cannam@3
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@3
|
2
|
cannam@3
|
3 /*
|
cannam@3
|
4 Vamp
|
cannam@3
|
5
|
cannam@3
|
6 An API for audio analysis and feature extraction plugins.
|
cannam@3
|
7
|
cannam@3
|
8 Centre for Digital Music, Queen Mary, University of London.
|
cannam@3
|
9 Copyright 2006 Chris Cannam.
|
cannam@3
|
10
|
cannam@3
|
11 Permission is hereby granted, free of charge, to any person
|
cannam@3
|
12 obtaining a copy of this software and associated documentation
|
cannam@3
|
13 files (the "Software"), to deal in the Software without
|
cannam@3
|
14 restriction, including without limitation the rights to use, copy,
|
cannam@3
|
15 modify, merge, publish, distribute, sublicense, and/or sell copies
|
cannam@3
|
16 of the Software, and to permit persons to whom the Software is
|
cannam@3
|
17 furnished to do so, subject to the following conditions:
|
cannam@3
|
18
|
cannam@3
|
19 The above copyright notice and this permission notice shall be
|
cannam@3
|
20 included in all copies or substantial portions of the Software.
|
cannam@3
|
21
|
cannam@3
|
22 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
cannam@3
|
23 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
cannam@3
|
24 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
cannam@6
|
25 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
|
cannam@3
|
26 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
cannam@3
|
27 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
cannam@3
|
28 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
cannam@3
|
29
|
cannam@3
|
30 Except as contained in this notice, the names of the Centre for
|
cannam@3
|
31 Digital Music; Queen Mary, University of London; and Chris Cannam
|
cannam@3
|
32 shall not be used in advertising or otherwise to promote the sale,
|
cannam@3
|
33 use or other dealings in this Software without prior written
|
cannam@3
|
34 authorization.
|
cannam@3
|
35 */
|
cannam@3
|
36
|
cannam@3
|
37 /*
|
cannam@3
|
38 This is a modified version of a source file from the
|
cannam@3
|
39 Rosegarden MIDI and audio sequencer and notation editor.
|
cannam@10
|
40 This file copyright 2000-2006 Chris Cannam.
|
cannam@10
|
41 Relicensed by the author as detailed above.
|
cannam@3
|
42 */
|
cannam@3
|
43
|
cannam@3
|
44 #include <iostream>
|
cannam@3
|
45
|
cannam@3
|
46 #if (__GNUC__ < 3)
|
cannam@3
|
47 #include <strstream>
|
cannam@3
|
48 #define stringstream strstream
|
cannam@3
|
49 #else
|
cannam@3
|
50 #include <sstream>
|
cannam@3
|
51 #endif
|
cannam@3
|
52
|
cannam@3
|
53 using std::cerr;
|
cannam@3
|
54 using std::endl;
|
cannam@3
|
55
|
cannam@3
|
56 #include "RealTime.h"
|
cannam@3
|
57 #include "sys/time.h"
|
cannam@3
|
58
|
cannam@3
|
59 namespace Vamp {
|
cannam@3
|
60
|
cannam@3
|
61 // A RealTime consists of two ints that must be at least 32 bits each.
|
cannam@3
|
62 // A signed 32-bit int can store values exceeding +/- 2 billion. This
|
cannam@3
|
63 // means we can safely use our lower int for nanoseconds, as there are
|
cannam@3
|
64 // 1 billion nanoseconds in a second and we need to handle double that
|
cannam@3
|
65 // because of the implementations of addition etc that we use.
|
cannam@3
|
66 //
|
cannam@3
|
67 // The maximum valid RealTime on a 32-bit system is somewhere around
|
cannam@3
|
68 // 68 years: 999999999 nanoseconds longer than the classic Unix epoch.
|
cannam@3
|
69
|
cannam@3
|
70 #define ONE_BILLION 1000000000
|
cannam@3
|
71
|
cannam@3
|
72 RealTime::RealTime(int s, int n) :
|
cannam@3
|
73 sec(s), nsec(n)
|
cannam@3
|
74 {
|
cannam@3
|
75 if (sec == 0) {
|
cannam@3
|
76 while (nsec <= -ONE_BILLION) { nsec += ONE_BILLION; --sec; }
|
cannam@3
|
77 while (nsec >= ONE_BILLION) { nsec -= ONE_BILLION; ++sec; }
|
cannam@3
|
78 } else if (sec < 0) {
|
cannam@3
|
79 while (nsec <= -ONE_BILLION) { nsec += ONE_BILLION; --sec; }
|
cannam@3
|
80 while (nsec > 0) { nsec -= ONE_BILLION; ++sec; }
|
cannam@3
|
81 } else {
|
cannam@3
|
82 while (nsec >= ONE_BILLION) { nsec -= ONE_BILLION; ++sec; }
|
cannam@3
|
83 while (nsec < 0) { nsec += ONE_BILLION; --sec; }
|
cannam@3
|
84 }
|
cannam@3
|
85 }
|
cannam@3
|
86
|
cannam@3
|
87 RealTime
|
cannam@3
|
88 RealTime::fromSeconds(double sec)
|
cannam@3
|
89 {
|
cannam@30
|
90 return RealTime(int(sec), int((sec - int(sec)) * ONE_BILLION + 0.5));
|
cannam@3
|
91 }
|
cannam@3
|
92
|
cannam@3
|
93 RealTime
|
cannam@3
|
94 RealTime::fromMilliseconds(int msec)
|
cannam@3
|
95 {
|
cannam@3
|
96 return RealTime(msec / 1000, (msec % 1000) * 1000000);
|
cannam@3
|
97 }
|
cannam@3
|
98
|
cannam@3
|
99 RealTime
|
cannam@3
|
100 RealTime::fromTimeval(const struct timeval &tv)
|
cannam@3
|
101 {
|
cannam@3
|
102 return RealTime(tv.tv_sec, tv.tv_usec * 1000);
|
cannam@3
|
103 }
|
cannam@3
|
104
|
cannam@3
|
105 std::ostream &operator<<(std::ostream &out, const RealTime &rt)
|
cannam@3
|
106 {
|
cannam@3
|
107 if (rt < RealTime::zeroTime) {
|
cannam@3
|
108 out << "-";
|
cannam@3
|
109 } else {
|
cannam@3
|
110 out << " ";
|
cannam@3
|
111 }
|
cannam@3
|
112
|
cannam@3
|
113 int s = (rt.sec < 0 ? -rt.sec : rt.sec);
|
cannam@3
|
114 int n = (rt.nsec < 0 ? -rt.nsec : rt.nsec);
|
cannam@3
|
115
|
cannam@3
|
116 out << s << ".";
|
cannam@3
|
117
|
cannam@3
|
118 int nn(n);
|
cannam@3
|
119 if (nn == 0) out << "00000000";
|
cannam@3
|
120 else while (nn < (ONE_BILLION / 10)) {
|
cannam@3
|
121 out << "0";
|
cannam@3
|
122 nn *= 10;
|
cannam@3
|
123 }
|
cannam@3
|
124
|
cannam@3
|
125 out << n << "R";
|
cannam@3
|
126 return out;
|
cannam@3
|
127 }
|
cannam@3
|
128
|
cannam@3
|
129 std::string
|
cannam@3
|
130 RealTime::toString() const
|
cannam@3
|
131 {
|
cannam@3
|
132 std::stringstream out;
|
cannam@3
|
133 out << *this;
|
cannam@3
|
134
|
cannam@3
|
135 #if (__GNUC__ < 3)
|
cannam@3
|
136 out << std::ends;
|
cannam@3
|
137 #endif
|
cannam@3
|
138
|
cannam@3
|
139 std::string s = out.str();
|
cannam@3
|
140
|
cannam@3
|
141 // remove trailing R
|
cannam@3
|
142 return s.substr(0, s.length() - 1);
|
cannam@3
|
143 }
|
cannam@3
|
144
|
cannam@3
|
145 std::string
|
cannam@3
|
146 RealTime::toText(bool fixedDp) const
|
cannam@3
|
147 {
|
cannam@3
|
148 if (*this < RealTime::zeroTime) return "-" + (-*this).toText();
|
cannam@3
|
149
|
cannam@3
|
150 std::stringstream out;
|
cannam@3
|
151
|
cannam@3
|
152 if (sec >= 3600) {
|
cannam@3
|
153 out << (sec / 3600) << ":";
|
cannam@3
|
154 }
|
cannam@3
|
155
|
cannam@3
|
156 if (sec >= 60) {
|
cannam@3
|
157 out << (sec % 3600) / 60 << ":";
|
cannam@3
|
158 }
|
cannam@3
|
159
|
cannam@3
|
160 if (sec >= 10) {
|
cannam@3
|
161 out << ((sec % 60) / 10);
|
cannam@3
|
162 }
|
cannam@3
|
163
|
cannam@3
|
164 out << (sec % 10);
|
cannam@3
|
165
|
cannam@3
|
166 int ms = msec();
|
cannam@3
|
167
|
cannam@3
|
168 if (ms != 0) {
|
cannam@3
|
169 out << ".";
|
cannam@3
|
170 out << (ms / 100);
|
cannam@3
|
171 ms = ms % 100;
|
cannam@3
|
172 if (ms != 0) {
|
cannam@3
|
173 out << (ms / 10);
|
cannam@3
|
174 ms = ms % 10;
|
cannam@3
|
175 } else if (fixedDp) {
|
cannam@3
|
176 out << "0";
|
cannam@3
|
177 }
|
cannam@3
|
178 if (ms != 0) {
|
cannam@3
|
179 out << ms;
|
cannam@3
|
180 } else if (fixedDp) {
|
cannam@3
|
181 out << "0";
|
cannam@3
|
182 }
|
cannam@3
|
183 } else if (fixedDp) {
|
cannam@3
|
184 out << ".000";
|
cannam@3
|
185 }
|
cannam@3
|
186
|
cannam@3
|
187 #if (__GNUC__ < 3)
|
cannam@3
|
188 out << std::ends;
|
cannam@3
|
189 #endif
|
cannam@3
|
190
|
cannam@3
|
191 std::string s = out.str();
|
cannam@3
|
192
|
cannam@3
|
193 return s;
|
cannam@3
|
194 }
|
cannam@3
|
195
|
cannam@3
|
196
|
cannam@3
|
197 RealTime
|
cannam@3
|
198 RealTime::operator/(int d) const
|
cannam@3
|
199 {
|
cannam@3
|
200 int secdiv = sec / d;
|
cannam@3
|
201 int secrem = sec % d;
|
cannam@3
|
202
|
cannam@3
|
203 double nsecdiv = (double(nsec) + ONE_BILLION * double(secrem)) / d;
|
cannam@3
|
204
|
cannam@3
|
205 return RealTime(secdiv, int(nsecdiv + 0.5));
|
cannam@3
|
206 }
|
cannam@3
|
207
|
cannam@3
|
208 double
|
cannam@3
|
209 RealTime::operator/(const RealTime &r) const
|
cannam@3
|
210 {
|
cannam@3
|
211 double lTotal = double(sec) * ONE_BILLION + double(nsec);
|
cannam@3
|
212 double rTotal = double(r.sec) * ONE_BILLION + double(r.nsec);
|
cannam@3
|
213
|
cannam@3
|
214 if (rTotal == 0) return 0.0;
|
cannam@3
|
215 else return lTotal/rTotal;
|
cannam@3
|
216 }
|
cannam@3
|
217
|
cannam@3
|
218 long
|
cannam@3
|
219 RealTime::realTime2Frame(const RealTime &time, unsigned int sampleRate)
|
cannam@3
|
220 {
|
cannam@3
|
221 if (time < zeroTime) return -realTime2Frame(-time, sampleRate);
|
cannam@3
|
222
|
cannam@3
|
223 // We like integers. The last term is always zero unless the
|
cannam@3
|
224 // sample rate is greater than 1MHz, but hell, you never know...
|
cannam@3
|
225
|
cannam@3
|
226 long frame =
|
cannam@3
|
227 time.sec * sampleRate +
|
cannam@3
|
228 (time.msec() * sampleRate) / 1000 +
|
cannam@3
|
229 ((time.usec() - 1000 * time.msec()) * sampleRate) / 1000000 +
|
cannam@3
|
230 ((time.nsec - 1000 * time.usec()) * sampleRate) / 1000000000;
|
cannam@3
|
231
|
cannam@3
|
232 return frame;
|
cannam@3
|
233 }
|
cannam@3
|
234
|
cannam@3
|
235 RealTime
|
cannam@3
|
236 RealTime::frame2RealTime(long frame, unsigned int sampleRate)
|
cannam@3
|
237 {
|
cannam@3
|
238 if (frame < 0) return -frame2RealTime(-frame, sampleRate);
|
cannam@3
|
239
|
cannam@3
|
240 RealTime rt;
|
cannam@3
|
241 rt.sec = frame / long(sampleRate);
|
cannam@3
|
242 frame -= rt.sec * long(sampleRate);
|
cannam@3
|
243 rt.nsec = (int)(((float(frame) * 1000000) / long(sampleRate)) * 1000);
|
cannam@3
|
244 return rt;
|
cannam@3
|
245 }
|
cannam@3
|
246
|
cannam@3
|
247 const RealTime RealTime::zeroTime(0,0);
|
cannam@3
|
248
|
cannam@3
|
249 }
|