cannam@198
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@198
|
2
|
cannam@198
|
3 /*
|
cannam@198
|
4 Vamp
|
cannam@198
|
5
|
cannam@198
|
6 An API for audio analysis and feature extraction plugins.
|
cannam@198
|
7
|
cannam@198
|
8 Centre for Digital Music, Queen Mary, University of London.
|
cannam@290
|
9 Copyright 2006-2009 Chris Cannam and QMUL.
|
cannam@198
|
10
|
cannam@198
|
11 Permission is hereby granted, free of charge, to any person
|
cannam@198
|
12 obtaining a copy of this software and associated documentation
|
cannam@198
|
13 files (the "Software"), to deal in the Software without
|
cannam@198
|
14 restriction, including without limitation the rights to use, copy,
|
cannam@198
|
15 modify, merge, publish, distribute, sublicense, and/or sell copies
|
cannam@198
|
16 of the Software, and to permit persons to whom the Software is
|
cannam@198
|
17 furnished to do so, subject to the following conditions:
|
cannam@198
|
18
|
cannam@198
|
19 The above copyright notice and this permission notice shall be
|
cannam@198
|
20 included in all copies or substantial portions of the Software.
|
cannam@198
|
21
|
cannam@198
|
22 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
cannam@198
|
23 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
cannam@198
|
24 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
cannam@198
|
25 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
|
cannam@198
|
26 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
cannam@198
|
27 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
cannam@198
|
28 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
cannam@198
|
29
|
cannam@198
|
30 Except as contained in this notice, the names of the Centre for
|
cannam@198
|
31 Digital Music; Queen Mary, University of London; and Chris Cannam
|
cannam@198
|
32 shall not be used in advertising or otherwise to promote the sale,
|
cannam@198
|
33 use or other dealings in this Software without prior written
|
cannam@198
|
34 authorization.
|
cannam@198
|
35 */
|
cannam@198
|
36
|
cannam@198
|
37 #include "FixedTempoEstimator.h"
|
cannam@198
|
38
|
cannam@198
|
39 using std::string;
|
cannam@198
|
40 using std::vector;
|
cannam@198
|
41 using std::cerr;
|
cannam@198
|
42 using std::endl;
|
cannam@198
|
43
|
cannam@198
|
44 using Vamp::RealTime;
|
cannam@198
|
45
|
cannam@198
|
46 #include <cmath>
|
cannam@198
|
47
|
cannam@198
|
48
|
cannam@243
|
49 class FixedTempoEstimator::D
|
cannam@255
|
50 // this class just avoids us having to declare any data members in the header
|
cannam@243
|
51 {
|
cannam@243
|
52 public:
|
cannam@243
|
53 D(float inputSampleRate);
|
cannam@243
|
54 ~D();
|
cannam@243
|
55
|
cannam@243
|
56 size_t getPreferredStepSize() const { return 64; }
|
cannam@243
|
57 size_t getPreferredBlockSize() const { return 256; }
|
cannam@243
|
58
|
cannam@243
|
59 ParameterList getParameterDescriptors() const;
|
cannam@243
|
60 float getParameter(string id) const;
|
cannam@243
|
61 void setParameter(string id, float value);
|
cannam@243
|
62
|
cannam@243
|
63 OutputList getOutputDescriptors() const;
|
cannam@243
|
64
|
cannam@243
|
65 bool initialise(size_t channels, size_t stepSize, size_t blockSize);
|
cannam@243
|
66 void reset();
|
cannam@243
|
67 FeatureSet process(const float *const *, RealTime);
|
cannam@243
|
68 FeatureSet getRemainingFeatures();
|
cannam@243
|
69
|
cannam@243
|
70 private:
|
cannam@243
|
71 void calculate();
|
cannam@243
|
72 FeatureSet assembleFeatures();
|
cannam@243
|
73
|
cannam@243
|
74 float lag2tempo(int);
|
cannam@243
|
75 int tempo2lag(float);
|
cannam@243
|
76
|
cannam@243
|
77 float m_inputSampleRate;
|
cannam@243
|
78 size_t m_stepSize;
|
cannam@243
|
79 size_t m_blockSize;
|
cannam@243
|
80
|
cannam@243
|
81 float m_minbpm;
|
cannam@243
|
82 float m_maxbpm;
|
cannam@243
|
83 float m_maxdflen;
|
cannam@243
|
84
|
cannam@243
|
85 float *m_priorMagnitudes;
|
cannam@243
|
86
|
cannam@243
|
87 size_t m_dfsize;
|
cannam@243
|
88 float *m_df;
|
cannam@243
|
89 float *m_r;
|
cannam@243
|
90 float *m_fr;
|
cannam@243
|
91 float *m_t;
|
cannam@243
|
92 size_t m_n;
|
cannam@243
|
93
|
cannam@243
|
94 Vamp::RealTime m_start;
|
cannam@243
|
95 Vamp::RealTime m_lasttime;
|
cannam@243
|
96 };
|
cannam@243
|
97
|
cannam@243
|
98 FixedTempoEstimator::D::D(float inputSampleRate) :
|
cannam@243
|
99 m_inputSampleRate(inputSampleRate),
|
cannam@198
|
100 m_stepSize(0),
|
cannam@198
|
101 m_blockSize(0),
|
cannam@243
|
102 m_minbpm(50),
|
cannam@243
|
103 m_maxbpm(190),
|
cannam@243
|
104 m_maxdflen(10),
|
cannam@198
|
105 m_priorMagnitudes(0),
|
cannam@200
|
106 m_df(0),
|
cannam@200
|
107 m_r(0),
|
cannam@200
|
108 m_fr(0),
|
cannam@204
|
109 m_t(0),
|
cannam@200
|
110 m_n(0)
|
cannam@198
|
111 {
|
cannam@198
|
112 }
|
cannam@198
|
113
|
cannam@243
|
114 FixedTempoEstimator::D::~D()
|
cannam@198
|
115 {
|
cannam@198
|
116 delete[] m_priorMagnitudes;
|
cannam@198
|
117 delete[] m_df;
|
cannam@200
|
118 delete[] m_r;
|
cannam@200
|
119 delete[] m_fr;
|
cannam@204
|
120 delete[] m_t;
|
cannam@198
|
121 }
|
cannam@198
|
122
|
cannam@198
|
123 FixedTempoEstimator::ParameterList
|
cannam@243
|
124 FixedTempoEstimator::D::getParameterDescriptors() const
|
cannam@198
|
125 {
|
cannam@198
|
126 ParameterList list;
|
cannam@243
|
127
|
cannam@243
|
128 ParameterDescriptor d;
|
cannam@243
|
129 d.identifier = "minbpm";
|
cannam@243
|
130 d.name = "Minimum estimated tempo";
|
cannam@243
|
131 d.description = "Minimum beat-per-minute value which the tempo estimator is able to return";
|
cannam@243
|
132 d.unit = "bpm";
|
cannam@243
|
133 d.minValue = 10;
|
cannam@243
|
134 d.maxValue = 360;
|
cannam@243
|
135 d.defaultValue = 50;
|
cannam@243
|
136 d.isQuantized = false;
|
cannam@243
|
137 list.push_back(d);
|
cannam@243
|
138
|
cannam@243
|
139 d.identifier = "maxbpm";
|
cannam@243
|
140 d.name = "Maximum estimated tempo";
|
cannam@243
|
141 d.description = "Maximum beat-per-minute value which the tempo estimator is able to return";
|
cannam@243
|
142 d.defaultValue = 190;
|
cannam@243
|
143 list.push_back(d);
|
cannam@243
|
144
|
cannam@243
|
145 d.identifier = "maxdflen";
|
cannam@243
|
146 d.name = "Input duration to study";
|
cannam@243
|
147 d.description = "Length of audio input, in seconds, which should be taken into account when estimating tempo. There is no need to supply the plugin with any further input once this time has elapsed since the start of the audio. The tempo estimator may use only the first part of this, up to eight times the slowest beat duration: increasing this value further than that is unlikely to improve results.";
|
cannam@243
|
148 d.unit = "s";
|
cannam@243
|
149 d.minValue = 2;
|
cannam@243
|
150 d.maxValue = 40;
|
cannam@243
|
151 d.defaultValue = 10;
|
cannam@243
|
152 list.push_back(d);
|
cannam@243
|
153
|
cannam@198
|
154 return list;
|
cannam@198
|
155 }
|
cannam@198
|
156
|
cannam@198
|
157 float
|
cannam@243
|
158 FixedTempoEstimator::D::getParameter(string id) const
|
cannam@198
|
159 {
|
cannam@243
|
160 if (id == "minbpm") {
|
cannam@243
|
161 return m_minbpm;
|
cannam@243
|
162 } else if (id == "maxbpm") {
|
cannam@243
|
163 return m_maxbpm;
|
cannam@243
|
164 } else if (id == "maxdflen") {
|
cannam@243
|
165 return m_maxdflen;
|
cannam@243
|
166 }
|
cannam@198
|
167 return 0.f;
|
cannam@198
|
168 }
|
cannam@198
|
169
|
cannam@198
|
170 void
|
cannam@243
|
171 FixedTempoEstimator::D::setParameter(string id, float value)
|
cannam@198
|
172 {
|
cannam@243
|
173 if (id == "minbpm") {
|
cannam@243
|
174 m_minbpm = value;
|
cannam@243
|
175 } else if (id == "maxbpm") {
|
cannam@243
|
176 m_maxbpm = value;
|
cannam@243
|
177 } else if (id == "maxdflen") {
|
cannam@243
|
178 m_maxdflen = value;
|
cannam@243
|
179 }
|
cannam@198
|
180 }
|
cannam@198
|
181
|
cannam@200
|
182 static int TempoOutput = 0;
|
cannam@200
|
183 static int CandidatesOutput = 1;
|
cannam@200
|
184 static int DFOutput = 2;
|
cannam@200
|
185 static int ACFOutput = 3;
|
cannam@200
|
186 static int FilteredACFOutput = 4;
|
cannam@200
|
187
|
cannam@198
|
188 FixedTempoEstimator::OutputList
|
cannam@243
|
189 FixedTempoEstimator::D::getOutputDescriptors() const
|
cannam@198
|
190 {
|
cannam@198
|
191 OutputList list;
|
cannam@198
|
192
|
cannam@198
|
193 OutputDescriptor d;
|
cannam@198
|
194 d.identifier = "tempo";
|
cannam@198
|
195 d.name = "Tempo";
|
cannam@198
|
196 d.description = "Estimated tempo";
|
cannam@198
|
197 d.unit = "bpm";
|
cannam@198
|
198 d.hasFixedBinCount = true;
|
cannam@198
|
199 d.binCount = 1;
|
cannam@198
|
200 d.hasKnownExtents = false;
|
cannam@198
|
201 d.isQuantized = false;
|
cannam@198
|
202 d.sampleType = OutputDescriptor::VariableSampleRate;
|
cannam@198
|
203 d.sampleRate = m_inputSampleRate;
|
cannam@198
|
204 d.hasDuration = true; // our returned tempo spans a certain range
|
cannam@198
|
205 list.push_back(d);
|
cannam@198
|
206
|
cannam@200
|
207 d.identifier = "candidates";
|
cannam@200
|
208 d.name = "Tempo candidates";
|
cannam@200
|
209 d.description = "Possible tempo estimates, one per bin with the most likely in the first bin";
|
cannam@200
|
210 d.unit = "bpm";
|
cannam@200
|
211 d.hasFixedBinCount = false;
|
cannam@200
|
212 list.push_back(d);
|
cannam@200
|
213
|
cannam@198
|
214 d.identifier = "detectionfunction";
|
cannam@198
|
215 d.name = "Detection Function";
|
cannam@198
|
216 d.description = "Onset detection function";
|
cannam@198
|
217 d.unit = "";
|
cannam@198
|
218 d.hasFixedBinCount = 1;
|
cannam@198
|
219 d.binCount = 1;
|
cannam@198
|
220 d.hasKnownExtents = true;
|
cannam@198
|
221 d.minValue = 0.0;
|
cannam@198
|
222 d.maxValue = 1.0;
|
cannam@198
|
223 d.isQuantized = false;
|
cannam@198
|
224 d.quantizeStep = 0.0;
|
cannam@198
|
225 d.sampleType = OutputDescriptor::FixedSampleRate;
|
cannam@198
|
226 if (m_stepSize) {
|
cannam@198
|
227 d.sampleRate = m_inputSampleRate / m_stepSize;
|
cannam@198
|
228 } else {
|
cannam@198
|
229 d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2);
|
cannam@198
|
230 }
|
cannam@198
|
231 d.hasDuration = false;
|
cannam@198
|
232 list.push_back(d);
|
cannam@198
|
233
|
cannam@198
|
234 d.identifier = "acf";
|
cannam@198
|
235 d.name = "Autocorrelation Function";
|
cannam@198
|
236 d.description = "Autocorrelation of onset detection function";
|
cannam@198
|
237 d.hasKnownExtents = false;
|
cannam@201
|
238 d.unit = "r";
|
cannam@198
|
239 list.push_back(d);
|
cannam@198
|
240
|
cannam@198
|
241 d.identifier = "filtered_acf";
|
cannam@198
|
242 d.name = "Filtered Autocorrelation";
|
cannam@198
|
243 d.description = "Filtered autocorrelation of onset detection function";
|
cannam@201
|
244 d.unit = "r";
|
cannam@198
|
245 list.push_back(d);
|
cannam@198
|
246
|
cannam@198
|
247 return list;
|
cannam@198
|
248 }
|
cannam@198
|
249
|
cannam@243
|
250 bool
|
cannam@271
|
251 FixedTempoEstimator::D::initialise(size_t, size_t stepSize, size_t blockSize)
|
cannam@243
|
252 {
|
cannam@243
|
253 m_stepSize = stepSize;
|
cannam@243
|
254 m_blockSize = blockSize;
|
cannam@243
|
255
|
cannam@243
|
256 float dfLengthSecs = m_maxdflen;
|
cannam@243
|
257 m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize;
|
cannam@243
|
258
|
cannam@243
|
259 m_priorMagnitudes = new float[m_blockSize/2];
|
cannam@243
|
260 m_df = new float[m_dfsize];
|
cannam@243
|
261
|
cannam@243
|
262 for (size_t i = 0; i < m_blockSize/2; ++i) {
|
cannam@243
|
263 m_priorMagnitudes[i] = 0.f;
|
cannam@243
|
264 }
|
cannam@243
|
265 for (size_t i = 0; i < m_dfsize; ++i) {
|
cannam@243
|
266 m_df[i] = 0.f;
|
cannam@243
|
267 }
|
cannam@243
|
268
|
cannam@243
|
269 m_n = 0;
|
cannam@243
|
270
|
cannam@243
|
271 return true;
|
cannam@243
|
272 }
|
cannam@243
|
273
|
cannam@243
|
274 void
|
cannam@243
|
275 FixedTempoEstimator::D::reset()
|
cannam@243
|
276 {
|
cannam@243
|
277 if (!m_priorMagnitudes) return;
|
cannam@243
|
278
|
cannam@243
|
279 for (size_t i = 0; i < m_blockSize/2; ++i) {
|
cannam@243
|
280 m_priorMagnitudes[i] = 0.f;
|
cannam@243
|
281 }
|
cannam@243
|
282 for (size_t i = 0; i < m_dfsize; ++i) {
|
cannam@243
|
283 m_df[i] = 0.f;
|
cannam@243
|
284 }
|
cannam@243
|
285
|
cannam@243
|
286 delete[] m_r;
|
cannam@243
|
287 m_r = 0;
|
cannam@243
|
288
|
cannam@243
|
289 delete[] m_fr;
|
cannam@243
|
290 m_fr = 0;
|
cannam@243
|
291
|
cannam@243
|
292 delete[] m_t;
|
cannam@243
|
293 m_t = 0;
|
cannam@243
|
294
|
cannam@243
|
295 m_n = 0;
|
cannam@243
|
296
|
cannam@243
|
297 m_start = RealTime::zeroTime;
|
cannam@243
|
298 m_lasttime = RealTime::zeroTime;
|
cannam@243
|
299 }
|
cannam@243
|
300
|
cannam@198
|
301 FixedTempoEstimator::FeatureSet
|
cannam@243
|
302 FixedTempoEstimator::D::process(const float *const *inputBuffers, RealTime ts)
|
cannam@198
|
303 {
|
cannam@198
|
304 FeatureSet fs;
|
cannam@198
|
305
|
cannam@198
|
306 if (m_stepSize == 0) {
|
cannam@198
|
307 cerr << "ERROR: FixedTempoEstimator::process: "
|
cannam@198
|
308 << "FixedTempoEstimator has not been initialised"
|
cannam@198
|
309 << endl;
|
cannam@198
|
310 return fs;
|
cannam@198
|
311 }
|
cannam@198
|
312
|
cannam@198
|
313 if (m_n == 0) m_start = ts;
|
cannam@198
|
314 m_lasttime = ts;
|
cannam@198
|
315
|
cannam@198
|
316 if (m_n == m_dfsize) {
|
cannam@255
|
317 // If we have seen enough input, do the estimation and return
|
cannam@200
|
318 calculate();
|
cannam@200
|
319 fs = assembleFeatures();
|
cannam@198
|
320 ++m_n;
|
cannam@198
|
321 return fs;
|
cannam@198
|
322 }
|
cannam@198
|
323
|
cannam@255
|
324 // If we have seen more than enough, just discard and return!
|
cannam@198
|
325 if (m_n > m_dfsize) return FeatureSet();
|
cannam@198
|
326
|
cannam@207
|
327 float value = 0.f;
|
cannam@207
|
328
|
cannam@255
|
329 // m_df will contain an onset detection function based on the rise
|
cannam@255
|
330 // in overall power from one spectral frame to the next --
|
cannam@255
|
331 // simplistic but reasonably effective for our purposes.
|
cannam@255
|
332
|
cannam@198
|
333 for (size_t i = 1; i < m_blockSize/2; ++i) {
|
cannam@198
|
334
|
cannam@198
|
335 float real = inputBuffers[0][i*2];
|
cannam@198
|
336 float imag = inputBuffers[0][i*2 + 1];
|
cannam@198
|
337
|
cannam@198
|
338 float sqrmag = real * real + imag * imag;
|
cannam@207
|
339 value += fabsf(sqrmag - m_priorMagnitudes[i]);
|
cannam@198
|
340
|
cannam@198
|
341 m_priorMagnitudes[i] = sqrmag;
|
cannam@198
|
342 }
|
cannam@198
|
343
|
cannam@207
|
344 m_df[m_n] = value;
|
cannam@207
|
345
|
cannam@198
|
346 ++m_n;
|
cannam@198
|
347 return fs;
|
cannam@243
|
348 }
|
cannam@198
|
349
|
cannam@198
|
350 FixedTempoEstimator::FeatureSet
|
cannam@243
|
351 FixedTempoEstimator::D::getRemainingFeatures()
|
cannam@198
|
352 {
|
cannam@198
|
353 FeatureSet fs;
|
cannam@198
|
354 if (m_n > m_dfsize) return fs;
|
cannam@200
|
355 calculate();
|
cannam@200
|
356 fs = assembleFeatures();
|
cannam@198
|
357 ++m_n;
|
cannam@198
|
358 return fs;
|
cannam@198
|
359 }
|
cannam@198
|
360
|
cannam@198
|
361 float
|
cannam@243
|
362 FixedTempoEstimator::D::lag2tempo(int lag)
|
cannam@199
|
363 {
|
cannam@198
|
364 return 60.f / ((lag * m_stepSize) / m_inputSampleRate);
|
cannam@198
|
365 }
|
cannam@198
|
366
|
cannam@207
|
367 int
|
cannam@243
|
368 FixedTempoEstimator::D::tempo2lag(float tempo)
|
cannam@207
|
369 {
|
cannam@207
|
370 return ((60.f / tempo) * m_inputSampleRate) / m_stepSize;
|
cannam@207
|
371 }
|
cannam@207
|
372
|
cannam@200
|
373 void
|
cannam@243
|
374 FixedTempoEstimator::D::calculate()
|
cannam@200
|
375 {
|
cannam@200
|
376 if (m_r) {
|
cannam@207
|
377 cerr << "FixedTempoEstimator::calculate: calculation already happened?" << endl;
|
cannam@200
|
378 return;
|
cannam@200
|
379 }
|
cannam@200
|
380
|
cannam@243
|
381 if (m_n < m_dfsize / 9 &&
|
cannam@243
|
382 m_n < (1.0 * m_inputSampleRate) / m_stepSize) { // 1 second
|
cannam@243
|
383 cerr << "FixedTempoEstimator::calculate: Input is too short" << endl;
|
cannam@243
|
384 return;
|
cannam@200
|
385 }
|
cannam@200
|
386
|
cannam@255
|
387 // This function takes m_df (the detection function array filled
|
cannam@255
|
388 // out in process()) and calculates m_r (the raw autocorrelation)
|
cannam@255
|
389 // and m_fr (the filtered autocorrelation from whose peaks tempo
|
cannam@255
|
390 // estimates will be taken).
|
cannam@200
|
391
|
cannam@255
|
392 int n = m_n; // length of actual df array (m_dfsize is the theoretical max)
|
cannam@255
|
393
|
cannam@255
|
394 m_r = new float[n/2]; // raw autocorrelation
|
cannam@255
|
395 m_fr = new float[n/2]; // filtered autocorrelation
|
cannam@255
|
396 m_t = new float[n/2]; // averaged tempo estimate for each lag value
|
cannam@200
|
397
|
cannam@200
|
398 for (int i = 0; i < n/2; ++i) {
|
cannam@255
|
399 m_r[i] = 0.f;
|
cannam@200
|
400 m_fr[i] = 0.f;
|
cannam@255
|
401 m_t[i] = lag2tempo(i);
|
cannam@200
|
402 }
|
cannam@200
|
403
|
cannam@255
|
404 // Calculate the raw autocorrelation of the detection function
|
cannam@255
|
405
|
cannam@200
|
406 for (int i = 0; i < n/2; ++i) {
|
cannam@200
|
407
|
cannam@271
|
408 for (int j = i; j < n; ++j) {
|
cannam@200
|
409 m_r[i] += m_df[j] * m_df[j - i];
|
cannam@200
|
410 }
|
cannam@200
|
411
|
cannam@200
|
412 m_r[i] /= n - i - 1;
|
cannam@200
|
413 }
|
cannam@200
|
414
|
cannam@255
|
415 // Filter the autocorrelation and average out the tempo estimates
|
cannam@255
|
416
|
cannam@246
|
417 float related[] = { 0.5, 2, 4, 8 };
|
cannam@208
|
418
|
cannam@209
|
419 for (int i = 1; i < n/2-1; ++i) {
|
cannam@204
|
420
|
cannam@209
|
421 m_fr[i] = m_r[i];
|
cannam@204
|
422
|
cannam@200
|
423 int div = 1;
|
cannam@200
|
424
|
cannam@215
|
425 for (int j = 0; j < int(sizeof(related)/sizeof(related[0])); ++j) {
|
cannam@204
|
426
|
cannam@255
|
427 // Check for an obvious peak at each metrically related lag
|
cannam@255
|
428
|
cannam@215
|
429 int k0 = int(i * related[j] + 0.5);
|
cannam@209
|
430
|
cannam@215
|
431 if (k0 >= 0 && k0 < int(n/2)) {
|
cannam@204
|
432
|
cannam@207
|
433 int kmax = 0, kmin = 0;
|
cannam@207
|
434 float kvmax = 0, kvmin = 0;
|
cannam@209
|
435 bool have = false;
|
cannam@204
|
436
|
cannam@209
|
437 for (int k = k0 - 1; k <= k0 + 1; ++k) {
|
cannam@204
|
438
|
cannam@209
|
439 if (k < 0 || k >= n/2) continue;
|
cannam@209
|
440
|
cannam@215
|
441 if (!have || (m_r[k] > kvmax)) { kmax = k; kvmax = m_r[k]; }
|
cannam@215
|
442 if (!have || (m_r[k] < kvmin)) { kmin = k; kvmin = m_r[k]; }
|
cannam@209
|
443
|
cannam@209
|
444 have = true;
|
cannam@204
|
445 }
|
cannam@209
|
446
|
cannam@255
|
447 // Boost the original lag according to the strongest
|
cannam@255
|
448 // value found close to this related lag
|
cannam@255
|
449
|
cannam@215
|
450 m_fr[i] += m_r[kmax] / 5;
|
cannam@209
|
451
|
cannam@209
|
452 if ((kmax == 0 || m_r[kmax] > m_r[kmax-1]) &&
|
cannam@209
|
453 (kmax == n/2-1 || m_r[kmax] > m_r[kmax+1]) &&
|
cannam@207
|
454 kvmax > kvmin * 1.05) {
|
cannam@255
|
455
|
cannam@255
|
456 // The strongest value close to the related lag is
|
cannam@255
|
457 // also a pretty good looking peak, so use it to
|
cannam@255
|
458 // improve our tempo estimate for the original lag
|
cannam@209
|
459
|
cannam@207
|
460 m_t[i] = m_t[i] + lag2tempo(kmax) * related[j];
|
cannam@207
|
461 ++div;
|
cannam@207
|
462 }
|
cannam@204
|
463 }
|
cannam@204
|
464 }
|
cannam@209
|
465
|
cannam@204
|
466 m_t[i] /= div;
|
cannam@204
|
467
|
cannam@255
|
468 // Finally apply a primitive perceptual weighting (to prefer
|
cannam@255
|
469 // tempi of around 120-130)
|
cannam@255
|
470
|
cannam@255
|
471 float weight = 1.f - fabsf(128.f - lag2tempo(i)) * 0.005;
|
cannam@255
|
472 if (weight < 0.f) weight = 0.f;
|
cannam@255
|
473 weight = weight * weight * weight;
|
cannam@255
|
474
|
cannam@215
|
475 m_fr[i] += m_fr[i] * (weight / 3);
|
cannam@207
|
476 }
|
cannam@200
|
477 }
|
cannam@200
|
478
|
cannam@198
|
479 FixedTempoEstimator::FeatureSet
|
cannam@243
|
480 FixedTempoEstimator::D::assembleFeatures()
|
cannam@198
|
481 {
|
cannam@198
|
482 FeatureSet fs;
|
cannam@255
|
483 if (!m_r) return fs; // No autocorrelation: no results
|
cannam@200
|
484
|
cannam@198
|
485 Feature feature;
|
cannam@198
|
486 feature.hasTimestamp = true;
|
cannam@198
|
487 feature.hasDuration = false;
|
cannam@198
|
488 feature.label = "";
|
cannam@198
|
489 feature.values.clear();
|
cannam@198
|
490 feature.values.push_back(0.f);
|
cannam@198
|
491
|
cannam@200
|
492 char buffer[40];
|
cannam@198
|
493
|
cannam@198
|
494 int n = m_n;
|
cannam@198
|
495
|
cannam@198
|
496 for (int i = 0; i < n; ++i) {
|
cannam@255
|
497
|
cannam@255
|
498 // Return the detection function in the DF output
|
cannam@255
|
499
|
cannam@208
|
500 feature.timestamp = m_start +
|
cannam@208
|
501 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
|
cannam@200
|
502 feature.values[0] = m_df[i];
|
cannam@198
|
503 feature.label = "";
|
cannam@200
|
504 fs[DFOutput].push_back(feature);
|
cannam@198
|
505 }
|
cannam@198
|
506
|
cannam@199
|
507 for (int i = 1; i < n/2; ++i) {
|
cannam@255
|
508
|
cannam@255
|
509 // Return the raw autocorrelation in the ACF output, each
|
cannam@255
|
510 // value labelled according to its corresponding tempo
|
cannam@255
|
511
|
cannam@208
|
512 feature.timestamp = m_start +
|
cannam@208
|
513 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
|
cannam@200
|
514 feature.values[0] = m_r[i];
|
cannam@199
|
515 sprintf(buffer, "%.1f bpm", lag2tempo(i));
|
cannam@200
|
516 if (i == n/2-1) feature.label = "";
|
cannam@200
|
517 else feature.label = buffer;
|
cannam@200
|
518 fs[ACFOutput].push_back(feature);
|
cannam@198
|
519 }
|
cannam@198
|
520
|
cannam@243
|
521 float t0 = m_minbpm; // our minimum detected tempo
|
cannam@243
|
522 float t1 = m_maxbpm; // our maximum detected tempo
|
cannam@216
|
523
|
cannam@207
|
524 int p0 = tempo2lag(t1);
|
cannam@207
|
525 int p1 = tempo2lag(t0);
|
cannam@198
|
526
|
cannam@200
|
527 std::map<float, int> candidates;
|
cannam@198
|
528
|
cannam@271
|
529 for (int i = p0; i <= p1 && i+1 < n/2; ++i) {
|
cannam@198
|
530
|
cannam@209
|
531 if (m_fr[i] > m_fr[i-1] &&
|
cannam@209
|
532 m_fr[i] > m_fr[i+1]) {
|
cannam@255
|
533
|
cannam@255
|
534 // This is a peak in the filtered autocorrelation: stick
|
cannam@255
|
535 // it into the map from filtered autocorrelation to lag
|
cannam@255
|
536 // index -- this sorts our peaks by filtered acf value
|
cannam@255
|
537
|
cannam@209
|
538 candidates[m_fr[i]] = i;
|
cannam@209
|
539 }
|
cannam@198
|
540
|
cannam@255
|
541 // Also return the filtered autocorrelation in its own output
|
cannam@255
|
542
|
cannam@208
|
543 feature.timestamp = m_start +
|
cannam@208
|
544 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
|
cannam@200
|
545 feature.values[0] = m_fr[i];
|
cannam@199
|
546 sprintf(buffer, "%.1f bpm", lag2tempo(i));
|
cannam@200
|
547 if (i == p1 || i == n/2-2) feature.label = "";
|
cannam@200
|
548 else feature.label = buffer;
|
cannam@200
|
549 fs[FilteredACFOutput].push_back(feature);
|
cannam@198
|
550 }
|
cannam@198
|
551
|
cannam@200
|
552 if (candidates.empty()) {
|
cannam@207
|
553 cerr << "No tempo candidates!" << endl;
|
cannam@200
|
554 return fs;
|
cannam@200
|
555 }
|
cannam@198
|
556
|
cannam@198
|
557 feature.hasTimestamp = true;
|
cannam@198
|
558 feature.timestamp = m_start;
|
cannam@198
|
559
|
cannam@198
|
560 feature.hasDuration = true;
|
cannam@198
|
561 feature.duration = m_lasttime - m_start;
|
cannam@198
|
562
|
cannam@255
|
563 // The map contains only peaks and is sorted by filtered acf
|
cannam@255
|
564 // value, so the final element in it is our "best" tempo guess
|
cannam@255
|
565
|
cannam@200
|
566 std::map<float, int>::const_iterator ci = candidates.end();
|
cannam@200
|
567 --ci;
|
cannam@200
|
568 int maxpi = ci->second;
|
cannam@198
|
569
|
cannam@204
|
570 if (m_t[maxpi] > 0) {
|
cannam@255
|
571
|
cannam@255
|
572 // This lag has an adjusted tempo from the averaging process:
|
cannam@255
|
573 // use it
|
cannam@255
|
574
|
cannam@204
|
575 feature.values[0] = m_t[maxpi];
|
cannam@255
|
576
|
cannam@204
|
577 } else {
|
cannam@255
|
578
|
cannam@255
|
579 // shouldn't happen -- it would imply that this high value was
|
cannam@255
|
580 // not a peak!
|
cannam@255
|
581
|
cannam@204
|
582 feature.values[0] = lag2tempo(maxpi);
|
cannam@207
|
583 cerr << "WARNING: No stored tempo for index " << maxpi << endl;
|
cannam@204
|
584 }
|
cannam@204
|
585
|
cannam@204
|
586 sprintf(buffer, "%.1f bpm", feature.values[0]);
|
cannam@199
|
587 feature.label = buffer;
|
cannam@199
|
588
|
cannam@255
|
589 // Return the best tempo in the main output
|
cannam@255
|
590
|
cannam@200
|
591 fs[TempoOutput].push_back(feature);
|
cannam@198
|
592
|
cannam@255
|
593 // And return the other estimates (up to the arbitrarily chosen
|
cannam@255
|
594 // number of 10 of them) in the candidates output
|
cannam@255
|
595
|
cannam@200
|
596 feature.values.clear();
|
cannam@200
|
597 feature.label = "";
|
cannam@200
|
598
|
cannam@255
|
599 while (feature.values.size() < 10) {
|
cannam@207
|
600 if (m_t[ci->second] > 0) {
|
cannam@207
|
601 feature.values.push_back(m_t[ci->second]);
|
cannam@207
|
602 } else {
|
cannam@207
|
603 feature.values.push_back(lag2tempo(ci->second));
|
cannam@207
|
604 }
|
cannam@200
|
605 if (ci == candidates.begin()) break;
|
cannam@200
|
606 --ci;
|
cannam@200
|
607 }
|
cannam@200
|
608
|
cannam@200
|
609 fs[CandidatesOutput].push_back(feature);
|
cannam@200
|
610
|
cannam@198
|
611 return fs;
|
cannam@198
|
612 }
|
cannam@243
|
613
|
cannam@243
|
614
|
cannam@243
|
615
|
cannam@243
|
616 FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) :
|
cannam@243
|
617 Plugin(inputSampleRate),
|
cannam@243
|
618 m_d(new D(inputSampleRate))
|
cannam@243
|
619 {
|
cannam@243
|
620 }
|
cannam@243
|
621
|
cannam@243
|
622 FixedTempoEstimator::~FixedTempoEstimator()
|
cannam@243
|
623 {
|
cannam@271
|
624 delete m_d;
|
cannam@243
|
625 }
|
cannam@243
|
626
|
cannam@243
|
627 string
|
cannam@243
|
628 FixedTempoEstimator::getIdentifier() const
|
cannam@243
|
629 {
|
cannam@243
|
630 return "fixedtempo";
|
cannam@243
|
631 }
|
cannam@243
|
632
|
cannam@243
|
633 string
|
cannam@243
|
634 FixedTempoEstimator::getName() const
|
cannam@243
|
635 {
|
cannam@243
|
636 return "Simple Fixed Tempo Estimator";
|
cannam@243
|
637 }
|
cannam@243
|
638
|
cannam@243
|
639 string
|
cannam@243
|
640 FixedTempoEstimator::getDescription() const
|
cannam@243
|
641 {
|
cannam@243
|
642 return "Study a short section of audio and estimate its tempo, assuming the tempo is constant";
|
cannam@243
|
643 }
|
cannam@243
|
644
|
cannam@243
|
645 string
|
cannam@243
|
646 FixedTempoEstimator::getMaker() const
|
cannam@243
|
647 {
|
cannam@243
|
648 return "Vamp SDK Example Plugins";
|
cannam@243
|
649 }
|
cannam@243
|
650
|
cannam@243
|
651 int
|
cannam@243
|
652 FixedTempoEstimator::getPluginVersion() const
|
cannam@243
|
653 {
|
cannam@243
|
654 return 1;
|
cannam@243
|
655 }
|
cannam@243
|
656
|
cannam@243
|
657 string
|
cannam@243
|
658 FixedTempoEstimator::getCopyright() const
|
cannam@243
|
659 {
|
cannam@243
|
660 return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)";
|
cannam@243
|
661 }
|
cannam@243
|
662
|
cannam@243
|
663 size_t
|
cannam@243
|
664 FixedTempoEstimator::getPreferredStepSize() const
|
cannam@243
|
665 {
|
cannam@243
|
666 return m_d->getPreferredStepSize();
|
cannam@243
|
667 }
|
cannam@243
|
668
|
cannam@243
|
669 size_t
|
cannam@243
|
670 FixedTempoEstimator::getPreferredBlockSize() const
|
cannam@243
|
671 {
|
cannam@243
|
672 return m_d->getPreferredBlockSize();
|
cannam@243
|
673 }
|
cannam@243
|
674
|
cannam@243
|
675 bool
|
cannam@243
|
676 FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
cannam@243
|
677 {
|
cannam@243
|
678 if (channels < getMinChannelCount() ||
|
cannam@243
|
679 channels > getMaxChannelCount()) return false;
|
cannam@243
|
680
|
cannam@243
|
681 return m_d->initialise(channels, stepSize, blockSize);
|
cannam@243
|
682 }
|
cannam@243
|
683
|
cannam@243
|
684 void
|
cannam@243
|
685 FixedTempoEstimator::reset()
|
cannam@243
|
686 {
|
cannam@243
|
687 return m_d->reset();
|
cannam@243
|
688 }
|
cannam@243
|
689
|
cannam@243
|
690 FixedTempoEstimator::ParameterList
|
cannam@243
|
691 FixedTempoEstimator::getParameterDescriptors() const
|
cannam@243
|
692 {
|
cannam@243
|
693 return m_d->getParameterDescriptors();
|
cannam@243
|
694 }
|
cannam@243
|
695
|
cannam@243
|
696 float
|
cannam@243
|
697 FixedTempoEstimator::getParameter(std::string id) const
|
cannam@243
|
698 {
|
cannam@243
|
699 return m_d->getParameter(id);
|
cannam@243
|
700 }
|
cannam@243
|
701
|
cannam@243
|
702 void
|
cannam@243
|
703 FixedTempoEstimator::setParameter(std::string id, float value)
|
cannam@243
|
704 {
|
cannam@243
|
705 m_d->setParameter(id, value);
|
cannam@243
|
706 }
|
cannam@243
|
707
|
cannam@243
|
708 FixedTempoEstimator::OutputList
|
cannam@243
|
709 FixedTempoEstimator::getOutputDescriptors() const
|
cannam@243
|
710 {
|
cannam@243
|
711 return m_d->getOutputDescriptors();
|
cannam@243
|
712 }
|
cannam@243
|
713
|
cannam@243
|
714 FixedTempoEstimator::FeatureSet
|
cannam@243
|
715 FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts)
|
cannam@243
|
716 {
|
cannam@243
|
717 return m_d->process(inputBuffers, ts);
|
cannam@243
|
718 }
|
cannam@243
|
719
|
cannam@243
|
720 FixedTempoEstimator::FeatureSet
|
cannam@243
|
721 FixedTempoEstimator::getRemainingFeatures()
|
cannam@243
|
722 {
|
cannam@243
|
723 return m_d->getRemainingFeatures();
|
cannam@243
|
724 }
|