annotate examples/FixedTempoEstimator.cpp @ 204:4275327f9c79

* More tweaks to fixed-tempo estimator
author cannam
date Tue, 14 Oct 2008 17:26:26 +0000
parents e100112ecc06
children fa8afbb7221b
rev   line source
cannam@198 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@198 2
cannam@198 3 /*
cannam@198 4 Vamp
cannam@198 5
cannam@198 6 An API for audio analysis and feature extraction plugins.
cannam@198 7
cannam@198 8 Centre for Digital Music, Queen Mary, University of London.
cannam@198 9 Copyright 2006-2008 Chris Cannam and QMUL.
cannam@198 10
cannam@198 11 Permission is hereby granted, free of charge, to any person
cannam@198 12 obtaining a copy of this software and associated documentation
cannam@198 13 files (the "Software"), to deal in the Software without
cannam@198 14 restriction, including without limitation the rights to use, copy,
cannam@198 15 modify, merge, publish, distribute, sublicense, and/or sell copies
cannam@198 16 of the Software, and to permit persons to whom the Software is
cannam@198 17 furnished to do so, subject to the following conditions:
cannam@198 18
cannam@198 19 The above copyright notice and this permission notice shall be
cannam@198 20 included in all copies or substantial portions of the Software.
cannam@198 21
cannam@198 22 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
cannam@198 23 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
cannam@198 24 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
cannam@198 25 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
cannam@198 26 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
cannam@198 27 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
cannam@198 28 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
cannam@198 29
cannam@198 30 Except as contained in this notice, the names of the Centre for
cannam@198 31 Digital Music; Queen Mary, University of London; and Chris Cannam
cannam@198 32 shall not be used in advertising or otherwise to promote the sale,
cannam@198 33 use or other dealings in this Software without prior written
cannam@198 34 authorization.
cannam@198 35 */
cannam@198 36
cannam@198 37 #include "FixedTempoEstimator.h"
cannam@198 38
cannam@198 39 using std::string;
cannam@198 40 using std::vector;
cannam@198 41 using std::cerr;
cannam@198 42 using std::endl;
cannam@198 43
cannam@198 44 using Vamp::RealTime;
cannam@198 45
cannam@198 46 #include <cmath>
cannam@198 47
cannam@198 48
cannam@198 49 FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) :
cannam@198 50 Plugin(inputSampleRate),
cannam@198 51 m_stepSize(0),
cannam@198 52 m_blockSize(0),
cannam@198 53 m_priorMagnitudes(0),
cannam@200 54 m_df(0),
cannam@200 55 m_r(0),
cannam@200 56 m_fr(0),
cannam@204 57 m_t(0),
cannam@200 58 m_n(0)
cannam@198 59 {
cannam@198 60 }
cannam@198 61
cannam@198 62 FixedTempoEstimator::~FixedTempoEstimator()
cannam@198 63 {
cannam@198 64 delete[] m_priorMagnitudes;
cannam@198 65 delete[] m_df;
cannam@200 66 delete[] m_r;
cannam@200 67 delete[] m_fr;
cannam@204 68 delete[] m_t;
cannam@198 69 }
cannam@198 70
cannam@198 71 string
cannam@198 72 FixedTempoEstimator::getIdentifier() const
cannam@198 73 {
cannam@198 74 return "fixedtempo";
cannam@198 75 }
cannam@198 76
cannam@198 77 string
cannam@198 78 FixedTempoEstimator::getName() const
cannam@198 79 {
cannam@198 80 return "Simple Fixed Tempo Estimator";
cannam@198 81 }
cannam@198 82
cannam@198 83 string
cannam@198 84 FixedTempoEstimator::getDescription() const
cannam@198 85 {
cannam@198 86 return "Study a short section of audio and estimate its tempo, assuming the tempo is constant";
cannam@198 87 }
cannam@198 88
cannam@198 89 string
cannam@198 90 FixedTempoEstimator::getMaker() const
cannam@198 91 {
cannam@198 92 return "Vamp SDK Example Plugins";
cannam@198 93 }
cannam@198 94
cannam@198 95 int
cannam@198 96 FixedTempoEstimator::getPluginVersion() const
cannam@198 97 {
cannam@198 98 return 1;
cannam@198 99 }
cannam@198 100
cannam@198 101 string
cannam@198 102 FixedTempoEstimator::getCopyright() const
cannam@198 103 {
cannam@198 104 return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)";
cannam@198 105 }
cannam@198 106
cannam@198 107 size_t
cannam@198 108 FixedTempoEstimator::getPreferredStepSize() const
cannam@198 109 {
cannam@198 110 return 0;
cannam@198 111 }
cannam@198 112
cannam@198 113 size_t
cannam@198 114 FixedTempoEstimator::getPreferredBlockSize() const
cannam@198 115 {
cannam@202 116 return 128;
cannam@198 117 }
cannam@198 118
cannam@198 119 bool
cannam@198 120 FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize)
cannam@198 121 {
cannam@198 122 if (channels < getMinChannelCount() ||
cannam@198 123 channels > getMaxChannelCount()) return false;
cannam@198 124
cannam@198 125 m_stepSize = stepSize;
cannam@198 126 m_blockSize = blockSize;
cannam@198 127
cannam@198 128 float dfLengthSecs = 8.f;
cannam@198 129 m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize;
cannam@198 130
cannam@198 131 m_priorMagnitudes = new float[m_blockSize/2];
cannam@198 132 m_df = new float[m_dfsize];
cannam@198 133
cannam@198 134 for (size_t i = 0; i < m_blockSize/2; ++i) {
cannam@198 135 m_priorMagnitudes[i] = 0.f;
cannam@198 136 }
cannam@198 137 for (size_t i = 0; i < m_dfsize; ++i) {
cannam@198 138 m_df[i] = 0.f;
cannam@198 139 }
cannam@198 140
cannam@198 141 m_n = 0;
cannam@198 142
cannam@198 143 return true;
cannam@198 144 }
cannam@198 145
cannam@198 146 void
cannam@198 147 FixedTempoEstimator::reset()
cannam@198 148 {
cannam@198 149 std::cerr << "FixedTempoEstimator: reset called" << std::endl;
cannam@198 150
cannam@198 151 if (!m_priorMagnitudes) return;
cannam@198 152
cannam@198 153 std::cerr << "FixedTempoEstimator: resetting" << std::endl;
cannam@198 154
cannam@198 155 for (size_t i = 0; i < m_blockSize/2; ++i) {
cannam@198 156 m_priorMagnitudes[i] = 0.f;
cannam@198 157 }
cannam@198 158 for (size_t i = 0; i < m_dfsize; ++i) {
cannam@198 159 m_df[i] = 0.f;
cannam@198 160 }
cannam@198 161
cannam@200 162 delete[] m_r;
cannam@200 163 m_r = 0;
cannam@200 164
cannam@200 165 delete[] m_fr;
cannam@200 166 m_fr = 0;
cannam@200 167
cannam@204 168 delete[] m_t;
cannam@204 169 m_t = 0;
cannam@204 170
cannam@198 171 m_n = 0;
cannam@198 172
cannam@198 173 m_start = RealTime::zeroTime;
cannam@198 174 m_lasttime = RealTime::zeroTime;
cannam@198 175 }
cannam@198 176
cannam@198 177 FixedTempoEstimator::ParameterList
cannam@198 178 FixedTempoEstimator::getParameterDescriptors() const
cannam@198 179 {
cannam@198 180 ParameterList list;
cannam@198 181 return list;
cannam@198 182 }
cannam@198 183
cannam@198 184 float
cannam@198 185 FixedTempoEstimator::getParameter(std::string id) const
cannam@198 186 {
cannam@198 187 return 0.f;
cannam@198 188 }
cannam@198 189
cannam@198 190 void
cannam@198 191 FixedTempoEstimator::setParameter(std::string id, float value)
cannam@198 192 {
cannam@198 193 }
cannam@198 194
cannam@200 195 static int TempoOutput = 0;
cannam@200 196 static int CandidatesOutput = 1;
cannam@200 197 static int DFOutput = 2;
cannam@200 198 static int ACFOutput = 3;
cannam@200 199 static int FilteredACFOutput = 4;
cannam@200 200
cannam@198 201 FixedTempoEstimator::OutputList
cannam@198 202 FixedTempoEstimator::getOutputDescriptors() const
cannam@198 203 {
cannam@198 204 OutputList list;
cannam@198 205
cannam@198 206 OutputDescriptor d;
cannam@198 207 d.identifier = "tempo";
cannam@198 208 d.name = "Tempo";
cannam@198 209 d.description = "Estimated tempo";
cannam@198 210 d.unit = "bpm";
cannam@198 211 d.hasFixedBinCount = true;
cannam@198 212 d.binCount = 1;
cannam@198 213 d.hasKnownExtents = false;
cannam@198 214 d.isQuantized = false;
cannam@198 215 d.sampleType = OutputDescriptor::VariableSampleRate;
cannam@198 216 d.sampleRate = m_inputSampleRate;
cannam@198 217 d.hasDuration = true; // our returned tempo spans a certain range
cannam@198 218 list.push_back(d);
cannam@198 219
cannam@200 220 d.identifier = "candidates";
cannam@200 221 d.name = "Tempo candidates";
cannam@200 222 d.description = "Possible tempo estimates, one per bin with the most likely in the first bin";
cannam@200 223 d.unit = "bpm";
cannam@200 224 d.hasFixedBinCount = false;
cannam@200 225 list.push_back(d);
cannam@200 226
cannam@198 227 d.identifier = "detectionfunction";
cannam@198 228 d.name = "Detection Function";
cannam@198 229 d.description = "Onset detection function";
cannam@198 230 d.unit = "";
cannam@198 231 d.hasFixedBinCount = 1;
cannam@198 232 d.binCount = 1;
cannam@198 233 d.hasKnownExtents = true;
cannam@198 234 d.minValue = 0.0;
cannam@198 235 d.maxValue = 1.0;
cannam@198 236 d.isQuantized = false;
cannam@198 237 d.quantizeStep = 0.0;
cannam@198 238 d.sampleType = OutputDescriptor::FixedSampleRate;
cannam@198 239 if (m_stepSize) {
cannam@198 240 d.sampleRate = m_inputSampleRate / m_stepSize;
cannam@198 241 } else {
cannam@198 242 d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2);
cannam@198 243 }
cannam@198 244 d.hasDuration = false;
cannam@198 245 list.push_back(d);
cannam@198 246
cannam@198 247 d.identifier = "acf";
cannam@198 248 d.name = "Autocorrelation Function";
cannam@198 249 d.description = "Autocorrelation of onset detection function";
cannam@198 250 d.hasKnownExtents = false;
cannam@201 251 d.unit = "r";
cannam@198 252 list.push_back(d);
cannam@198 253
cannam@198 254 d.identifier = "filtered_acf";
cannam@198 255 d.name = "Filtered Autocorrelation";
cannam@198 256 d.description = "Filtered autocorrelation of onset detection function";
cannam@201 257 d.unit = "r";
cannam@198 258 list.push_back(d);
cannam@198 259
cannam@198 260 return list;
cannam@198 261 }
cannam@198 262
cannam@198 263 FixedTempoEstimator::FeatureSet
cannam@198 264 FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts)
cannam@198 265 {
cannam@198 266 FeatureSet fs;
cannam@198 267
cannam@198 268 if (m_stepSize == 0) {
cannam@198 269 cerr << "ERROR: FixedTempoEstimator::process: "
cannam@198 270 << "FixedTempoEstimator has not been initialised"
cannam@198 271 << endl;
cannam@198 272 return fs;
cannam@198 273 }
cannam@198 274
cannam@200 275 // if (m_n < m_dfsize) std::cerr << "m_n = " << m_n << std::endl;
cannam@198 276
cannam@198 277 if (m_n == 0) m_start = ts;
cannam@198 278 m_lasttime = ts;
cannam@198 279
cannam@198 280 if (m_n == m_dfsize) {
cannam@200 281 calculate();
cannam@200 282 fs = assembleFeatures();
cannam@198 283 ++m_n;
cannam@198 284 return fs;
cannam@198 285 }
cannam@198 286
cannam@198 287 if (m_n > m_dfsize) return FeatureSet();
cannam@198 288
cannam@198 289 int count = 0;
cannam@198 290
cannam@198 291 for (size_t i = 1; i < m_blockSize/2; ++i) {
cannam@198 292
cannam@198 293 float real = inputBuffers[0][i*2];
cannam@198 294 float imag = inputBuffers[0][i*2 + 1];
cannam@198 295
cannam@198 296 float sqrmag = real * real + imag * imag;
cannam@198 297
cannam@198 298 if (m_priorMagnitudes[i] > 0.f) {
cannam@198 299 float diff = 10.f * log10f(sqrmag / m_priorMagnitudes[i]);
cannam@198 300 if (diff >= 3.f) ++count;
cannam@198 301 }
cannam@198 302
cannam@198 303 m_priorMagnitudes[i] = sqrmag;
cannam@198 304 }
cannam@198 305
cannam@198 306 m_df[m_n] = float(count) / float(m_blockSize/2);
cannam@198 307 ++m_n;
cannam@198 308 return fs;
cannam@198 309 }
cannam@198 310
cannam@198 311 FixedTempoEstimator::FeatureSet
cannam@198 312 FixedTempoEstimator::getRemainingFeatures()
cannam@198 313 {
cannam@198 314 FeatureSet fs;
cannam@198 315 if (m_n > m_dfsize) return fs;
cannam@200 316 calculate();
cannam@200 317 fs = assembleFeatures();
cannam@198 318 ++m_n;
cannam@198 319 return fs;
cannam@198 320 }
cannam@198 321
cannam@198 322 float
cannam@199 323 FixedTempoEstimator::lag2tempo(int lag)
cannam@199 324 {
cannam@198 325 return 60.f / ((lag * m_stepSize) / m_inputSampleRate);
cannam@198 326 }
cannam@198 327
cannam@200 328 void
cannam@200 329 FixedTempoEstimator::calculate()
cannam@200 330 {
cannam@200 331 std::cerr << "FixedTempoEstimator::calculate: m_n = " << m_n << std::endl;
cannam@200 332
cannam@200 333 if (m_r) {
cannam@200 334 std::cerr << "FixedTempoEstimator::calculate: calculation already happened?" << std::endl;
cannam@200 335 return;
cannam@200 336 }
cannam@200 337
cannam@200 338 if (m_n < m_dfsize / 6) {
cannam@200 339 std::cerr << "FixedTempoEstimator::calculate: Not enough data to go on (have " << m_n << ", want at least " << m_dfsize/4 << ")" << std::endl;
cannam@200 340 return; // not enough data (perhaps we should return the duration of the input as the "estimated" beat length?)
cannam@200 341 }
cannam@200 342
cannam@200 343 int n = m_n;
cannam@200 344
cannam@200 345 m_r = new float[n/2];
cannam@200 346 m_fr = new float[n/2];
cannam@204 347 m_t = new float[n/2];
cannam@200 348
cannam@200 349 for (int i = 0; i < n/2; ++i) {
cannam@200 350 m_r[i] = 0.f;
cannam@200 351 m_fr[i] = 0.f;
cannam@204 352 m_t[i] = 0.f;
cannam@200 353 }
cannam@200 354
cannam@200 355 for (int i = 0; i < n/2; ++i) {
cannam@200 356
cannam@200 357 for (int j = i; j < n-1; ++j) {
cannam@200 358 m_r[i] += m_df[j] * m_df[j - i];
cannam@200 359 }
cannam@200 360
cannam@200 361 m_r[i] /= n - i - 1;
cannam@200 362 }
cannam@200 363
cannam@200 364 for (int i = 1; i < n/2; ++i) {
cannam@200 365
cannam@204 366 float weight = 1.f - fabsf(128.f - lag2tempo(i)) * 0.005;
cannam@204 367 if (weight < 0.f) weight = 0.f;
cannam@204 368 weight = weight * weight;
cannam@204 369 std::cerr << "i = " << i << ": tempo = " << lag2tempo(i) << ", weight = " << weight << std::endl;
cannam@204 370
cannam@204 371 // m_fr[i] = m_r[i];
cannam@204 372 m_fr[i] = 0;
cannam@204 373
cannam@204 374 m_fr[i] = m_r[i] * (1 + weight/20.f);
cannam@204 375 }
cannam@204 376
cannam@204 377 float related[4] = { 1.5, 0.66666667, 0.5 };
cannam@204 378
cannam@204 379 for (int i = 1; i < n/2 - 1; ++i) {
cannam@204 380
cannam@204 381 if (!(m_fr[i] > m_fr[i-1] &&
cannam@204 382 m_fr[i] >= m_fr[i+1])) {
cannam@204 383 continue;
cannam@204 384 }
cannam@204 385
cannam@204 386 m_t[i] = lag2tempo(i);
cannam@200 387
cannam@200 388 int div = 1;
cannam@200 389
cannam@204 390 for (int j = 0; j < sizeof(related)/sizeof(related[0]); ++j) {
cannam@204 391
cannam@204 392 int k0 = i / related[j];
cannam@204 393
cannam@204 394 if (k0 > 1 && k0 < n/2 - 2) {
cannam@204 395
cannam@204 396 for (int k = k0 - 1; k <= k0 + 1; ++k) {
cannam@204 397
cannam@204 398 if (m_r[k] > m_r[k-1] &&
cannam@204 399 m_r[k] >= m_r[k+1]) {
cannam@204 400
cannam@204 401 std::cerr << "peak at " << i << " (val " << m_r[i] << ", tempo " << lag2tempo(i) << ") has sympathetic peak at " << k << " (val " << m_r[k] << " for relative tempo " << lag2tempo(k) / related[j] << ")" << std::endl;
cannam@204 402
cannam@204 403 m_t[i] = m_t[i] + lag2tempo(k) / related[j];
cannam@204 404 ++div;
cannam@204 405 }
cannam@204 406 }
cannam@204 407 }
cannam@204 408 }
cannam@204 409
cannam@204 410 m_t[i] /= div;
cannam@204 411
cannam@204 412 if (div > 1) {
cannam@204 413 std::cerr << "adjusting tempo from " << lag2tempo(i) << " to "
cannam@204 414 << m_t[i] << std::endl;
cannam@204 415 }
cannam@204 416 }
cannam@204 417 /*
cannam@204 418 for (int i = 1; i < n/2; ++i) {
cannam@204 419
cannam@204 420 // int div = 1;
cannam@204 421 int j = i * 2;
cannam@200 422
cannam@200 423 while (j < n/2) {
cannam@204 424 m_fr[i] += m_fr[j] * 0.1;
cannam@200 425 j *= 2;
cannam@204 426 // ++div;
cannam@200 427 }
cannam@204 428
cannam@204 429 // m_fr[i] /= div;
cannam@204 430 }
cannam@204 431
cannam@202 432 // std::cerr << "i = " << i << ", (n/2 - 1)/i = " << (n/2 - 1)/i << ", sum = " << m_fr[i] << ", div = " << div << ", val = " << m_fr[i] / div << ", t = " << lag2tempo(i) << std::endl;
cannam@200 433
cannam@200 434
cannam@204 435 // }
cannam@204 436 */
cannam@200 437 std::cerr << "FixedTempoEstimator::calculate done" << std::endl;
cannam@200 438 }
cannam@200 439
cannam@200 440
cannam@198 441 FixedTempoEstimator::FeatureSet
cannam@200 442 FixedTempoEstimator::assembleFeatures()
cannam@198 443 {
cannam@198 444 FeatureSet fs;
cannam@200 445 if (!m_r) return fs; // No results
cannam@200 446
cannam@198 447 Feature feature;
cannam@198 448 feature.hasTimestamp = true;
cannam@198 449 feature.hasDuration = false;
cannam@198 450 feature.label = "";
cannam@198 451 feature.values.clear();
cannam@198 452 feature.values.push_back(0.f);
cannam@198 453
cannam@200 454 char buffer[40];
cannam@198 455
cannam@198 456 int n = m_n;
cannam@198 457
cannam@198 458 for (int i = 0; i < n; ++i) {
cannam@198 459 feature.timestamp = RealTime::frame2RealTime(i * m_stepSize,
cannam@198 460 m_inputSampleRate);
cannam@200 461 feature.values[0] = m_df[i];
cannam@198 462 feature.label = "";
cannam@200 463 fs[DFOutput].push_back(feature);
cannam@198 464 }
cannam@198 465
cannam@199 466 for (int i = 1; i < n/2; ++i) {
cannam@198 467 feature.timestamp = RealTime::frame2RealTime(i * m_stepSize,
cannam@198 468 m_inputSampleRate);
cannam@200 469 feature.values[0] = m_r[i];
cannam@199 470 sprintf(buffer, "%.1f bpm", lag2tempo(i));
cannam@200 471 if (i == n/2-1) feature.label = "";
cannam@200 472 else feature.label = buffer;
cannam@200 473 fs[ACFOutput].push_back(feature);
cannam@198 474 }
cannam@198 475
cannam@198 476 float t0 = 60.f;
cannam@198 477 float t1 = 180.f;
cannam@198 478
cannam@198 479 int p0 = ((60.f / t1) * m_inputSampleRate) / m_stepSize;
cannam@198 480 int p1 = ((60.f / t0) * m_inputSampleRate) / m_stepSize;
cannam@198 481
cannam@200 482 // std::cerr << "p0 = " << p0 << ", p1 = " << p1 << std::endl;
cannam@198 483
cannam@198 484 int pc = p1 - p0 + 1;
cannam@200 485 // std::cerr << "pc = " << pc << std::endl;
cannam@198 486
cannam@200 487 // int maxpi = 0;
cannam@200 488 // float maxp = 0.f;
cannam@198 489
cannam@200 490 std::map<float, int> candidates;
cannam@198 491
cannam@200 492 for (int i = p0; i <= p1 && i < n/2-1; ++i) {
cannam@198 493
cannam@200 494 // Only candidates here are those that were peaks in the
cannam@200 495 // original acf
cannam@200 496 // if (r[i] > r[i-1] && r[i] > r[i+1]) {
cannam@200 497 // candidates[filtered] = i;
cannam@200 498 // }
cannam@198 499
cannam@200 500 candidates[m_fr[i]] = i;
cannam@198 501
cannam@198 502 feature.timestamp = RealTime::frame2RealTime(i * m_stepSize,
cannam@198 503 m_inputSampleRate);
cannam@200 504 feature.values[0] = m_fr[i];
cannam@199 505 sprintf(buffer, "%.1f bpm", lag2tempo(i));
cannam@200 506 if (i == p1 || i == n/2-2) feature.label = "";
cannam@200 507 else feature.label = buffer;
cannam@200 508 fs[FilteredACFOutput].push_back(feature);
cannam@198 509 }
cannam@198 510
cannam@200 511 // std::cerr << "maxpi = " << maxpi << " for tempo " << lag2tempo(maxpi) << " (value = " << maxp << ")" << std::endl;
cannam@198 512
cannam@200 513 if (candidates.empty()) {
cannam@200 514 std::cerr << "No tempo candidates!" << std::endl;
cannam@200 515 return fs;
cannam@200 516 }
cannam@198 517
cannam@198 518 feature.hasTimestamp = true;
cannam@198 519 feature.timestamp = m_start;
cannam@198 520
cannam@198 521 feature.hasDuration = true;
cannam@198 522 feature.duration = m_lasttime - m_start;
cannam@198 523
cannam@200 524 std::map<float, int>::const_iterator ci = candidates.end();
cannam@200 525 --ci;
cannam@200 526 int maxpi = ci->second;
cannam@198 527
cannam@204 528 if (m_t[maxpi] > 0) {
cannam@204 529 feature.values[0] = m_t[maxpi];
cannam@204 530 } else {
cannam@204 531 // shouldn't happen -- it would imply that this high value was not a peak!
cannam@204 532 feature.values[0] = lag2tempo(maxpi);
cannam@204 533 std::cerr << "WARNING: No stored tempo for index " << maxpi << std::endl;
cannam@204 534 }
cannam@204 535
cannam@204 536 sprintf(buffer, "%.1f bpm", feature.values[0]);
cannam@199 537 feature.label = buffer;
cannam@199 538
cannam@200 539 fs[TempoOutput].push_back(feature);
cannam@198 540
cannam@200 541 feature.values.clear();
cannam@200 542 feature.label = "";
cannam@200 543
cannam@200 544 while (feature.values.size() < 8) {
cannam@204 545 feature.values.push_back(lag2tempo(ci->second)); //!!!??? use m_t?
cannam@200 546 if (ci == candidates.begin()) break;
cannam@200 547 --ci;
cannam@200 548 }
cannam@200 549
cannam@200 550 fs[CandidatesOutput].push_back(feature);
cannam@200 551
cannam@198 552 return fs;
cannam@198 553 }