be aware that FFTW is licensed under the GPL -- unlike this SDK,
cannam@103 51 * which is provided under a more liberal BSD license in order to
cannam@103 52 * permit use in closed source applications. The use of FFTW would
cannam@103 53 * mean that your code would need to be licensed under the GPL as
cannam@103 54 * well. Do not define this symbol unless you understand and accept
cannam@103 55 * the implications of this.
cannam@103 56 *
cannam@103 57 * Parties such as Linux distribution packagers who redistribute this
cannam@103 58 * SDK for use in other programs should _not_ define this symbol, as
cannam@103 59 * it would change the effective licensing terms under which the SDK
cannam@103 60 * was available to third party developers.
cannam@103 61 *
cannam@103 62 * The default is not to use FFTW, and to use the built-in FFT instead.
cannam@101 63 *
cannam@103 64 * Note: The FFTW code uses FFTW_MEASURE, and so will perform badly on
cannam@103 65 * its first invocation unless the host has saved and restored FFTW
cannam@103 66 * wisdom (see the FFTW documentation).
cannam@101 67 */
cannam@101 68 #ifdef HAVE_FFTW3
cannam@101 69 #include <fftw3.h>
cannam@101 70 #endif
cannam@101 71
cannam@101 72
cannam@64 73 namespace Vamp {
cannam@64 74
cannam@64 75 namespace HostExt {
cannam@64 76
cannam@70 77 class PluginInputDomainAdapter::Impl
cannam@70 78 {
cannam@70 79 public:
cannam@70 80 Impl(Plugin *plugin, float inputSampleRate);
cannam@70 81 ~Impl();
cannam@70 82
cannam@70 83 bool initialise(size_t channels, size_t stepSize, size_t blockSize);
cannam@70 84
cannam@70 85 size_t getPreferredStepSize() const;
cannam@70 86 size_t getPreferredBlockSize() const;
cannam@70 87
cannam@70 88 FeatureSet process(const float *const *inputBuffers, RealTime timestamp);
cannam@190 89
cannam@190 90 RealTime getTimestampAdjustment() const;
cannam@70 91
cannam@70 92 protected:
cannam@70 93 Plugin *m_plugin;
cannam@70 94 float m_inputSampleRate;
cannam@101 95 int m_channels;
cannam@101 96 int m_blockSize;
cannam@70 97 float **m_freqbuf;
cannam@101 98
cannam@70 99 double *m_ri;
cannam@101 100 double *m_window;
cannam@101 101
cannam@101 102 #ifdef HAVE_FFTW3
cannam@101 103 fftw_plan m_plan;
cannam@101 104 fftw_complex *m_cbuf;
cannam@101 105 #else
cannam@70 106 double *m_ro;
cannam@70 107 double *m_io;
cannam@70 108 void fft(unsigned int n, bool inverse,
cannam@70 109 double *ri, double *ii, double *ro, double *io);
cannam@101 110 #endif
cannam@70 111
cannam@70 112 size_t makeBlockSizeAcceptable(size_t) const;
cannam@70 113 };
cannam@70 114
cannam@64 115 PluginInputDomainAdapter::PluginInputDomainAdapter(Plugin *plugin) :
cannam@70 116 PluginWrapper(plugin)
cannam@70 117 {
cannam@70 118 m_impl = new Impl(plugin, m_inputSampleRate);
cannam@70 119 }
cannam@70 120
cannam@70 121 PluginInputDomainAdapter::~PluginInputDomainAdapter()
cannam@70 122 {
cannam@70 123 delete m_impl;
cannam@70 124 }
cannam@70 125
cannam@70 126 bool
cannam@70 127 PluginInputDomainAdapter::initialise(size_t channels, size_t stepSize, size_t blockSize)
cannam@70 128 {
cannam@70 129 return m_impl->initialise(channels, stepSize, blockSize);
cannam@70 130 }
cannam@70 131
cannam@70 132 Plugin::InputDomain
cannam@70 133 PluginInputDomainAdapter::getInputDomain() const
cannam@70 134 {
cannam@70 135 return TimeDomain;
cannam@70 136 }
cannam@70 137
cannam@70 138 size_t
cannam@70 139 PluginInputDomainAdapter::getPreferredStepSize() const
cannam@70 140 {
cannam@70 141 return m_impl->getPreferredStepSize();
cannam@70 142 }
cannam@70 143
cannam@70 144 size_t
cannam@70 145 PluginInputDomainAdapter::getPreferredBlockSize() const
cannam@70 146 {
cannam@70 147 return m_impl->getPreferredBlockSize();
cannam@70 148 }
cannam@70 149
cannam@70 150 Plugin::FeatureSet
cannam@70 151 PluginInputDomainAdapter::process(const float *const *inputBuffers, RealTime timestamp)
cannam@70 152 {
cannam@70 153 return m_impl->process(inputBuffers, timestamp);
cannam@70 154 }
cannam@70 155
cannam@190 156 RealTime
cannam@190 157 PluginInputDomainAdapter::getTimestampAdjustment() const
cannam@190 158 {
cannam@190 159 return m_impl->getTimestampAdjustment();
cannam@190 160 }
cannam@190 161
cannam@190 162
cannam@92 163 PluginInputDomainAdapter::Impl::Impl(Plugin *plugin, float inputSampleRate) :
cannam@70 164 m_plugin(plugin),
cannam@70 165 m_inputSampleRate(inputSampleRate),
cannam@64 166 m_channels(0),
cannam@64 167 m_blockSize(0),
cannam@101 168 m_freqbuf(0),
cannam@101 169 m_ri(0),
cannam@101 170 m_window(0),
cannam@101 171 #ifdef HAVE_FFTW3
cannam@101 172 m_plan(0),
cannam@101 173 m_cbuf(0)
cannam@101 174 #else
cannam@101 175 m_ro(0),
cannam@101 176 m_io(0)
cannam@101 177 #endif
cannam@64 178 {
cannam@64 179 }
cannam@64 180
cannam@70 181 PluginInputDomainAdapter::Impl::~Impl()
cannam@64 182 {
cannam@70 183 // the adapter will delete the plugin
cannam@70 184
cannam@70 185 if (m_channels > 0) {
cannam@101 186 for (int c = 0; c < m_channels; ++c) {
cannam@70 187 delete[] m_freqbuf[c];
cannam@70 188 }
cannam@70 189 delete[] m_freqbuf;
cannam@101 190 #ifdef HAVE_FFTW3
cannam@101 191 if (m_plan) {
cannam@101 192 fftw_destroy_plan(m_plan);
cannam@101 193 fftw_free(m_ri);
cannam@101 194 fftw_free(m_cbuf);
cannam@101 195 m_plan = 0;
cannam@101 196 }
cannam@101 197 #else
cannam@70 198 delete[] m_ri;
cannam@70 199 delete[] m_ro;
cannam@70 200 delete[] m_io;
cannam@101 201 #endif
cannam@101 202 delete[] m_window;
cannam@70 203 }
cannam@64 204 }
cannam@101 205
cannam@101 206 // for some visual studii apparently
cannam@101 207 #ifndef M_PI
cannam@101 208 #define M_PI 3.14159265358979232846
cannam@101 209 #endif
cannam@64 210
cannam@64 211 bool
cannam@70 212 PluginInputDomainAdapter::Impl::initialise(size_t channels, size_t stepSize, size_t blockSize)
cannam@64 213 {
cannam@64 214 if (m_plugin->getInputDomain() == TimeDomain) {
cannam@64 215
cannam@101 216 m_blockSize = int(blockSize);
cannam@101 217 m_channels = int(channels);
cannam@64 218
cannam@64 219 return m_plugin->initialise(channels, stepSize, blockSize);
cannam@64 220 }
cannam@64 221
cannam@64 222 if (blockSize < 2) {
cannam@70 223 std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not supported" << std::endl;
cannam@64 224 return false;
cannam@64 225 }
cannam@64 226
cannam@64 227 if (blockSize & (blockSize-1)) {
cannam@70 228 std::cerr << "ERROR: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported" << std::endl;
cannam@64 229 return false;
cannam@64 230 }
cannam@64 231
cannam@64 232 if (m_channels > 0) {
cannam@101 233 for (int c = 0; c < m_channels; ++c) {
cannam@64 234 delete[] m_freqbuf[c];
cannam@64 235 }
cannam@64 236 delete[] m_freqbuf;
cannam@101 237 #ifdef HAVE_FFTW3
cannam@101 238 if (m_plan) {
cannam@101 239 fftw_destroy_plan(m_plan);
cannam@101 240 fftw_free(m_ri);
cannam@101 241 fftw_free(m_cbuf);
cannam@101 242 m_plan = 0;
cannam@101 243 }
cannam@101 244 #else
cannam@64 245 delete[] m_ri;
cannam@64 246 delete[] m_ro;
cannam@64 247 delete[] m_io;
cannam@101 248 #endif
cannam@101 249 delete[] m_window;
cannam@64 250 }
cannam@64 251
cannam@101 252 m_blockSize = int(blockSize);
cannam@101 253 m_channels = int(channels);
cannam@64 254
cannam@64 255 m_freqbuf = new float *[m_channels];
cannam@101 256 for (int c = 0; c < m_channels; ++c) {
cannam@64 257 m_freqbuf[c] = new float[m_blockSize + 2];
cannam@64 258 }
cannam@101 259 m_window = new double[m_blockSize];
cannam@101 260
cannam@101 261 for (int i = 0; i < m_blockSize; ++i) {
cannam@101 262 // Hanning window
cannam@101 263 m_window[i] = (0.50 - 0.50 * cos((2.0 * M_PI * i) / m_blockSize));
cannam@101 264 }
cannam@101 265
cannam@101 266 #ifdef HAVE_FFTW3
cannam@101 267 m_ri = (double *)fftw_malloc(blockSize * sizeof(double));
cannam@101 268 m_cbuf = (fftw_complex *)fftw_malloc((blockSize/2 + 1) * sizeof(fftw_complex));
cannam@101 269 m_plan = fftw_plan_dft_r2c_1d(blockSize, m_ri, m_cbuf, FFTW_MEASURE);
cannam@101 270 #else
cannam@64 271 m_ri = new double[m_blockSize];
cannam@64 272 m_ro = new double[m_blockSize];
cannam@64 273 m_io = new double[m_blockSize];
cannam@101 274 #endif
cannam@64 275
cannam@64 276 return m_plugin->initialise(channels, stepSize, blockSize);
cannam@64 277 }
cannam@64 278
cannam@64 279 size_t
cannam@70 280 PluginInputDomainAdapter::Impl::getPreferredStepSize() const
cannam@64 281 {
cannam@64 282 size_t step = m_plugin->getPreferredStepSize();
cannam@64 283
cannam@64 284 if (step == 0 && (m_plugin->getInputDomain() == FrequencyDomain)) {
cannam@64 285 step = getPreferredBlockSize() / 2;
cannam@64 286 }
cannam@64 287
cannam@64 288 return step;
cannam@64 289 }
cannam@64 290
cannam@64 291 size_t
cannam@70 292 PluginInputDomainAdapter::Impl::getPreferredBlockSize() const
cannam@64 293 {
cannam@64 294 size_t block = m_plugin->getPreferredBlockSize();
cannam@64 295
cannam@64 296 if (m_plugin->getInputDomain() == FrequencyDomain) {
cannam@64 297 if (block == 0) {
cannam@64 298 block = 1024;
cannam@64 299 } else {
cannam@64 300 block = makeBlockSizeAcceptable(block);
cannam@64 301 }
cannam@64 302 }
cannam@64 303
cannam@64 304 return block;
cannam@64 305 }
cannam@64 306
cannam@64 307 size_t
cannam@70 308 PluginInputDomainAdapter::Impl::makeBlockSizeAcceptable(size_t blockSize) const
cannam@64 309 {
cannam@64 310 if (blockSize < 2) {
cannam@64 311
cannam@70 312 std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: blocksize < 2 not" << std::endl
cannam@64 313 << "supported, increasing from " << blockSize << " to 2" << std::endl;
cannam@64 314 blockSize = 2;
cannam@64 315
cannam@64 316 } else if (blockSize & (blockSize-1)) {
cannam@64 317
cannam@101 318 #ifdef HAVE_FFTW3
cannam@101 319 // not an issue with FFTW
cannam@101 320 #else
cannam@101 321
cannam@101 322 // not a power of two, can't handle that with our built-in FFT
cannam@64 323 // implementation
cannam@64 324
cannam@64 325 size_t nearest = blockSize;
cannam@64 326 size_t power = 0;
cannam@64 327 while (nearest > 1) {
cannam@64 328 nearest >>= 1;
cannam@64 329 ++power;
cannam@64 330 }
cannam@64 331 nearest = 1;
cannam@64 332 while (power) {
cannam@64 333 nearest <<= 1;
cannam@64 334 --power;
cannam@64 335 }
cannam@64 336
cannam@64 337 if (blockSize - nearest > (nearest*2) - blockSize) {
cannam@64 338 nearest = nearest*2;
cannam@64 339 }
cannam@64 340
cannam@70 341 std::cerr << "WARNING: Vamp::HostExt::PluginInputDomainAdapter::Impl::initialise: non-power-of-two\nblocksize " << blockSize << " not supported, using blocksize " << nearest << " instead" << std::endl;
cannam@64 342 blockSize = nearest;
cannam@101 343
cannam@101 344 #endif
cannam@64 345 }
cannam@64 346
cannam@64 347 return blockSize;
cannam@64 348 }
cannam@64 349
cannam@190 350 RealTime
cannam@190 351 PluginInputDomainAdapter::Impl::getTimestampAdjustment() const
cannam@190 352 {
cannam@190 353 if (m_plugin->getInputDomain() == TimeDomain) {
cannam@190 354 return RealTime::zeroTime;
cannam@190 355 } else {
cannam@190 356 return RealTime::frame2RealTime
cannam@190 357 (m_blockSize/2, int(m_inputSampleRate + 0.5));
cannam@190 358 }
cannam@190 359 }
cannam@190 360
cannam@64 361 Plugin::FeatureSet
cannam@70 362 PluginInputDomainAdapter::Impl::process(const float *const *inputBuffers,
cannam@70 363 RealTime timestamp)
cannam@64 364 {
cannam@64 365 if (m_plugin->getInputDomain() == TimeDomain) {
cannam@64 366 return m_plugin->process(inputBuffers, timestamp);
cannam@64 367 }
cannam@64 368
cannam@64 369 // The timestamp supplied should be (according to the Vamp::Plugin
cannam@64 370 // spec) the time of the start of the time-domain input block.
cannam@64 371 // However, we want to pass to the plugin an FFT output calculated
cannam@64 372 // from the block of samples _centred_ on that timestamp.
cannam@64 373 //
cannam@64 374 // We have two options:
cannam@64 375 //
cannam@64 376 // 1. Buffer the input, calculating the fft of the values at the
cannam@64 377 // passed-in block minus blockSize/2 rather than starting at the
cannam@64 378 // passed-in block. So each time we call process on the plugin,
cannam@64 379 // we are passing in the same timestamp as was passed to our own
cannam@64 380 // process plugin, but not (the frequency domain representation
cannam@64 381 // of) the same set of samples. Advantages: avoids confusion in
cannam@64 382 // the host by ensuring the returned values have timestamps
cannam@64 383 // comparable with that passed in to this function (in fact this
cannam@64 384 // is pretty much essential for one-value-per-block outputs);
cannam@64 385 // consistent with hosts such as SV that deal with the
cannam@64 386 // frequency-domain transform themselves. Disadvantages: means
cannam@64 387 // making the not necessarily correct assumption that the samples
cannam@64 388 // preceding the first official block are all zero (or some other
cannam@64 389 // known value).
cannam@64 390 //
cannam@64 391 // 2. Increase the passed-in timestamps by half the blocksize. So
cannam@64 392 // when we call process, we are passing in the frequency domain
cannam@64 393 // representation of the same set of samples as passed to us, but
cannam@64 394 // with a different timestamp. Advantages: simplicity; avoids
cannam@64 395 // iffy assumption mentioned above. Disadvantages: inconsistency
cannam@64 396 // with SV in cases where stepSize != blockSize/2; potential
cannam@64 397 // confusion arising from returned timestamps being calculated
cannam@64 398 // from the adjusted input timestamps rather than the original
cannam@64 399 // ones (and inaccuracy where the returned timestamp is implied,
cannam@64 400 // as in one-value-per-block).
cannam@64 401 //
cannam@64 402 // Neither way is ideal, but I don't think either is strictly
cannam@64 403 // incorrect either. I think this is just a case where the same
cannam@64 404 // plugin can legitimately produce differing results from the same
cannam@64 405 // input data, depending on how that data is packaged.
cannam@64 406 //
cannam@64 407 // We'll go for option 2, adjusting the timestamps. Note in
cannam@64 408 // particular that this means some results can differ from those
cannam@64 409 // produced by SV.
cannam@64 410
cannam@65 411 // std::cerr << "PluginInputDomainAdapter: sampleRate " << m_inputSampleRate << ", blocksize " << m_blockSize << ", adjusting time from " << timestamp;
cannam@64 412
cannam@190 413 timestamp = timestamp + getTimestampAdjustment();
cannam@64 414
cannam@65 415 // std::cerr << " to " << timestamp << std::endl;
cannam@64 416
cannam@101 417 for (int c = 0; c < m_channels; ++c) {
cannam@64 418
cannam@101 419 for (int i = 0; i < m_blockSize; ++i) {
cannam@101 420 m_ri[i] = double(inputBuffers[c][i]) * m_window[i];
cannam@64 421 }
cannam@64 422
cannam@101 423 for (int i = 0; i < m_blockSize/2; ++i) {
cannam@64 424 // FFT shift
cannam@64 425 double value = m_ri[i];
cannam@64 426 m_ri[i] = m_ri[i + m_blockSize/2];
cannam@64 427 m_ri[i + m_blockSize/2] = value;
cannam@64 428 }
cannam@64 429
cannam@101 430 #ifdef HAVE_FFTW3
cannam@101 431
cannam@101 432 fftw_execute(m_plan);
cannam@101 433
cannam@101 434 for (int i = 0; i <= m_blockSize/2; ++i) {
cannam@101 435 m_freqbuf[c][i * 2] = float(m_cbuf[i][0]);
cannam@101 436 m_freqbuf[c][i * 2 + 1] = float(m_cbuf[i][1]);
cannam@101 437 }
cannam@101 438
cannam@101 439 #else
cannam@101 440
cannam@64 441 fft(m_blockSize, false, m_ri, 0, m_ro, m_io);
cannam@64 442
cannam@101 443 for (int i = 0; i <= m_blockSize/2; ++i) {
cannam@101 444 m_freqbuf[c][i * 2] = float(m_ro[i]);
cannam@101 445 m_freqbuf[c][i * 2 + 1] = float(m_io[i]);
cannam@64 446 }
cannam@101 447
cannam@101 448 #endif
cannam@64 449 }
cannam@64 450
cannam@64 451 return m_plugin->process(m_freqbuf, timestamp);
cannam@64 452 }
cannam@64 453
cannam@101 454 #ifndef HAVE_FFTW3
cannam@101 455
cannam@64 456 void
cannam@70 457 PluginInputDomainAdapter::Impl::fft(unsigned int n, bool inverse,
cannam@70 458 double *ri, double *ii, double *ro, double *io)
cannam@64 459 {
cannam@64 460 if (!ri || !ro || !io) return;
cannam@64 461
cannam@64 462 unsigned int bits;
cannam@64 463 unsigned int i, j, k, m;
cannam@64 464 unsigned int blockSize, blockEnd;
cannam@64 465
cannam@64 466 double tr, ti;
cannam@64 467
cannam@64 468 if (n < 2) return;
cannam@64 469 if (n & (n-1)) return;
cannam@64 470
cannam@64 471 double angle = 2.0 * M_PI;
cannam@64 472 if (inverse) angle = -angle;
cannam@64 473
cannam@64 474 for (i = 0; ; ++i) {
cannam@64 475 if (n & (1 << i)) {
cannam@64 476 bits = i;
cannam@64 477 break;
cannam@64 478 }
cannam@64 479 }
cannam@64 480
cannam@64 481 static unsigned int tableSize = 0;
cannam@64 482 static int *table = 0;
cannam@64 483
cannam@64 484 if (tableSize != n) {
cannam@64 485
cannam@64 486 delete[] table;
cannam@64 487
cannam@64 488 table = new int[n];
cannam@64 489
cannam@64 490 for (i = 0; i < n; ++i) {
cannam@64 491
cannam@64 492 m = i;
cannam@64 493
cannam@64 494 for (j = k = 0; j < bits; ++j) {
cannam@64 495 k = (k << 1) | (m & 1);
cannam@64 496 m >>= 1;
cannam@64 497 }
cannam@64 498
cannam@64 499 table[i] = k;
cannam@64 500 }
cannam@64 501
cannam@64 502 tableSize = n;
cannam@64 503 }
cannam@64 504
cannam@64 505 if (ii) {
cannam@64 506 for (i = 0; i < n; ++i) {
cannam@64 507 ro[table[i]] = ri[i];
cannam@64 508 io[table[i]] = ii[i];
cannam@64 509 }
cannam@64 510 } else {
cannam@64 511 for (i = 0; i < n; ++i) {
cannam@64 512 ro[table[i]] = ri[i];
cannam@64 513 io[table[i]] = 0.0;
cannam@64 514 }
cannam@64 515 }
cannam@64 516
cannam@64 517 blockEnd = 1;
cannam@64 518
cannam@64 519 for (blockSize = 2; blockSize <= n; blockSize <<= 1) {
cannam@64 520
cannam@64 521 double delta = angle / (double)blockSize;
cannam@64 522 double sm2 = -sin(-2 * delta);
cannam@64 523 double sm1 = -sin(-delta);
cannam@64 524 double cm2 = cos(-2 * delta);
cannam@64 525 double cm1 = cos(-delta);
cannam@64 526 double w = 2 * cm1;
cannam@64 527 double ar[3], ai[3];
cannam@64 528
cannam@64 529 for (i = 0; i < n; i += blockSize) {
cannam@64 530
cannam@64 531 ar[2] = cm2;
cannam@64 532 ar[1] = cm1;
cannam@64 533
cannam@64 534 ai[2] = sm2;
cannam@64 535 ai[1] = sm1;
cannam@64 536
cannam@64 537 for (j = i, m = 0; m < blockEnd; j++, m++) {
cannam@64 538
cannam@64 539 ar[0] = w * ar[1] - ar[2];
cannam@64 540 ar[2] = ar[1];
cannam@64 541 ar[1] = ar[0];
cannam@64 542
cannam@64 543 ai[0] = w * ai[1] - ai[2];
cannam@64 544 ai[2] = ai[1];
cannam@64 545 ai[1] = ai[0];
cannam@64 546
cannam@64 547 k = j + blockEnd;
cannam@64 548 tr = ar[0] * ro[k] - ai[0] * io[k];
cannam@64 549 ti = ar[0] * io[k] + ai[0] * ro[k];
cannam@64 550
cannam@64 551 ro[k] = ro[j] - tr;
cannam@64 552 io[k] = io[j] - ti;
cannam@64 553
cannam@64 554 ro[j] += tr;
cannam@64 555 io[j] += ti;
cannam@64 556 }
cannam@64 557 }
cannam@64 558
cannam@64 559 blockEnd = blockSize;
cannam@64 560 }
cannam@64 561
cannam@64 562 if (inverse) {
cannam@64 563
cannam@64 564 double denom = (double)n;
cannam@64 565
cannam@64 566 for (i = 0; i < n; i++) {
cannam@64 567 ro[i] /= denom;
cannam@64 568 io[i] /= denom;
cannam@64 569 }
cannam@64 570 }
cannam@64 571 }
cannam@64 572
cannam@101 573 #endif
cannam@101 574
cannam@64 575 }
cannam@64 576
cannam@64 577 }
cannam@64 578