annotate src/vamp-hostsdk/PluginInputDomainAdapter.cpp @ 288:283e15f6e548

* The beginnings of making the shift-timestamp or shift-data behaviour of PluginInputDomainAdapter into an option
author cannam
date Tue, 15 Sep 2009 16:24:53 +0000
parents 6c9f10b8a53a
children 3e5ab1c7ea8c
rev   line source
cannam@233 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@233 2
cannam@233 3 /*
cannam@233 4 Vamp
cannam@233 5
cannam@233 6 An API for audio analysis and feature extraction plugins.
cannam@233 7
cannam@233 8 Centre for Digital Music, Queen Mary, University of London.
cannam@233 9 Copyright 2006-2007 Chris Cannam and QMUL.
cannam@233 10
cannam@233 11 This file is based in part on Don Cross's public domain FFT
cannam@233 12 implementation.
cannam@233 13
cannam@233 14 Permission is hereby granted, free of charge, to any person
cannam@233 15 obtaining a copy of this software and associated documentation
cannam@233 16 files (the "Software"), to deal in the Software without
cannam@233 17 restriction, including without limitation the rights to use, copy,
cannam@233 18 modify, merge, publish, distribute, sublicense, and/or sell copies
cannam@233 19 of the Software, and to permit persons to whom the Software is
cannam@233 20 furnished to do so, subject to the following conditions:
cannam@233 21
cannam@233 22 The above copyright notice and this permission notice shall be
cannam@233 23 included in all copies or substantial portions of the Software.
cannam@233 24
cannam@233 25 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
cannam@233 26 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
cannam@233 27 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
cannam@233 28 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
cannam@233 29 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
cannam@233 30 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
cannam@233 31 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
cannam@233 32
cannam@233 33 Except as contained in this notice, the names of the Centre for
cannam@233 34 Digital Music; Queen Mary, University of London; and Chris Cannam
cannam@233 35 shall not be used in advertising or otherwise to promote the sale,
cannam@233 36 use or other dealings in this Software without prior written
cannam@233 37 authorization.
cannam@233 38 */
cannam@233 39
cannam@233 40 #include <vamp-hostsdk/PluginInputDomainAdapter.h>
cannam@233 41
cannam@233 42 #include <cmath>
cannam@233 43
cannam@233 44
cannam@233 45 /**
cannam@233 46 * If you want to compile using FFTW instead of the built-in FFT
cannam@233 47 * implementation for the PluginInputDomainAdapter, define HAVE_FFTW3
cannam@233 48 * in the Makefile.
cannam@233 49 *
cannam@233 50 * Be aware that FFTW is licensed under the GPL -- unlike this SDK,
cannam@233 51 * which is provided under a more liberal BSD license in order to
cannam@233 52 * permit use in closed source applications. The use of FFTW would
cannam@233 53 * mean that your code would need to be licensed under the GPL as
cannam@233 54 * well. Do not define this symbol unless you understand and accept
cannam@233 55 * the implications of this.
cannam@233 56 *
cannam@233 57 * Parties such as Linux distribution packagers who redistribute this
cannam@233 58 * SDK for use in other programs should _not_ define this symbol, as
cannam@233 59 * it would change the effective licensing terms under which the SDK
cannam@233 60 * was available to third party developers.
cannam@233 61 *
cannam@233 62 * The default is not to use FFTW, and to use the built-in FFT instead.
cannam@233 63 *
cannam@233 64 * Note: The FFTW code uses FFTW_MEASURE, and so will perform badly on
cannam@233 65 * its first invocation unless the host has saved and restored FFTW
cannam@233 66 * wisdom (see the FFTW documentation).
cannam@233 67 */
cannam@233 68 #ifdef HAVE_FFTW3
cannam@233 69 #include <fftw3.h>
cannam@233 70 #endif
cannam@233 71
cannam@233 72
cannam@263 73 _VAMP_SDK_HOSTSPACE_BEGIN(PluginInputDomainAdapter.cpp)
cannam@263 74
cannam@233 75 namespace Vamp {
cannam@233 76
cannam@233 77 namespace HostExt {
cannam@233 78
cannam@233 79 class PluginInputDomainAdapter::Impl
cannam@233 80 {
cannam@233 81 public:
cannam@233 82 Impl(Plugin *plugin, float inputSampleRate);
cannam@233 83 ~Impl();
cannam@233 84
cannam@233 85 bool initialise(size_t channels, size_t stepSize, size_t blockSize);
cannam@288 86 void reset();
cannam@233 87
cannam@233 88 size_t getPreferredStepSize() const;
cannam@233 89 size_t getPreferredBlockSize() const;
cannam@233 90
cannam@233 91 FeatureSet process(const float *const *inputBuffers, RealTime timestamp);
cannam@288 92
cannam@288 93 void setProcessTimestampMethod(ProcessTimestampMethod m);
cannam@288 94 ProcessTimestampMethod getProcessTimestampMethod() const;
cannam@233 95
cannam@233 96 RealTime getTimestampAdjustment() const;
cannam@233 97
cannam@233 98 protected:
cannam@233 99 Plugin *m_plugin;
cannam@233 100 float m_inputSampleRate;
cannam@233 101 int m_channels;
cannam@288 102 int m_stepSize;
cannam@233 103 int m_blockSize;
cannam@233 104 float **m_freqbuf;
cannam@233 105
cannam@233 106 double *m_ri;
cannam@233 107 double *m_window;
cannam@233 108
cannam@288 109 ProcessTimestampMethod m_method;
cannam@288 110 int m_processCount;
cannam@288 111 FeatureSet prepadProcess(const float *const *inputBuffers,
cannam@288 112 RealTime timestamp);
cannam@288 113
cannam@233 114 #ifdef HAVE_FFTW3
cannam@233 115 fftw_plan m_plan;
cannam@233 116 fftw_complex *m_cbuf;
cannam@233 117 #else
cannam@233 118 double *m_ro;
cannam@233 119 double *m_io;
cannam@233 120 void fft(unsigned int n, bool inverse,
cannam@233 121 double *ri, double *ii, double *ro, double *io);
cannam@233 122 #endif
cannam@233 123
cannam@233 124 size_t makeBlockSizeAcceptable(size_t) const;
cannam@233 125 };
cannam@233 126
cannam@233 127 PluginInputDomainAdapter::PluginInputDomainAdapter(Plugin *plugin) :
cannam@233 128 PluginWrapper(plugin)
cannam@233 129 {
cannam@233 130 m_impl = new Impl(plugin, m_inputSampleRate);
cannam@233 131 }
cannam@233 132
cannam@233 133 PluginInputDomainAdapter::~PluginInputDomainAdapter()
cannam@233 134 {
cannam@233 135 delete m_impl;
cannam@233 136 }
cannam@233 137
cannam@233 138 bool
cannam@233 139 PluginInputDomainAdapter::initialise(size_t channels, size_t stepSize, size_t blockSize)
cannam@233 140 {
cannam@233 141 return m_impl->initialise(channels, stepSize, blockSize);
cannam@233 142 }
cannam@233 143
cannam@288 144 void
cannam@288 145 PluginInputDomainAdapter::reset()
cannam@288 146 {
cannam@288 147 m_impl->reset();
cannam@288 148 }
cannam@288 149
cannam@233 150 Plugin::InputDomain
cannam@233 151 PluginInputDomainAdapter::getInputDomain() const
cannam@233 152 {
cannam@233 153 return TimeDomain;
cannam@233 154 }
cannam@233 155
cannam@233 156 size_t
cannam@233 157 PluginInputDomainAdapter::getPreferredStepSize() const
cannam@233 158 {
cannam@233 159 return m_impl->getPreferredStepSize();
cannam@233 160 }
cannam@233 161
cannam@233 162 size_t
cannam@233 163 PluginInputDomainAdapter::getPreferredBlockSize() const
cannam@233 164 {
cannam@233 165 return m_impl->getPreferredBlockSize();
cannam@233 166 }
cannam@233 167
cannam@233 168 Plugin::FeatureSet
cannam@233 169 PluginInputDomainAdapter::process(const float *const *inputBuffers, RealTime timestamp)
cannam@233 170 {
cannam@233 171 return m_impl->process(inputBuffers, timestamp);
cannam@233 172 }
cannam@233 173
cannam@288 174 void
cannam@288 175 PluginInputDomainAdapter::setProcessTimestampMethod(ProcessTimestampMethod m)
cannam@288 176 {
cannam@288 177 m_impl->setProcessTimestampMethod(m);
cannam@288 178 }
cannam@288 179
cannam@288 180 PluginInputDomainAdapter::ProcessTimestampMethod
cannam@288 181 PluginInputDomainAdapter::getProcessTimestampMethod() const
cannam@288 182 {
cannam@288 183 return m_impl->getProcessTimestampMethod();
cannam@288 184 }
cannam@288 185
cannam@233 186 RealTime
cannam@233 187 PluginInputDomainAdapter::getTimestampAdjustment() const
cannam@233 188 {
cannam@233 189 return m_impl->getTimestampAdjustment();
cannam@233 190 }
cannam@233 191
cannam@233 192
cannam@233 193 PluginInputDomainAdapter::Impl::Impl(Plugin *plugin, float inputSampleRate) :
cannam@233 194 m_plugin(plugin),
cannam@233 195 m_inputSampleRate(inputSampleRate),
cannam@233 196 m_channels(0),
cannam@288 197 m_stepSize(0),
cannam@233 198 m_blockSize(0),
cannam@233 199 m_freqbuf(0),
cannam@233 200 m_ri(0),
cannam@233 201 m_window(0),
cannam@288 202 m_method(ShiftTimestamp),
cannam@288 203 m_processCount(0),
cannam@233 204 #ifdef HAVE_FFTW3
cannam@233 205 m_plan(0),
cannam@233 206 m_cbuf(0)
cannam@233 207 #else
cannam@233 208 m_ro(0),
cannam@233 209 m_io(0)
cannam@233 210 #endif
cannam@233 211 {
cannam@233 212 }
cannam@233 213
cannam@233 214 PluginInputDomainAdapter::Impl::~Impl()
cannam@233 215 {
cannam@233 216 // the adapter will delete the plugin
cannam@233 217
cannam@233 218 if (m_channels > 0) {
cannam@233 219 for (int c = 0; c < m_channels; ++c) {
cannam@233 220 delete[] m_freqbuf[c];
cannam@233 221 }
cannam@233 222 delete[] m_freqbuf;
cannam@233 223 #ifdef HAVE_FFTW3
cannam@233 224 if (m_plan) {
cannam@233 225 fftw_destroy_plan(m_plan);
cannam@233 226 fftw_free(m_ri);
cannam@233 227 fftw_free(m_cbuf);
cannam@233 228 m_plan = 0;
cannam@233 229 }
cannam@233 230 #else
cannam@233 231 delete[] m_ri;
cannam@233 232 delete[] m_ro;
cannam@233 233 delete[] m_io;
cannam@233 234 #endif
cannam@233 235 delete[] m_window;
cannam@233 236 }
cannam@233 237 }
cannam@233 238
cannam@233 239 // for some visual studii apparently
cannam@233 240 #ifndef M_PI
cannam@233 241 #define M_PI 3.14159265358979232846
cannam@233 242 #endif
cannam@233 243
cannam@233 244 bool
cannam@233 245 PluginInputDomainAdapter::Impl::initialise(size_t channels, size_t stepSize, size_t blockSize)
cannam@233 246 {
cannam@233 247 if (m_plugin->getInputDomain() == TimeDomain) {
cannam@233 248
cannam@288 249 m_stepSize = int(stepSize);
cannam@233 250 m_blockSize = int(blockSize);
cannam@233 251 m_channels = int(channels);
cannam@233 252
cannam@233 253 return m_plugin->initialise(channels, stepSize, blockSize);
cannam@233 254 }
cannam@233 255
cannam@233 256 if (blockSize < 2) {
cannam@283 257 std::cerr << "ERROR: PluginInputDomainAdapter::initialise: blocksize < 2 not supported" << std::endl;
cannam@233 258 return false;
cannam@233 259 }
cannam@233 260
cannam@233 261 if (blockSize & (blockSize-1)) {
cannam@283 262 std::cerr << "ERROR: PluginInputDomainAdapter::initialise: non-power-of-two\nblocksize " << blockSize << " not supported" << std::endl;
cannam@233 263 return false;
cannam@233 264 }
cannam@233 265
cannam@233 266 if (m_channels > 0) {
cannam@233 267 for (int c = 0; c < m_channels; ++c) {
cannam@233 268 delete[] m_freqbuf[c];
cannam@233 269 }
cannam@233 270 delete[] m_freqbuf;
cannam@233 271 #ifdef HAVE_FFTW3
cannam@233 272 if (m_plan) {
cannam@233 273 fftw_destroy_plan(m_plan);
cannam@233 274 fftw_free(m_ri);
cannam@233 275 fftw_free(m_cbuf);
cannam@233 276 m_plan = 0;
cannam@233 277 }
cannam@233 278 #else
cannam@233 279 delete[] m_ri;
cannam@233 280 delete[] m_ro;
cannam@233 281 delete[] m_io;
cannam@233 282 #endif
cannam@233 283 delete[] m_window;
cannam@233 284 }
cannam@233 285
cannam@288 286 m_stepSize = int(stepSize);
cannam@233 287 m_blockSize = int(blockSize);
cannam@233 288 m_channels = int(channels);
cannam@233 289
cannam@233 290 m_freqbuf = new float *[m_channels];
cannam@233 291 for (int c = 0; c < m_channels; ++c) {
cannam@233 292 m_freqbuf[c] = new float[m_blockSize + 2];
cannam@233 293 }
cannam@233 294 m_window = new double[m_blockSize];
cannam@233 295
cannam@233 296 for (int i = 0; i < m_blockSize; ++i) {
cannam@233 297 // Hanning window
cannam@233 298 m_window[i] = (0.50 - 0.50 * cos((2.0 * M_PI * i) / m_blockSize));
cannam@233 299 }
cannam@233 300
cannam@233 301 #ifdef HAVE_FFTW3
cannam@233 302 m_ri = (double *)fftw_malloc(blockSize * sizeof(double));
cannam@233 303 m_cbuf = (fftw_complex *)fftw_malloc((blockSize/2 + 1) * sizeof(fftw_complex));
cannam@233 304 m_plan = fftw_plan_dft_r2c_1d(blockSize, m_ri, m_cbuf, FFTW_MEASURE);
cannam@233 305 #else
cannam@233 306 m_ri = new double[m_blockSize];
cannam@233 307 m_ro = new double[m_blockSize];
cannam@233 308 m_io = new double[m_blockSize];
cannam@233 309 #endif
cannam@233 310
cannam@288 311 m_processCount = 0;
cannam@288 312
cannam@233 313 return m_plugin->initialise(channels, stepSize, blockSize);
cannam@233 314 }
cannam@233 315
cannam@288 316 void
cannam@288 317 PluginInputDomainAdapter::Impl::reset()
cannam@288 318 {
cannam@288 319 m_processCount = 0;
cannam@288 320 m_plugin->reset();
cannam@288 321 }
cannam@288 322
cannam@233 323 size_t
cannam@233 324 PluginInputDomainAdapter::Impl::getPreferredStepSize() const
cannam@233 325 {
cannam@233 326 size_t step = m_plugin->getPreferredStepSize();
cannam@233 327
cannam@233 328 if (step == 0 && (m_plugin->getInputDomain() == FrequencyDomain)) {
cannam@233 329 step = getPreferredBlockSize() / 2;
cannam@233 330 }
cannam@233 331
cannam@233 332 return step;
cannam@233 333 }
cannam@233 334
cannam@233 335 size_t
cannam@233 336 PluginInputDomainAdapter::Impl::getPreferredBlockSize() const
cannam@233 337 {
cannam@233 338 size_t block = m_plugin->getPreferredBlockSize();
cannam@233 339
cannam@233 340 if (m_plugin->getInputDomain() == FrequencyDomain) {
cannam@233 341 if (block == 0) {
cannam@233 342 block = 1024;
cannam@233 343 } else {
cannam@233 344 block = makeBlockSizeAcceptable(block);
cannam@233 345 }
cannam@233 346 }
cannam@233 347
cannam@233 348 return block;
cannam@233 349 }
cannam@233 350
cannam@233 351 size_t
cannam@233 352 PluginInputDomainAdapter::Impl::makeBlockSizeAcceptable(size_t blockSize) const
cannam@233 353 {
cannam@233 354 if (blockSize < 2) {
cannam@233 355
cannam@283 356 std::cerr << "WARNING: PluginInputDomainAdapter::initialise: blocksize < 2 not" << std::endl
cannam@233 357 << "supported, increasing from " << blockSize << " to 2" << std::endl;
cannam@233 358 blockSize = 2;
cannam@233 359
cannam@233 360 } else if (blockSize & (blockSize-1)) {
cannam@233 361
cannam@233 362 #ifdef HAVE_FFTW3
cannam@233 363 // not an issue with FFTW
cannam@233 364 #else
cannam@233 365
cannam@233 366 // not a power of two, can't handle that with our built-in FFT
cannam@233 367 // implementation
cannam@233 368
cannam@233 369 size_t nearest = blockSize;
cannam@233 370 size_t power = 0;
cannam@233 371 while (nearest > 1) {
cannam@233 372 nearest >>= 1;
cannam@233 373 ++power;
cannam@233 374 }
cannam@233 375 nearest = 1;
cannam@233 376 while (power) {
cannam@233 377 nearest <<= 1;
cannam@233 378 --power;
cannam@233 379 }
cannam@233 380
cannam@233 381 if (blockSize - nearest > (nearest*2) - blockSize) {
cannam@233 382 nearest = nearest*2;
cannam@233 383 }
cannam@233 384
cannam@283 385 std::cerr << "WARNING: PluginInputDomainAdapter::initialise: non-power-of-two\nblocksize " << blockSize << " not supported, using blocksize " << nearest << " instead" << std::endl;
cannam@233 386 blockSize = nearest;
cannam@233 387
cannam@233 388 #endif
cannam@233 389 }
cannam@233 390
cannam@233 391 return blockSize;
cannam@233 392 }
cannam@233 393
cannam@233 394 RealTime
cannam@233 395 PluginInputDomainAdapter::Impl::getTimestampAdjustment() const
cannam@233 396 {
cannam@233 397 if (m_plugin->getInputDomain() == TimeDomain) {
cannam@233 398 return RealTime::zeroTime;
cannam@233 399 } else {
cannam@233 400 return RealTime::frame2RealTime
cannam@233 401 (m_blockSize/2, int(m_inputSampleRate + 0.5));
cannam@233 402 }
cannam@233 403 }
cannam@233 404
cannam@288 405 void
cannam@288 406 PluginInputDomainAdapter::Impl::setProcessTimestampMethod(ProcessTimestampMethod m)
cannam@288 407 {
cannam@288 408 m_method = m;
cannam@288 409 }
cannam@288 410
cannam@288 411 PluginInputDomainAdapter::ProcessTimestampMethod
cannam@288 412 PluginInputDomainAdapter::Impl::getProcessTimestampMethod() const
cannam@288 413 {
cannam@288 414 return m_method;
cannam@288 415 }
cannam@288 416
cannam@233 417 Plugin::FeatureSet
cannam@233 418 PluginInputDomainAdapter::Impl::process(const float *const *inputBuffers,
cannam@233 419 RealTime timestamp)
cannam@233 420 {
cannam@233 421 if (m_plugin->getInputDomain() == TimeDomain) {
cannam@233 422 return m_plugin->process(inputBuffers, timestamp);
cannam@233 423 }
cannam@233 424
cannam@233 425 // The timestamp supplied should be (according to the Vamp::Plugin
cannam@233 426 // spec) the time of the start of the time-domain input block.
cannam@233 427 // However, we want to pass to the plugin an FFT output calculated
cannam@233 428 // from the block of samples _centred_ on that timestamp.
cannam@233 429 //
cannam@233 430 // We have two options:
cannam@233 431 //
cannam@233 432 // 1. Buffer the input, calculating the fft of the values at the
cannam@233 433 // passed-in block minus blockSize/2 rather than starting at the
cannam@233 434 // passed-in block. So each time we call process on the plugin,
cannam@233 435 // we are passing in the same timestamp as was passed to our own
cannam@233 436 // process plugin, but not (the frequency domain representation
cannam@233 437 // of) the same set of samples. Advantages: avoids confusion in
cannam@233 438 // the host by ensuring the returned values have timestamps
cannam@233 439 // comparable with that passed in to this function (in fact this
cannam@233 440 // is pretty much essential for one-value-per-block outputs);
cannam@233 441 // consistent with hosts such as SV that deal with the
cannam@233 442 // frequency-domain transform themselves. Disadvantages: means
cannam@233 443 // making the not necessarily correct assumption that the samples
cannam@233 444 // preceding the first official block are all zero (or some other
cannam@233 445 // known value).
cannam@233 446 //
cannam@233 447 // 2. Increase the passed-in timestamps by half the blocksize. So
cannam@233 448 // when we call process, we are passing in the frequency domain
cannam@233 449 // representation of the same set of samples as passed to us, but
cannam@233 450 // with a different timestamp. Advantages: simplicity; avoids
cannam@233 451 // iffy assumption mentioned above. Disadvantages: inconsistency
cannam@233 452 // with SV in cases where stepSize != blockSize/2; potential
cannam@233 453 // confusion arising from returned timestamps being calculated
cannam@233 454 // from the adjusted input timestamps rather than the original
cannam@233 455 // ones (and inaccuracy where the returned timestamp is implied,
cannam@233 456 // as in one-value-per-block).
cannam@233 457 //
cannam@233 458 // Neither way is ideal, but I don't think either is strictly
cannam@233 459 // incorrect either. I think this is just a case where the same
cannam@233 460 // plugin can legitimately produce differing results from the same
cannam@233 461 // input data, depending on how that data is packaged.
cannam@233 462 //
cannam@233 463 // We'll go for option 2, adjusting the timestamps. Note in
cannam@233 464 // particular that this means some results can differ from those
cannam@233 465 // produced by SV.
cannam@233 466
cannam@233 467 // std::cerr << "PluginInputDomainAdapter: sampleRate " << m_inputSampleRate << ", blocksize " << m_blockSize << ", adjusting time from " << timestamp;
cannam@233 468
cannam@288 469 //!!! update the above comment for ProcessTimestampMethod
cannam@288 470
cannam@288 471 FeatureSet fs;
cannam@288 472 if (m_method == ShiftTimestamp) {
cannam@288 473 timestamp = timestamp + getTimestampAdjustment();
cannam@288 474 } else if (m_processCount == 0) {
cannam@288 475 fs = prepadProcess(inputBuffers, timestamp);
cannam@288 476 }
cannam@288 477 ++m_processCount;
cannam@233 478
cannam@233 479 // std::cerr << " to " << timestamp << std::endl;
cannam@233 480
cannam@233 481 for (int c = 0; c < m_channels; ++c) {
cannam@233 482
cannam@233 483 for (int i = 0; i < m_blockSize; ++i) {
cannam@233 484 m_ri[i] = double(inputBuffers[c][i]) * m_window[i];
cannam@233 485 }
cannam@233 486
cannam@233 487 for (int i = 0; i < m_blockSize/2; ++i) {
cannam@233 488 // FFT shift
cannam@233 489 double value = m_ri[i];
cannam@233 490 m_ri[i] = m_ri[i + m_blockSize/2];
cannam@233 491 m_ri[i + m_blockSize/2] = value;
cannam@233 492 }
cannam@233 493
cannam@233 494 #ifdef HAVE_FFTW3
cannam@233 495
cannam@233 496 fftw_execute(m_plan);
cannam@233 497
cannam@233 498 for (int i = 0; i <= m_blockSize/2; ++i) {
cannam@233 499 m_freqbuf[c][i * 2] = float(m_cbuf[i][0]);
cannam@233 500 m_freqbuf[c][i * 2 + 1] = float(m_cbuf[i][1]);
cannam@233 501 }
cannam@233 502
cannam@233 503 #else
cannam@233 504
cannam@233 505 fft(m_blockSize, false, m_ri, 0, m_ro, m_io);
cannam@233 506
cannam@233 507 for (int i = 0; i <= m_blockSize/2; ++i) {
cannam@233 508 m_freqbuf[c][i * 2] = float(m_ro[i]);
cannam@233 509 m_freqbuf[c][i * 2 + 1] = float(m_io[i]);
cannam@233 510 }
cannam@233 511
cannam@233 512 #endif
cannam@233 513 }
cannam@233 514
cannam@288 515 FeatureSet pfs(m_plugin->process(m_freqbuf, timestamp));
cannam@288 516
cannam@288 517 if (!fs.empty()) { // add any prepad results back in
cannam@288 518 for (FeatureSet::const_iterator i = pfs.begin(); i != pfs.end(); ++i) {
cannam@288 519 for (FeatureList::const_iterator j = i->second.begin();
cannam@288 520 j != i->second.end(); ++j) {
cannam@288 521 fs[i->first].push_back(*j);
cannam@288 522 }
cannam@288 523 }
cannam@288 524 pfs = fs;
cannam@288 525 }
cannam@288 526
cannam@288 527 return pfs;
cannam@288 528 }
cannam@288 529
cannam@288 530 Plugin::FeatureSet
cannam@288 531 PluginInputDomainAdapter::Impl::prepadProcess(const float *const *inputBuffers,
cannam@288 532 RealTime timestamp)
cannam@288 533 {
cannam@288 534 FeatureSet fs;
cannam@288 535 //!!!
cannam@288 536 return fs;
cannam@233 537 }
cannam@233 538
cannam@233 539 #ifndef HAVE_FFTW3
cannam@233 540
cannam@233 541 void
cannam@233 542 PluginInputDomainAdapter::Impl::fft(unsigned int n, bool inverse,
cannam@233 543 double *ri, double *ii, double *ro, double *io)
cannam@233 544 {
cannam@233 545 if (!ri || !ro || !io) return;
cannam@233 546
cannam@233 547 unsigned int bits;
cannam@233 548 unsigned int i, j, k, m;
cannam@233 549 unsigned int blockSize, blockEnd;
cannam@233 550
cannam@233 551 double tr, ti;
cannam@233 552
cannam@233 553 if (n < 2) return;
cannam@233 554 if (n & (n-1)) return;
cannam@233 555
cannam@233 556 double angle = 2.0 * M_PI;
cannam@233 557 if (inverse) angle = -angle;
cannam@233 558
cannam@233 559 for (i = 0; ; ++i) {
cannam@233 560 if (n & (1 << i)) {
cannam@233 561 bits = i;
cannam@233 562 break;
cannam@233 563 }
cannam@233 564 }
cannam@233 565
cannam@233 566 static unsigned int tableSize = 0;
cannam@233 567 static int *table = 0;
cannam@233 568
cannam@233 569 if (tableSize != n) {
cannam@233 570
cannam@233 571 delete[] table;
cannam@233 572
cannam@233 573 table = new int[n];
cannam@233 574
cannam@233 575 for (i = 0; i < n; ++i) {
cannam@233 576
cannam@233 577 m = i;
cannam@233 578
cannam@233 579 for (j = k = 0; j < bits; ++j) {
cannam@233 580 k = (k << 1) | (m & 1);
cannam@233 581 m >>= 1;
cannam@233 582 }
cannam@233 583
cannam@233 584 table[i] = k;
cannam@233 585 }
cannam@233 586
cannam@233 587 tableSize = n;
cannam@233 588 }
cannam@233 589
cannam@233 590 if (ii) {
cannam@233 591 for (i = 0; i < n; ++i) {
cannam@233 592 ro[table[i]] = ri[i];
cannam@233 593 io[table[i]] = ii[i];
cannam@233 594 }
cannam@233 595 } else {
cannam@233 596 for (i = 0; i < n; ++i) {
cannam@233 597 ro[table[i]] = ri[i];
cannam@233 598 io[table[i]] = 0.0;
cannam@233 599 }
cannam@233 600 }
cannam@233 601
cannam@233 602 blockEnd = 1;
cannam@233 603
cannam@233 604 for (blockSize = 2; blockSize <= n; blockSize <<= 1) {
cannam@233 605
cannam@233 606 double delta = angle / (double)blockSize;
cannam@233 607 double sm2 = -sin(-2 * delta);
cannam@233 608 double sm1 = -sin(-delta);
cannam@233 609 double cm2 = cos(-2 * delta);
cannam@233 610 double cm1 = cos(-delta);
cannam@233 611 double w = 2 * cm1;
cannam@233 612 double ar[3], ai[3];
cannam@233 613
cannam@233 614 for (i = 0; i < n; i += blockSize) {
cannam@233 615
cannam@233 616 ar[2] = cm2;
cannam@233 617 ar[1] = cm1;
cannam@233 618
cannam@233 619 ai[2] = sm2;
cannam@233 620 ai[1] = sm1;
cannam@233 621
cannam@233 622 for (j = i, m = 0; m < blockEnd; j++, m++) {
cannam@233 623
cannam@233 624 ar[0] = w * ar[1] - ar[2];
cannam@233 625 ar[2] = ar[1];
cannam@233 626 ar[1] = ar[0];
cannam@233 627
cannam@233 628 ai[0] = w * ai[1] - ai[2];
cannam@233 629 ai[2] = ai[1];
cannam@233 630 ai[1] = ai[0];
cannam@233 631
cannam@233 632 k = j + blockEnd;
cannam@233 633 tr = ar[0] * ro[k] - ai[0] * io[k];
cannam@233 634 ti = ar[0] * io[k] + ai[0] * ro[k];
cannam@233 635
cannam@233 636 ro[k] = ro[j] - tr;
cannam@233 637 io[k] = io[j] - ti;
cannam@233 638
cannam@233 639 ro[j] += tr;
cannam@233 640 io[j] += ti;
cannam@233 641 }
cannam@233 642 }
cannam@233 643
cannam@233 644 blockEnd = blockSize;
cannam@233 645 }
cannam@233 646
cannam@233 647 if (inverse) {
cannam@233 648
cannam@233 649 double denom = (double)n;
cannam@233 650
cannam@233 651 for (i = 0; i < n; i++) {
cannam@233 652 ro[i] /= denom;
cannam@233 653 io[i] /= denom;
cannam@233 654 }
cannam@233 655 }
cannam@233 656 }
cannam@233 657
cannam@233 658 #endif
cannam@233 659
cannam@233 660 }
cannam@233 661
cannam@233 662 }
cannam@233 663
cannam@263 664 _VAMP_SDK_HOSTSPACE_END(PluginInputDomainAdapter.cpp)
cannam@263 665