cannam@198
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@198
|
2
|
cannam@198
|
3 /*
|
cannam@198
|
4 Vamp
|
cannam@198
|
5
|
cannam@198
|
6 An API for audio analysis and feature extraction plugins.
|
cannam@198
|
7
|
cannam@198
|
8 Centre for Digital Music, Queen Mary, University of London.
|
cannam@198
|
9 Copyright 2006-2008 Chris Cannam and QMUL.
|
cannam@198
|
10
|
cannam@198
|
11 Permission is hereby granted, free of charge, to any person
|
cannam@198
|
12 obtaining a copy of this software and associated documentation
|
cannam@198
|
13 files (the "Software"), to deal in the Software without
|
cannam@198
|
14 restriction, including without limitation the rights to use, copy,
|
cannam@198
|
15 modify, merge, publish, distribute, sublicense, and/or sell copies
|
cannam@198
|
16 of the Software, and to permit persons to whom the Software is
|
cannam@198
|
17 furnished to do so, subject to the following conditions:
|
cannam@198
|
18
|
cannam@198
|
19 The above copyright notice and this permission notice shall be
|
cannam@198
|
20 included in all copies or substantial portions of the Software.
|
cannam@198
|
21
|
cannam@198
|
22 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
cannam@198
|
23 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
cannam@198
|
24 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
cannam@198
|
25 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
|
cannam@198
|
26 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
cannam@198
|
27 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
cannam@198
|
28 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
cannam@198
|
29
|
cannam@198
|
30 Except as contained in this notice, the names of the Centre for
|
cannam@198
|
31 Digital Music; Queen Mary, University of London; and Chris Cannam
|
cannam@198
|
32 shall not be used in advertising or otherwise to promote the sale,
|
cannam@198
|
33 use or other dealings in this Software without prior written
|
cannam@198
|
34 authorization.
|
cannam@198
|
35 */
|
cannam@198
|
36
|
cannam@198
|
37 #include "FixedTempoEstimator.h"
|
cannam@198
|
38
|
cannam@198
|
39 using std::string;
|
cannam@198
|
40 using std::vector;
|
cannam@198
|
41 using std::cerr;
|
cannam@198
|
42 using std::endl;
|
cannam@198
|
43
|
cannam@198
|
44 using Vamp::RealTime;
|
cannam@198
|
45
|
cannam@198
|
46 #include <cmath>
|
cannam@198
|
47
|
cannam@198
|
48
|
cannam@243
|
49 class FixedTempoEstimator::D
|
cannam@255
|
50 // this class just avoids us having to declare any data members in the header
|
cannam@243
|
51 {
|
cannam@243
|
52 public:
|
cannam@243
|
53 D(float inputSampleRate);
|
cannam@243
|
54 ~D();
|
cannam@243
|
55
|
cannam@243
|
56 size_t getPreferredStepSize() const { return 64; }
|
cannam@243
|
57 size_t getPreferredBlockSize() const { return 256; }
|
cannam@243
|
58
|
cannam@243
|
59 ParameterList getParameterDescriptors() const;
|
cannam@243
|
60 float getParameter(string id) const;
|
cannam@243
|
61 void setParameter(string id, float value);
|
cannam@243
|
62
|
cannam@243
|
63 OutputList getOutputDescriptors() const;
|
cannam@243
|
64
|
cannam@243
|
65 bool initialise(size_t channels, size_t stepSize, size_t blockSize);
|
cannam@243
|
66 void reset();
|
cannam@243
|
67 FeatureSet process(const float *const *, RealTime);
|
cannam@243
|
68 FeatureSet getRemainingFeatures();
|
cannam@243
|
69
|
cannam@243
|
70 private:
|
cannam@243
|
71 void calculate();
|
cannam@243
|
72 FeatureSet assembleFeatures();
|
cannam@243
|
73
|
cannam@243
|
74 float lag2tempo(int);
|
cannam@243
|
75 int tempo2lag(float);
|
cannam@243
|
76
|
cannam@243
|
77 float m_inputSampleRate;
|
cannam@243
|
78 size_t m_stepSize;
|
cannam@243
|
79 size_t m_blockSize;
|
cannam@243
|
80
|
cannam@243
|
81 float m_minbpm;
|
cannam@243
|
82 float m_maxbpm;
|
cannam@243
|
83 float m_maxdflen;
|
cannam@243
|
84
|
cannam@243
|
85 float *m_priorMagnitudes;
|
cannam@243
|
86
|
cannam@243
|
87 size_t m_dfsize;
|
cannam@243
|
88 float *m_df;
|
cannam@243
|
89 float *m_r;
|
cannam@243
|
90 float *m_fr;
|
cannam@243
|
91 float *m_t;
|
cannam@243
|
92 size_t m_n;
|
cannam@243
|
93
|
cannam@243
|
94 Vamp::RealTime m_start;
|
cannam@243
|
95 Vamp::RealTime m_lasttime;
|
cannam@243
|
96 };
|
cannam@243
|
97
|
cannam@243
|
98 FixedTempoEstimator::D::D(float inputSampleRate) :
|
cannam@243
|
99 m_inputSampleRate(inputSampleRate),
|
cannam@198
|
100 m_stepSize(0),
|
cannam@198
|
101 m_blockSize(0),
|
cannam@243
|
102 m_minbpm(50),
|
cannam@243
|
103 m_maxbpm(190),
|
cannam@243
|
104 m_maxdflen(10),
|
cannam@198
|
105 m_priorMagnitudes(0),
|
cannam@200
|
106 m_df(0),
|
cannam@200
|
107 m_r(0),
|
cannam@200
|
108 m_fr(0),
|
cannam@204
|
109 m_t(0),
|
cannam@200
|
110 m_n(0)
|
cannam@198
|
111 {
|
cannam@198
|
112 }
|
cannam@198
|
113
|
cannam@243
|
114 FixedTempoEstimator::D::~D()
|
cannam@198
|
115 {
|
cannam@198
|
116 delete[] m_priorMagnitudes;
|
cannam@198
|
117 delete[] m_df;
|
cannam@200
|
118 delete[] m_r;
|
cannam@200
|
119 delete[] m_fr;
|
cannam@204
|
120 delete[] m_t;
|
cannam@198
|
121 }
|
cannam@198
|
122
|
cannam@198
|
123 FixedTempoEstimator::ParameterList
|
cannam@243
|
124 FixedTempoEstimator::D::getParameterDescriptors() const
|
cannam@198
|
125 {
|
cannam@198
|
126 ParameterList list;
|
cannam@243
|
127
|
cannam@243
|
128 ParameterDescriptor d;
|
cannam@243
|
129 d.identifier = "minbpm";
|
cannam@243
|
130 d.name = "Minimum estimated tempo";
|
cannam@243
|
131 d.description = "Minimum beat-per-minute value which the tempo estimator is able to return";
|
cannam@243
|
132 d.unit = "bpm";
|
cannam@243
|
133 d.minValue = 10;
|
cannam@243
|
134 d.maxValue = 360;
|
cannam@243
|
135 d.defaultValue = 50;
|
cannam@243
|
136 d.isQuantized = false;
|
cannam@243
|
137 list.push_back(d);
|
cannam@243
|
138
|
cannam@243
|
139 d.identifier = "maxbpm";
|
cannam@243
|
140 d.name = "Maximum estimated tempo";
|
cannam@243
|
141 d.description = "Maximum beat-per-minute value which the tempo estimator is able to return";
|
cannam@243
|
142 d.defaultValue = 190;
|
cannam@243
|
143 list.push_back(d);
|
cannam@243
|
144
|
cannam@243
|
145 d.identifier = "maxdflen";
|
cannam@243
|
146 d.name = "Input duration to study";
|
cannam@243
|
147 d.description = "Length of audio input, in seconds, which should be taken into account when estimating tempo. There is no need to supply the plugin with any further input once this time has elapsed since the start of the audio. The tempo estimator may use only the first part of this, up to eight times the slowest beat duration: increasing this value further than that is unlikely to improve results.";
|
cannam@243
|
148 d.unit = "s";
|
cannam@243
|
149 d.minValue = 2;
|
cannam@243
|
150 d.maxValue = 40;
|
cannam@243
|
151 d.defaultValue = 10;
|
cannam@243
|
152 list.push_back(d);
|
cannam@243
|
153
|
cannam@198
|
154 return list;
|
cannam@198
|
155 }
|
cannam@198
|
156
|
cannam@198
|
157 float
|
cannam@243
|
158 FixedTempoEstimator::D::getParameter(string id) const
|
cannam@198
|
159 {
|
cannam@243
|
160 if (id == "minbpm") {
|
cannam@243
|
161 return m_minbpm;
|
cannam@243
|
162 } else if (id == "maxbpm") {
|
cannam@243
|
163 return m_maxbpm;
|
cannam@243
|
164 } else if (id == "maxdflen") {
|
cannam@243
|
165 return m_maxdflen;
|
cannam@243
|
166 }
|
cannam@198
|
167 return 0.f;
|
cannam@198
|
168 }
|
cannam@198
|
169
|
cannam@198
|
170 void
|
cannam@243
|
171 FixedTempoEstimator::D::setParameter(string id, float value)
|
cannam@198
|
172 {
|
cannam@243
|
173 if (id == "minbpm") {
|
cannam@243
|
174 m_minbpm = value;
|
cannam@243
|
175 } else if (id == "maxbpm") {
|
cannam@243
|
176 m_maxbpm = value;
|
cannam@243
|
177 } else if (id == "maxdflen") {
|
cannam@243
|
178 m_maxdflen = value;
|
cannam@243
|
179 }
|
cannam@198
|
180 }
|
cannam@198
|
181
|
cannam@200
|
182 static int TempoOutput = 0;
|
cannam@200
|
183 static int CandidatesOutput = 1;
|
cannam@200
|
184 static int DFOutput = 2;
|
cannam@200
|
185 static int ACFOutput = 3;
|
cannam@200
|
186 static int FilteredACFOutput = 4;
|
cannam@200
|
187
|
cannam@198
|
188 FixedTempoEstimator::OutputList
|
cannam@243
|
189 FixedTempoEstimator::D::getOutputDescriptors() const
|
cannam@198
|
190 {
|
cannam@198
|
191 OutputList list;
|
cannam@198
|
192
|
cannam@198
|
193 OutputDescriptor d;
|
cannam@198
|
194 d.identifier = "tempo";
|
cannam@198
|
195 d.name = "Tempo";
|
cannam@198
|
196 d.description = "Estimated tempo";
|
cannam@198
|
197 d.unit = "bpm";
|
cannam@198
|
198 d.hasFixedBinCount = true;
|
cannam@198
|
199 d.binCount = 1;
|
cannam@198
|
200 d.hasKnownExtents = false;
|
cannam@198
|
201 d.isQuantized = false;
|
cannam@198
|
202 d.sampleType = OutputDescriptor::VariableSampleRate;
|
cannam@198
|
203 d.sampleRate = m_inputSampleRate;
|
cannam@198
|
204 d.hasDuration = true; // our returned tempo spans a certain range
|
cannam@198
|
205 list.push_back(d);
|
cannam@198
|
206
|
cannam@200
|
207 d.identifier = "candidates";
|
cannam@200
|
208 d.name = "Tempo candidates";
|
cannam@200
|
209 d.description = "Possible tempo estimates, one per bin with the most likely in the first bin";
|
cannam@200
|
210 d.unit = "bpm";
|
cannam@200
|
211 d.hasFixedBinCount = false;
|
cannam@200
|
212 list.push_back(d);
|
cannam@200
|
213
|
cannam@198
|
214 d.identifier = "detectionfunction";
|
cannam@198
|
215 d.name = "Detection Function";
|
cannam@198
|
216 d.description = "Onset detection function";
|
cannam@198
|
217 d.unit = "";
|
cannam@198
|
218 d.hasFixedBinCount = 1;
|
cannam@198
|
219 d.binCount = 1;
|
cannam@198
|
220 d.hasKnownExtents = true;
|
cannam@198
|
221 d.minValue = 0.0;
|
cannam@198
|
222 d.maxValue = 1.0;
|
cannam@198
|
223 d.isQuantized = false;
|
cannam@198
|
224 d.quantizeStep = 0.0;
|
cannam@198
|
225 d.sampleType = OutputDescriptor::FixedSampleRate;
|
cannam@198
|
226 if (m_stepSize) {
|
cannam@198
|
227 d.sampleRate = m_inputSampleRate / m_stepSize;
|
cannam@198
|
228 } else {
|
cannam@198
|
229 d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2);
|
cannam@198
|
230 }
|
cannam@198
|
231 d.hasDuration = false;
|
cannam@198
|
232 list.push_back(d);
|
cannam@198
|
233
|
cannam@198
|
234 d.identifier = "acf";
|
cannam@198
|
235 d.name = "Autocorrelation Function";
|
cannam@198
|
236 d.description = "Autocorrelation of onset detection function";
|
cannam@198
|
237 d.hasKnownExtents = false;
|
cannam@201
|
238 d.unit = "r";
|
cannam@198
|
239 list.push_back(d);
|
cannam@198
|
240
|
cannam@198
|
241 d.identifier = "filtered_acf";
|
cannam@198
|
242 d.name = "Filtered Autocorrelation";
|
cannam@198
|
243 d.description = "Filtered autocorrelation of onset detection function";
|
cannam@201
|
244 d.unit = "r";
|
cannam@198
|
245 list.push_back(d);
|
cannam@198
|
246
|
cannam@198
|
247 return list;
|
cannam@198
|
248 }
|
cannam@198
|
249
|
cannam@243
|
250 bool
|
cannam@243
|
251 FixedTempoEstimator::D::initialise(size_t channels,
|
cannam@243
|
252 size_t stepSize, size_t blockSize)
|
cannam@243
|
253 {
|
cannam@243
|
254 m_stepSize = stepSize;
|
cannam@243
|
255 m_blockSize = blockSize;
|
cannam@243
|
256
|
cannam@243
|
257 float dfLengthSecs = m_maxdflen;
|
cannam@243
|
258 m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize;
|
cannam@243
|
259
|
cannam@243
|
260 m_priorMagnitudes = new float[m_blockSize/2];
|
cannam@243
|
261 m_df = new float[m_dfsize];
|
cannam@243
|
262
|
cannam@243
|
263 for (size_t i = 0; i < m_blockSize/2; ++i) {
|
cannam@243
|
264 m_priorMagnitudes[i] = 0.f;
|
cannam@243
|
265 }
|
cannam@243
|
266 for (size_t i = 0; i < m_dfsize; ++i) {
|
cannam@243
|
267 m_df[i] = 0.f;
|
cannam@243
|
268 }
|
cannam@243
|
269
|
cannam@243
|
270 m_n = 0;
|
cannam@243
|
271
|
cannam@243
|
272 return true;
|
cannam@243
|
273 }
|
cannam@243
|
274
|
cannam@243
|
275 void
|
cannam@243
|
276 FixedTempoEstimator::D::reset()
|
cannam@243
|
277 {
|
cannam@243
|
278 if (!m_priorMagnitudes) return;
|
cannam@243
|
279
|
cannam@243
|
280 for (size_t i = 0; i < m_blockSize/2; ++i) {
|
cannam@243
|
281 m_priorMagnitudes[i] = 0.f;
|
cannam@243
|
282 }
|
cannam@243
|
283 for (size_t i = 0; i < m_dfsize; ++i) {
|
cannam@243
|
284 m_df[i] = 0.f;
|
cannam@243
|
285 }
|
cannam@243
|
286
|
cannam@243
|
287 delete[] m_r;
|
cannam@243
|
288 m_r = 0;
|
cannam@243
|
289
|
cannam@243
|
290 delete[] m_fr;
|
cannam@243
|
291 m_fr = 0;
|
cannam@243
|
292
|
cannam@243
|
293 delete[] m_t;
|
cannam@243
|
294 m_t = 0;
|
cannam@243
|
295
|
cannam@243
|
296 m_n = 0;
|
cannam@243
|
297
|
cannam@243
|
298 m_start = RealTime::zeroTime;
|
cannam@243
|
299 m_lasttime = RealTime::zeroTime;
|
cannam@243
|
300 }
|
cannam@243
|
301
|
cannam@198
|
302 FixedTempoEstimator::FeatureSet
|
cannam@243
|
303 FixedTempoEstimator::D::process(const float *const *inputBuffers, RealTime ts)
|
cannam@198
|
304 {
|
cannam@198
|
305 FeatureSet fs;
|
cannam@198
|
306
|
cannam@198
|
307 if (m_stepSize == 0) {
|
cannam@198
|
308 cerr << "ERROR: FixedTempoEstimator::process: "
|
cannam@198
|
309 << "FixedTempoEstimator has not been initialised"
|
cannam@198
|
310 << endl;
|
cannam@198
|
311 return fs;
|
cannam@198
|
312 }
|
cannam@198
|
313
|
cannam@198
|
314 if (m_n == 0) m_start = ts;
|
cannam@198
|
315 m_lasttime = ts;
|
cannam@198
|
316
|
cannam@198
|
317 if (m_n == m_dfsize) {
|
cannam@255
|
318 // If we have seen enough input, do the estimation and return
|
cannam@200
|
319 calculate();
|
cannam@200
|
320 fs = assembleFeatures();
|
cannam@198
|
321 ++m_n;
|
cannam@198
|
322 return fs;
|
cannam@198
|
323 }
|
cannam@198
|
324
|
cannam@255
|
325 // If we have seen more than enough, just discard and return!
|
cannam@198
|
326 if (m_n > m_dfsize) return FeatureSet();
|
cannam@198
|
327
|
cannam@207
|
328 float value = 0.f;
|
cannam@207
|
329
|
cannam@255
|
330 // m_df will contain an onset detection function based on the rise
|
cannam@255
|
331 // in overall power from one spectral frame to the next --
|
cannam@255
|
332 // simplistic but reasonably effective for our purposes.
|
cannam@255
|
333
|
cannam@198
|
334 for (size_t i = 1; i < m_blockSize/2; ++i) {
|
cannam@198
|
335
|
cannam@198
|
336 float real = inputBuffers[0][i*2];
|
cannam@198
|
337 float imag = inputBuffers[0][i*2 + 1];
|
cannam@198
|
338
|
cannam@198
|
339 float sqrmag = real * real + imag * imag;
|
cannam@207
|
340 value += fabsf(sqrmag - m_priorMagnitudes[i]);
|
cannam@198
|
341
|
cannam@198
|
342 m_priorMagnitudes[i] = sqrmag;
|
cannam@198
|
343 }
|
cannam@198
|
344
|
cannam@207
|
345 m_df[m_n] = value;
|
cannam@207
|
346
|
cannam@198
|
347 ++m_n;
|
cannam@198
|
348 return fs;
|
cannam@243
|
349 }
|
cannam@198
|
350
|
cannam@198
|
351 FixedTempoEstimator::FeatureSet
|
cannam@243
|
352 FixedTempoEstimator::D::getRemainingFeatures()
|
cannam@198
|
353 {
|
cannam@198
|
354 FeatureSet fs;
|
cannam@198
|
355 if (m_n > m_dfsize) return fs;
|
cannam@200
|
356 calculate();
|
cannam@200
|
357 fs = assembleFeatures();
|
cannam@198
|
358 ++m_n;
|
cannam@198
|
359 return fs;
|
cannam@198
|
360 }
|
cannam@198
|
361
|
cannam@198
|
362 float
|
cannam@243
|
363 FixedTempoEstimator::D::lag2tempo(int lag)
|
cannam@199
|
364 {
|
cannam@198
|
365 return 60.f / ((lag * m_stepSize) / m_inputSampleRate);
|
cannam@198
|
366 }
|
cannam@198
|
367
|
cannam@207
|
368 int
|
cannam@243
|
369 FixedTempoEstimator::D::tempo2lag(float tempo)
|
cannam@207
|
370 {
|
cannam@207
|
371 return ((60.f / tempo) * m_inputSampleRate) / m_stepSize;
|
cannam@207
|
372 }
|
cannam@207
|
373
|
cannam@200
|
374 void
|
cannam@243
|
375 FixedTempoEstimator::D::calculate()
|
cannam@200
|
376 {
|
cannam@200
|
377 if (m_r) {
|
cannam@207
|
378 cerr << "FixedTempoEstimator::calculate: calculation already happened?" << endl;
|
cannam@200
|
379 return;
|
cannam@200
|
380 }
|
cannam@200
|
381
|
cannam@243
|
382 if (m_n < m_dfsize / 9 &&
|
cannam@243
|
383 m_n < (1.0 * m_inputSampleRate) / m_stepSize) { // 1 second
|
cannam@243
|
384 cerr << "FixedTempoEstimator::calculate: Input is too short" << endl;
|
cannam@243
|
385 return;
|
cannam@200
|
386 }
|
cannam@200
|
387
|
cannam@255
|
388 // This function takes m_df (the detection function array filled
|
cannam@255
|
389 // out in process()) and calculates m_r (the raw autocorrelation)
|
cannam@255
|
390 // and m_fr (the filtered autocorrelation from whose peaks tempo
|
cannam@255
|
391 // estimates will be taken).
|
cannam@200
|
392
|
cannam@255
|
393 int n = m_n; // length of actual df array (m_dfsize is the theoretical max)
|
cannam@255
|
394
|
cannam@255
|
395 m_r = new float[n/2]; // raw autocorrelation
|
cannam@255
|
396 m_fr = new float[n/2]; // filtered autocorrelation
|
cannam@255
|
397 m_t = new float[n/2]; // averaged tempo estimate for each lag value
|
cannam@200
|
398
|
cannam@200
|
399 for (int i = 0; i < n/2; ++i) {
|
cannam@255
|
400 m_r[i] = 0.f;
|
cannam@200
|
401 m_fr[i] = 0.f;
|
cannam@255
|
402 m_t[i] = lag2tempo(i);
|
cannam@200
|
403 }
|
cannam@200
|
404
|
cannam@255
|
405 // Calculate the raw autocorrelation of the detection function
|
cannam@255
|
406
|
cannam@200
|
407 for (int i = 0; i < n/2; ++i) {
|
cannam@200
|
408
|
cannam@200
|
409 for (int j = i; j < n-1; ++j) {
|
cannam@200
|
410 m_r[i] += m_df[j] * m_df[j - i];
|
cannam@200
|
411 }
|
cannam@200
|
412
|
cannam@200
|
413 m_r[i] /= n - i - 1;
|
cannam@200
|
414 }
|
cannam@200
|
415
|
cannam@255
|
416 // Filter the autocorrelation and average out the tempo estimates
|
cannam@255
|
417
|
cannam@246
|
418 float related[] = { 0.5, 2, 4, 8 };
|
cannam@208
|
419
|
cannam@209
|
420 for (int i = 1; i < n/2-1; ++i) {
|
cannam@204
|
421
|
cannam@209
|
422 m_fr[i] = m_r[i];
|
cannam@204
|
423
|
cannam@200
|
424 int div = 1;
|
cannam@200
|
425
|
cannam@215
|
426 for (int j = 0; j < int(sizeof(related)/sizeof(related[0])); ++j) {
|
cannam@204
|
427
|
cannam@255
|
428 // Check for an obvious peak at each metrically related lag
|
cannam@255
|
429
|
cannam@215
|
430 int k0 = int(i * related[j] + 0.5);
|
cannam@209
|
431
|
cannam@215
|
432 if (k0 >= 0 && k0 < int(n/2)) {
|
cannam@204
|
433
|
cannam@207
|
434 int kmax = 0, kmin = 0;
|
cannam@207
|
435 float kvmax = 0, kvmin = 0;
|
cannam@209
|
436 bool have = false;
|
cannam@204
|
437
|
cannam@209
|
438 for (int k = k0 - 1; k <= k0 + 1; ++k) {
|
cannam@204
|
439
|
cannam@209
|
440 if (k < 0 || k >= n/2) continue;
|
cannam@209
|
441
|
cannam@215
|
442 if (!have || (m_r[k] > kvmax)) { kmax = k; kvmax = m_r[k]; }
|
cannam@215
|
443 if (!have || (m_r[k] < kvmin)) { kmin = k; kvmin = m_r[k]; }
|
cannam@209
|
444
|
cannam@209
|
445 have = true;
|
cannam@204
|
446 }
|
cannam@209
|
447
|
cannam@255
|
448 // Boost the original lag according to the strongest
|
cannam@255
|
449 // value found close to this related lag
|
cannam@255
|
450
|
cannam@215
|
451 m_fr[i] += m_r[kmax] / 5;
|
cannam@209
|
452
|
cannam@209
|
453 if ((kmax == 0 || m_r[kmax] > m_r[kmax-1]) &&
|
cannam@209
|
454 (kmax == n/2-1 || m_r[kmax] > m_r[kmax+1]) &&
|
cannam@207
|
455 kvmax > kvmin * 1.05) {
|
cannam@255
|
456
|
cannam@255
|
457 // The strongest value close to the related lag is
|
cannam@255
|
458 // also a pretty good looking peak, so use it to
|
cannam@255
|
459 // improve our tempo estimate for the original lag
|
cannam@209
|
460
|
cannam@207
|
461 m_t[i] = m_t[i] + lag2tempo(kmax) * related[j];
|
cannam@207
|
462 ++div;
|
cannam@207
|
463 }
|
cannam@204
|
464 }
|
cannam@204
|
465 }
|
cannam@209
|
466
|
cannam@204
|
467 m_t[i] /= div;
|
cannam@204
|
468
|
cannam@255
|
469 // Finally apply a primitive perceptual weighting (to prefer
|
cannam@255
|
470 // tempi of around 120-130)
|
cannam@255
|
471
|
cannam@255
|
472 float weight = 1.f - fabsf(128.f - lag2tempo(i)) * 0.005;
|
cannam@255
|
473 if (weight < 0.f) weight = 0.f;
|
cannam@255
|
474 weight = weight * weight * weight;
|
cannam@255
|
475
|
cannam@215
|
476 m_fr[i] += m_fr[i] * (weight / 3);
|
cannam@207
|
477 }
|
cannam@200
|
478 }
|
cannam@200
|
479
|
cannam@198
|
480 FixedTempoEstimator::FeatureSet
|
cannam@243
|
481 FixedTempoEstimator::D::assembleFeatures()
|
cannam@198
|
482 {
|
cannam@198
|
483 FeatureSet fs;
|
cannam@255
|
484 if (!m_r) return fs; // No autocorrelation: no results
|
cannam@200
|
485
|
cannam@198
|
486 Feature feature;
|
cannam@198
|
487 feature.hasTimestamp = true;
|
cannam@198
|
488 feature.hasDuration = false;
|
cannam@198
|
489 feature.label = "";
|
cannam@198
|
490 feature.values.clear();
|
cannam@198
|
491 feature.values.push_back(0.f);
|
cannam@198
|
492
|
cannam@200
|
493 char buffer[40];
|
cannam@198
|
494
|
cannam@198
|
495 int n = m_n;
|
cannam@198
|
496
|
cannam@198
|
497 for (int i = 0; i < n; ++i) {
|
cannam@255
|
498
|
cannam@255
|
499 // Return the detection function in the DF output
|
cannam@255
|
500
|
cannam@208
|
501 feature.timestamp = m_start +
|
cannam@208
|
502 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
|
cannam@200
|
503 feature.values[0] = m_df[i];
|
cannam@198
|
504 feature.label = "";
|
cannam@200
|
505 fs[DFOutput].push_back(feature);
|
cannam@198
|
506 }
|
cannam@198
|
507
|
cannam@199
|
508 for (int i = 1; i < n/2; ++i) {
|
cannam@255
|
509
|
cannam@255
|
510 // Return the raw autocorrelation in the ACF output, each
|
cannam@255
|
511 // value labelled according to its corresponding tempo
|
cannam@255
|
512
|
cannam@208
|
513 feature.timestamp = m_start +
|
cannam@208
|
514 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
|
cannam@200
|
515 feature.values[0] = m_r[i];
|
cannam@199
|
516 sprintf(buffer, "%.1f bpm", lag2tempo(i));
|
cannam@200
|
517 if (i == n/2-1) feature.label = "";
|
cannam@200
|
518 else feature.label = buffer;
|
cannam@200
|
519 fs[ACFOutput].push_back(feature);
|
cannam@198
|
520 }
|
cannam@198
|
521
|
cannam@243
|
522 float t0 = m_minbpm; // our minimum detected tempo
|
cannam@243
|
523 float t1 = m_maxbpm; // our maximum detected tempo
|
cannam@216
|
524
|
cannam@207
|
525 int p0 = tempo2lag(t1);
|
cannam@207
|
526 int p1 = tempo2lag(t0);
|
cannam@198
|
527
|
cannam@200
|
528 std::map<float, int> candidates;
|
cannam@198
|
529
|
cannam@200
|
530 for (int i = p0; i <= p1 && i < n/2-1; ++i) {
|
cannam@198
|
531
|
cannam@209
|
532 if (m_fr[i] > m_fr[i-1] &&
|
cannam@209
|
533 m_fr[i] > m_fr[i+1]) {
|
cannam@255
|
534
|
cannam@255
|
535 // This is a peak in the filtered autocorrelation: stick
|
cannam@255
|
536 // it into the map from filtered autocorrelation to lag
|
cannam@255
|
537 // index -- this sorts our peaks by filtered acf value
|
cannam@255
|
538
|
cannam@209
|
539 candidates[m_fr[i]] = i;
|
cannam@209
|
540 }
|
cannam@198
|
541
|
cannam@255
|
542 // Also return the filtered autocorrelation in its own output
|
cannam@255
|
543
|
cannam@208
|
544 feature.timestamp = m_start +
|
cannam@208
|
545 RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
|
cannam@200
|
546 feature.values[0] = m_fr[i];
|
cannam@199
|
547 sprintf(buffer, "%.1f bpm", lag2tempo(i));
|
cannam@200
|
548 if (i == p1 || i == n/2-2) feature.label = "";
|
cannam@200
|
549 else feature.label = buffer;
|
cannam@200
|
550 fs[FilteredACFOutput].push_back(feature);
|
cannam@198
|
551 }
|
cannam@198
|
552
|
cannam@200
|
553 if (candidates.empty()) {
|
cannam@207
|
554 cerr << "No tempo candidates!" << endl;
|
cannam@200
|
555 return fs;
|
cannam@200
|
556 }
|
cannam@198
|
557
|
cannam@198
|
558 feature.hasTimestamp = true;
|
cannam@198
|
559 feature.timestamp = m_start;
|
cannam@198
|
560
|
cannam@198
|
561 feature.hasDuration = true;
|
cannam@198
|
562 feature.duration = m_lasttime - m_start;
|
cannam@198
|
563
|
cannam@255
|
564 // The map contains only peaks and is sorted by filtered acf
|
cannam@255
|
565 // value, so the final element in it is our "best" tempo guess
|
cannam@255
|
566
|
cannam@200
|
567 std::map<float, int>::const_iterator ci = candidates.end();
|
cannam@200
|
568 --ci;
|
cannam@200
|
569 int maxpi = ci->second;
|
cannam@198
|
570
|
cannam@204
|
571 if (m_t[maxpi] > 0) {
|
cannam@255
|
572
|
cannam@255
|
573 // This lag has an adjusted tempo from the averaging process:
|
cannam@255
|
574 // use it
|
cannam@255
|
575
|
cannam@204
|
576 feature.values[0] = m_t[maxpi];
|
cannam@255
|
577
|
cannam@204
|
578 } else {
|
cannam@255
|
579
|
cannam@255
|
580 // shouldn't happen -- it would imply that this high value was
|
cannam@255
|
581 // not a peak!
|
cannam@255
|
582
|
cannam@204
|
583 feature.values[0] = lag2tempo(maxpi);
|
cannam@207
|
584 cerr << "WARNING: No stored tempo for index " << maxpi << endl;
|
cannam@204
|
585 }
|
cannam@204
|
586
|
cannam@204
|
587 sprintf(buffer, "%.1f bpm", feature.values[0]);
|
cannam@199
|
588 feature.label = buffer;
|
cannam@199
|
589
|
cannam@255
|
590 // Return the best tempo in the main output
|
cannam@255
|
591
|
cannam@200
|
592 fs[TempoOutput].push_back(feature);
|
cannam@198
|
593
|
cannam@255
|
594 // And return the other estimates (up to the arbitrarily chosen
|
cannam@255
|
595 // number of 10 of them) in the candidates output
|
cannam@255
|
596
|
cannam@200
|
597 feature.values.clear();
|
cannam@200
|
598 feature.label = "";
|
cannam@200
|
599
|
cannam@255
|
600 while (feature.values.size() < 10) {
|
cannam@207
|
601 if (m_t[ci->second] > 0) {
|
cannam@207
|
602 feature.values.push_back(m_t[ci->second]);
|
cannam@207
|
603 } else {
|
cannam@207
|
604 feature.values.push_back(lag2tempo(ci->second));
|
cannam@207
|
605 }
|
cannam@200
|
606 if (ci == candidates.begin()) break;
|
cannam@200
|
607 --ci;
|
cannam@200
|
608 }
|
cannam@200
|
609
|
cannam@200
|
610 fs[CandidatesOutput].push_back(feature);
|
cannam@200
|
611
|
cannam@198
|
612 return fs;
|
cannam@198
|
613 }
|
cannam@243
|
614
|
cannam@243
|
615
|
cannam@243
|
616
|
cannam@243
|
617 FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) :
|
cannam@243
|
618 Plugin(inputSampleRate),
|
cannam@243
|
619 m_d(new D(inputSampleRate))
|
cannam@243
|
620 {
|
cannam@243
|
621 }
|
cannam@243
|
622
|
cannam@243
|
623 FixedTempoEstimator::~FixedTempoEstimator()
|
cannam@243
|
624 {
|
cannam@243
|
625 }
|
cannam@243
|
626
|
cannam@243
|
627 string
|
cannam@243
|
628 FixedTempoEstimator::getIdentifier() const
|
cannam@243
|
629 {
|
cannam@243
|
630 return "fixedtempo";
|
cannam@243
|
631 }
|
cannam@243
|
632
|
cannam@243
|
633 string
|
cannam@243
|
634 FixedTempoEstimator::getName() const
|
cannam@243
|
635 {
|
cannam@243
|
636 return "Simple Fixed Tempo Estimator";
|
cannam@243
|
637 }
|
cannam@243
|
638
|
cannam@243
|
639 string
|
cannam@243
|
640 FixedTempoEstimator::getDescription() const
|
cannam@243
|
641 {
|
cannam@243
|
642 return "Study a short section of audio and estimate its tempo, assuming the tempo is constant";
|
cannam@243
|
643 }
|
cannam@243
|
644
|
cannam@243
|
645 string
|
cannam@243
|
646 FixedTempoEstimator::getMaker() const
|
cannam@243
|
647 {
|
cannam@243
|
648 return "Vamp SDK Example Plugins";
|
cannam@243
|
649 }
|
cannam@243
|
650
|
cannam@243
|
651 int
|
cannam@243
|
652 FixedTempoEstimator::getPluginVersion() const
|
cannam@243
|
653 {
|
cannam@243
|
654 return 1;
|
cannam@243
|
655 }
|
cannam@243
|
656
|
cannam@243
|
657 string
|
cannam@243
|
658 FixedTempoEstimator::getCopyright() const
|
cannam@243
|
659 {
|
cannam@243
|
660 return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)";
|
cannam@243
|
661 }
|
cannam@243
|
662
|
cannam@243
|
663 size_t
|
cannam@243
|
664 FixedTempoEstimator::getPreferredStepSize() const
|
cannam@243
|
665 {
|
cannam@243
|
666 return m_d->getPreferredStepSize();
|
cannam@243
|
667 }
|
cannam@243
|
668
|
cannam@243
|
669 size_t
|
cannam@243
|
670 FixedTempoEstimator::getPreferredBlockSize() const
|
cannam@243
|
671 {
|
cannam@243
|
672 return m_d->getPreferredBlockSize();
|
cannam@243
|
673 }
|
cannam@243
|
674
|
cannam@243
|
675 bool
|
cannam@243
|
676 FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
cannam@243
|
677 {
|
cannam@243
|
678 if (channels < getMinChannelCount() ||
|
cannam@243
|
679 channels > getMaxChannelCount()) return false;
|
cannam@243
|
680
|
cannam@243
|
681 return m_d->initialise(channels, stepSize, blockSize);
|
cannam@243
|
682 }
|
cannam@243
|
683
|
cannam@243
|
684 void
|
cannam@243
|
685 FixedTempoEstimator::reset()
|
cannam@243
|
686 {
|
cannam@243
|
687 return m_d->reset();
|
cannam@243
|
688 }
|
cannam@243
|
689
|
cannam@243
|
690 FixedTempoEstimator::ParameterList
|
cannam@243
|
691 FixedTempoEstimator::getParameterDescriptors() const
|
cannam@243
|
692 {
|
cannam@243
|
693 return m_d->getParameterDescriptors();
|
cannam@243
|
694 }
|
cannam@243
|
695
|
cannam@243
|
696 float
|
cannam@243
|
697 FixedTempoEstimator::getParameter(std::string id) const
|
cannam@243
|
698 {
|
cannam@243
|
699 return m_d->getParameter(id);
|
cannam@243
|
700 }
|
cannam@243
|
701
|
cannam@243
|
702 void
|
cannam@243
|
703 FixedTempoEstimator::setParameter(std::string id, float value)
|
cannam@243
|
704 {
|
cannam@243
|
705 m_d->setParameter(id, value);
|
cannam@243
|
706 }
|
cannam@243
|
707
|
cannam@243
|
708 FixedTempoEstimator::OutputList
|
cannam@243
|
709 FixedTempoEstimator::getOutputDescriptors() const
|
cannam@243
|
710 {
|
cannam@243
|
711 return m_d->getOutputDescriptors();
|
cannam@243
|
712 }
|
cannam@243
|
713
|
cannam@243
|
714 FixedTempoEstimator::FeatureSet
|
cannam@243
|
715 FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts)
|
cannam@243
|
716 {
|
cannam@243
|
717 return m_d->process(inputBuffers, ts);
|
cannam@243
|
718 }
|
cannam@243
|
719
|
cannam@243
|
720 FixedTempoEstimator::FeatureSet
|
cannam@243
|
721 FixedTempoEstimator::getRemainingFeatures()
|
cannam@243
|
722 {
|
cannam@243
|
723 return m_d->getRemainingFeatures();
|
cannam@243
|
724 }
|