annotate plugins/XTractPlugin.cpp @ 30:d5701a56a553

Added tag 0.4.2.20071019 for changeset 066911b493d5
author Chris Cannam
date Tue, 04 Dec 2012 16:41:30 +0000
parents a8ec077ce3b1
children d080b51953ba
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 Vamp feature extraction plugins using Jamie Bullock's
cannam@0 5 libxtract audio feature extraction library.
cannam@0 6
cannam@0 7 Centre for Digital Music, Queen Mary, University of London.
Chris@28 8 This file copyright 2006-2012 Queen Mary, University of London.
cannam@0 9
cannam@0 10 This program is free software; you can redistribute it and/or
cannam@0 11 modify it under the terms of the GNU General Public License as
cannam@0 12 published by the Free Software Foundation; either version 2 of the
cannam@0 13 License, or (at your option) any later version. See the file
cannam@0 14 COPYING included with this distribution for more information.
cannam@0 15 */
cannam@0 16
cannam@0 17 #include "XTractPlugin.h"
cannam@0 18
cannam@0 19 #include <cassert>
Chris@22 20 #include <cstdio>
cannam@1 21 #include <math.h>
cannam@0 22
cannam@0 23
cannam@0 24 using std::cerr;
cannam@0 25 using std::endl;
cannam@0 26 using std::string;
cannam@0 27
cannam@1 28 xtract_function_descriptor_t *
cannam@1 29 XTractPlugin::m_xtDescriptors = 0;
cannam@1 30
cannam@1 31 int
cannam@1 32 XTractPlugin::m_xtDescRefCount = 0;
cannam@1 33
cannam@0 34 XTractPlugin::XTractPlugin(unsigned int xtFeature, float inputSampleRate) :
cannam@0 35 Plugin(inputSampleRate),
cannam@0 36 m_xtFeature(xtFeature),
cannam@0 37 m_channels(0),
cannam@0 38 m_stepSize(0),
cannam@0 39 m_blockSize(0),
cannam@0 40 m_resultBuffer(0),
cannam@1 41 m_peakThreshold(10),
cannam@1 42 m_rolloffThreshold(90),
cannam@1 43 m_harmonicThreshold(.1),
cannam@0 44 m_minFreq(80),
cannam@0 45 m_maxFreq(18000),
cannam@9 46 m_coeffCount(40),
cannam@9 47 m_highestCoef(20),
cannam@9 48 m_lowestCoef(0),
cannam@0 49 m_mfccFilters(0),
cannam@1 50 m_mfccStyle((int)XTRACT_EQUAL_GAIN),
cannam@14 51 m_spectrumType((int)XTRACT_MAGNITUDE_SPECTRUM),
cannam@14 52 m_dc(0),
cannam@14 53 m_normalise(0),
cannam@0 54 m_barkBandLimits(0),
cannam@0 55 m_outputBinCount(0),
cannam@0 56 m_initialised(false)
cannam@0 57 {
cannam@1 58 if (m_xtDescRefCount++ == 0) {
cannam@1 59 m_xtDescriptors =
cannam@1 60 (xtract_function_descriptor_t *)xtract_make_descriptors();
cannam@1 61 }
cannam@0 62 }
cannam@0 63
cannam@0 64 XTractPlugin::~XTractPlugin()
cannam@0 65 {
cannam@0 66 if (m_mfccFilters) {
cannam@0 67 for (size_t i = 0; i < m_coeffCount; ++i) {
cannam@0 68 delete[] m_mfccFilters[i];
cannam@0 69 }
cannam@0 70 delete[] m_mfccFilters;
cannam@0 71 }
cannam@0 72 if (m_barkBandLimits) {
cannam@0 73 delete[] m_barkBandLimits;
cannam@0 74 }
cannam@0 75 if (m_resultBuffer) {
cannam@0 76 delete[] m_resultBuffer;
cannam@0 77 }
cannam@1 78
cannam@1 79 if (--m_xtDescRefCount == 0) {
cannam@1 80 xtract_free_descriptors(m_xtDescriptors);
cannam@1 81 }
cannam@0 82 }
cannam@0 83
cannam@0 84 string
cannam@2 85 XTractPlugin::getIdentifier() const
cannam@0 86 {
cannam@1 87 return xtDescriptor()->algo.name;
cannam@0 88 }
cannam@0 89
cannam@0 90 string
cannam@2 91 XTractPlugin::getName() const
cannam@2 92 {
cannam@2 93 return xtDescriptor()->algo.p_name;
cannam@2 94 }
cannam@2 95
cannam@2 96 string
cannam@0 97 XTractPlugin::getDescription() const
cannam@0 98 {
cannam@2 99 return xtDescriptor()->algo.p_desc;
cannam@0 100 }
cannam@1 101
cannam@0 102
cannam@0 103 string
cannam@0 104 XTractPlugin::getMaker() const
cannam@0 105 {
cannam@0 106 return "libxtract by Jamie Bullock (plugin by Chris Cannam)";
cannam@0 107 }
cannam@0 108
cannam@0 109 int
cannam@0 110 XTractPlugin::getPluginVersion() const
cannam@0 111 {
Chris@28 112 return 4;
cannam@0 113 }
cannam@0 114
cannam@0 115 string
cannam@0 116 XTractPlugin::getCopyright() const
cannam@0 117 {
Chris@28 118 string text = "Copyright 2006-2012 Jamie Bullock, plugin Copyright 2006-2012 Queen Mary, University of London. ";
cannam@0 119
cannam@1 120 string method = "";
cannam@0 121
cannam@1 122 method += xtDescriptor()->algo.author;
cannam@0 123
cannam@9 124 if (method != "") {
cannam@9 125 int year = xtDescriptor()->algo.year;
cannam@9 126 if (year != 0) {
cannam@9 127 char yearstr[12];
cannam@9 128 sprintf(yearstr, " (%d)", year);
cannam@9 129 method += yearstr;
cannam@9 130 }
cannam@9 131 text += "Method from " + method + ". ";
cannam@9 132 }
cannam@9 133
cannam@0 134 text += "Distributed under the GNU General Public License";
cannam@0 135 return text;
cannam@0 136 }
cannam@0 137
cannam@0 138 XTractPlugin::InputDomain
cannam@0 139 XTractPlugin::getInputDomain() const
cannam@0 140 {
cannam@1 141
cannam@1 142 if (xtDescriptor()->data.format == XTRACT_AUDIO_SAMPLES)
cannam@1 143 return TimeDomain;
cannam@1 144 else
cannam@1 145 return FrequencyDomain;
cannam@0 146 }
cannam@1 147
cannam@1 148
cannam@9 149 bool XTractPlugin::m_anyInitialised = false;
cannam@0 150
cannam@0 151 bool
cannam@0 152 XTractPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
cannam@0 153 {
cannam@1 154
cannam@1 155 int donor = *(xtDescriptor()->argv.donor),
cannam@1 156 data_format = xtDescriptor()->data.format;
cannam@1 157
cannam@0 158 if (channels < getMinChannelCount() ||
cannam@0 159 channels > getMaxChannelCount()) return false;
cannam@0 160
cannam@9 161 if (blockSize != getPreferredBlockSize()) {
cannam@9 162 cerr << "XTractPlugin::initialise: ERROR: "
cannam@9 163 << "Only the standard block size of " << getPreferredBlockSize()
cannam@9 164 << " is supported (owing to global FFT initialisation requirements)" << endl;
cannam@9 165 return false;
cannam@9 166 }
cannam@9 167
cannam@0 168 m_channels = channels;
cannam@0 169 m_stepSize = stepSize;
cannam@0 170 m_blockSize = blockSize;
cannam@0 171
cannam@9 172 if (!m_anyInitialised) {
cannam@9 173 m_anyInitialised = true;
cannam@9 174 // initialise libxtract
cannam@9 175 xtract_init_fft(m_blockSize, XTRACT_SPECTRUM);
cannam@9 176 xtract_init_fft(m_blockSize, XTRACT_AUTOCORRELATION_FFT);
cannam@9 177 xtract_init_fft(m_blockSize, XTRACT_DCT);
cannam@9 178 xtract_init_fft(m_blockSize, XTRACT_MFCC);
cannam@9 179 }
cannam@9 180
cannam@1 181 if (donor == XTRACT_INIT_MFCC) {
cannam@0 182
cannam@0 183 m_mfccFilters = new float *[m_coeffCount];
cannam@0 184 for (size_t i = 0; i < m_coeffCount; ++i) {
cannam@0 185 m_mfccFilters[i] = new float[m_blockSize];
cannam@0 186 }
cannam@0 187
cannam@0 188 int error = (int)xtract_init_mfcc(m_blockSize, m_inputSampleRate/2,
cannam@0 189 m_mfccStyle, m_minFreq, m_maxFreq,
cannam@0 190 m_coeffCount, m_mfccFilters);
cannam@1 191 if (error != XTRACT_SUCCESS) {
cannam@0 192 cerr << "XTractPlugin::initialise: ERROR: "
cannam@0 193 << "xtract_init_mfcc returned error code " << error << endl;
cannam@0 194 return false;
cannam@0 195 }
cannam@0 196
cannam@1 197 } else if (donor == XTRACT_BARK_COEFFICIENTS ||
cannam@7 198 donor == XTRACT_INIT_BARK ||
cannam@1 199 data_format == XTRACT_BARK_COEFFS) {
cannam@7 200
cannam@1 201 m_barkBandLimits = new int[XTRACT_BARK_BANDS];
cannam@0 202
cannam@1 203 /*int error = *(int)*/xtract_init_bark(m_blockSize, m_inputSampleRate,
cannam@0 204 m_barkBandLimits);
cannam@0 205 // if (error != SUCCESS) {
cannam@0 206 // cerr << "XTractPlugin::initialise: ERROR: "
cannam@0 207 // << "xtract_init_bark returned error code " << error << endl;
cannam@0 208 // return false;
cannam@0 209 // }
cannam@0 210 }
cannam@0 211
cannam@0 212 switch (m_xtFeature) {
cannam@1 213 case XTRACT_SPECTRUM:
cannam@14 214 m_outputBinCount = m_blockSize / 2 + (m_dc ? 1 : 0); break;
cannam@1 215 case XTRACT_HARMONIC_SPECTRUM:
cannam@1 216 case XTRACT_PEAK_SPECTRUM:
cannam@1 217 m_outputBinCount = m_blockSize / 2; break;
cannam@1 218 case XTRACT_DCT:
cannam@1 219 case XTRACT_AUTOCORRELATION_FFT:
cannam@1 220 case XTRACT_AUTOCORRELATION:
cannam@1 221 case XTRACT_AMDF:
cannam@1 222 case XTRACT_ASDF:
cannam@1 223 m_outputBinCount = m_blockSize; break;
cannam@1 224 case XTRACT_MFCC:
cannam@9 225 m_outputBinCount = (m_highestCoef - m_lowestCoef)+1; break;
cannam@1 226 case XTRACT_BARK_COEFFICIENTS:
cannam@1 227 m_outputBinCount = XTRACT_BARK_BANDS; break;
cannam@1 228 default:
cannam@1 229 m_outputBinCount = 1; break;
cannam@0 230 }
cannam@0 231
cannam@13 232 m_outputDescriptors.clear();
cannam@0 233 setupOutputDescriptors();
cannam@0 234
cannam@0 235 m_initialised = true;
cannam@0 236
cannam@0 237 return true;
cannam@0 238 }
cannam@0 239
cannam@0 240 void
cannam@0 241 XTractPlugin::reset()
cannam@0 242 {
cannam@0 243 }
cannam@0 244
cannam@0 245 size_t
cannam@0 246 XTractPlugin::getMinChannelCount() const
cannam@0 247 {
cannam@0 248 return 1;
cannam@0 249 }
cannam@0 250
cannam@0 251 size_t
cannam@0 252 XTractPlugin::getMaxChannelCount() const
cannam@0 253 {
cannam@0 254 return 1;
cannam@0 255 }
cannam@0 256
cannam@0 257 size_t
cannam@0 258 XTractPlugin::getPreferredStepSize() const
cannam@0 259 {
cannam@0 260 if (getInputDomain() == FrequencyDomain) {
cannam@1 261 return getPreferredBlockSize();
cannam@1 262 } else {
cannam@0 263 return getPreferredBlockSize() / 2;
cannam@0 264 }
cannam@0 265 }
cannam@0 266
cannam@0 267 size_t
cannam@0 268 XTractPlugin::getPreferredBlockSize() const
cannam@0 269 {
cannam@0 270 return 1024;
cannam@0 271 }
cannam@0 272
cannam@0 273 XTractPlugin::ParameterList
cannam@0 274 XTractPlugin::getParameterDescriptors() const
cannam@0 275 {
cannam@0 276 ParameterList list;
cannam@0 277 ParameterDescriptor desc;
cannam@0 278
cannam@1 279 if (m_xtFeature == XTRACT_MFCC) {
cannam@0 280
cannam@2 281 desc.identifier = "minfreq";
cannam@2 282 desc.name = "Minimum Frequency";
cannam@0 283 desc.minValue = 0;
cannam@0 284 desc.maxValue = m_inputSampleRate / 2;
cannam@0 285 desc.defaultValue = 80;
cannam@0 286 desc.isQuantized = false;
cannam@0 287 desc.unit = "Hz";
cannam@0 288 list.push_back(desc);
cannam@0 289
cannam@2 290 desc.identifier = "maxfreq";
cannam@2 291 desc.name = "Maximum Frequency";
cannam@0 292 desc.defaultValue = 18000;
cannam@0 293 if (desc.defaultValue > m_inputSampleRate * 0.875) {
cannam@0 294 desc.defaultValue = m_inputSampleRate * 0.875;
cannam@0 295 }
cannam@0 296 list.push_back(desc);
cannam@0 297
cannam@2 298 desc.identifier = "bands";
cannam@9 299 desc.name = "# Mel Frequency Bands";
cannam@0 300 desc.minValue = 10;
cannam@9 301 desc.maxValue = 80;
cannam@9 302 desc.defaultValue = 40;
cannam@9 303 desc.unit = "";
cannam@9 304 desc.isQuantized = true;
cannam@9 305 desc.quantizeStep = 1;
cannam@9 306 list.push_back(desc);
cannam@9 307
cannam@9 308 desc.identifier = "lowestcoef";
cannam@9 309 desc.name = "Lowest Coefficient Returned";
cannam@9 310 desc.minValue = 0;
cannam@9 311 desc.maxValue = 80;
cannam@9 312 desc.defaultValue = 0;
cannam@9 313 desc.unit = "";
cannam@9 314 desc.isQuantized = true;
cannam@9 315 desc.quantizeStep = 1;
cannam@9 316 list.push_back(desc);
cannam@9 317
cannam@9 318 desc.identifier = "highestcoef";
cannam@9 319 desc.name = "Highest Coefficient Returned";
cannam@9 320 desc.minValue = 0;
cannam@9 321 desc.maxValue = 80;
cannam@0 322 desc.defaultValue = 20;
cannam@0 323 desc.unit = "";
cannam@0 324 desc.isQuantized = true;
cannam@0 325 desc.quantizeStep = 1;
cannam@0 326 list.push_back(desc);
cannam@0 327
cannam@2 328 desc.identifier = "style";
cannam@2 329 desc.name = "MFCC Type";
cannam@0 330 desc.minValue = 0;
cannam@0 331 desc.maxValue = 1;
cannam@0 332 desc.defaultValue = 0;
cannam@0 333 desc.valueNames.push_back("Equal Gain");
cannam@0 334 desc.valueNames.push_back("Equal Area");
cannam@0 335 list.push_back(desc);
cannam@0 336 }
cannam@0 337
cannam@14 338 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 339
cannam@14 340 desc.identifier = "spectrumtype";
cannam@14 341 desc.name = "Type";
cannam@14 342 desc.minValue = 0;
cannam@14 343 desc.maxValue = 3;
cannam@14 344 desc.defaultValue = int(XTRACT_MAGNITUDE_SPECTRUM);
cannam@14 345 desc.isQuantized = true;
cannam@14 346 desc.quantizeStep = 1;
cannam@14 347 desc.valueNames.push_back("Magnitude Spectrum");
cannam@14 348 desc.valueNames.push_back("Log Magnitude Spectrum");
cannam@14 349 desc.valueNames.push_back("Power Spectrum");
cannam@14 350 desc.valueNames.push_back("Log Power Spectrum");
cannam@14 351 list.push_back(desc);
cannam@14 352
cannam@14 353 desc.identifier = "dc";
cannam@14 354 desc.name = "Include DC";
cannam@14 355 desc.maxValue = 1;
cannam@14 356 desc.defaultValue = 0;
cannam@14 357 desc.valueNames.clear();
cannam@14 358 list.push_back(desc);
cannam@14 359
cannam@14 360 desc.identifier = "normalise";
cannam@14 361 desc.name = "Normalise";
cannam@14 362 list.push_back(desc);
cannam@14 363 }
cannam@14 364
cannam@0 365 if (needPeakThreshold()) {
cannam@0 366
cannam@10 367 desc.identifier = "peak-threshold";
cannam@2 368 desc.name = "Peak Threshold";
cannam@0 369 desc.minValue = 0;
cannam@0 370 desc.maxValue = 100;
cannam@1 371 desc.defaultValue = 10; /* Threshold as % of maximum peak found */
cannam@0 372 desc.isQuantized = false;
cannam@0 373 desc.valueNames.clear();
cannam@0 374 desc.unit = "%";
cannam@0 375 list.push_back(desc);
cannam@0 376
cannam@1 377 }
cannam@1 378
cannam@1 379 if (needRolloffThreshold()) {
cannam@0 380
cannam@10 381 desc.identifier = "rolloff-threshold";
cannam@2 382 desc.name = "Rolloff Threshold";
cannam@0 383 desc.minValue = 0;
cannam@0 384 desc.maxValue = 100;
cannam@1 385 desc.defaultValue = 90; /* Freq below which 90% of energy is */
cannam@0 386 desc.isQuantized = false;
cannam@0 387 desc.valueNames.clear();
cannam@0 388 desc.unit = "%";
cannam@0 389 list.push_back(desc);
cannam@1 390
cannam@1 391 }
cannam@1 392
cannam@1 393 if (needHarmonicThreshold()) {
cannam@1 394
cannam@10 395 desc.identifier = "harmonic-threshold";
cannam@2 396 desc.name = "Harmonic Threshold";
cannam@1 397 desc.minValue = 0;
cannam@1 398 desc.maxValue = 1.0;
cannam@1 399 desc.defaultValue = .1; /* Distance from nearesst harmonic number */
cannam@1 400 desc.isQuantized = false;
cannam@1 401 desc.valueNames.clear();
cannam@1 402 desc.unit = "";
cannam@1 403 list.push_back(desc);
cannam@0 404 }
cannam@0 405
cannam@0 406 return list;
cannam@0 407 }
cannam@0 408
cannam@0 409 float
cannam@0 410 XTractPlugin::getParameter(string param) const
cannam@0 411 {
cannam@1 412 if (m_xtFeature == XTRACT_MFCC) {
cannam@0 413 if (param == "minfreq") return m_minFreq;
cannam@0 414 if (param == "maxfreq") return m_maxFreq;
cannam@0 415 if (param == "bands") return m_coeffCount;
cannam@9 416 if (param == "lowestcoef") return m_lowestCoef;
cannam@9 417 if (param == "highestcoef") return m_highestCoef;
cannam@0 418 if (param == "style") return m_mfccStyle;
cannam@0 419 }
cannam@0 420
cannam@14 421 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 422 if (param == "spectrumtype") return m_spectrumType;
cannam@14 423 if (param == "dc") return m_dc;
cannam@14 424 if (param == "normalise") return m_normalise;
cannam@14 425 }
cannam@14 426
cannam@10 427 if (param == "peak-threshold") return m_peakThreshold;
cannam@10 428 if (param == "rolloff-threshold") return m_rolloffThreshold;
cannam@10 429 if (param == "harmonic-threshold") return m_harmonicThreshold;
cannam@0 430
cannam@0 431 return 0.f;
cannam@0 432 }
cannam@0 433
cannam@0 434 void
cannam@0 435 XTractPlugin::setParameter(string param, float value)
cannam@0 436 {
cannam@1 437 if (m_xtFeature == XTRACT_MFCC) {
cannam@0 438 if (param == "minfreq") m_minFreq = value;
cannam@0 439 else if (param == "maxfreq") m_maxFreq = value;
cannam@14 440 else if (param == "bands") m_coeffCount = int(value + .1);
cannam@9 441 else if (param == "lowestcoef"){
cannam@14 442 m_lowestCoef = int(value + .1);
cannam@9 443 if(m_lowestCoef >= m_coeffCount) m_lowestCoef = m_coeffCount - 1;
cannam@9 444 if(m_lowestCoef > m_highestCoef) m_lowestCoef = m_highestCoef;
cannam@9 445 }
cannam@9 446 else if (param == "highestcoef"){
cannam@14 447 m_highestCoef = int(value + .1);
cannam@9 448 if(m_highestCoef >= m_coeffCount) m_highestCoef = m_coeffCount - 1;
cannam@9 449 if(m_highestCoef < m_lowestCoef) m_highestCoef = m_lowestCoef;
cannam@9 450 }
cannam@14 451 else if (param == "style") m_mfccStyle = int(value + .1);
cannam@14 452 }
cannam@14 453
cannam@14 454 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 455 if (param == "spectrumtype") m_spectrumType = int(value + .1);
cannam@14 456 if (param == "dc") m_dc = int(value + .1);
cannam@14 457 if (param == "normalise") m_normalise = int(value + .1);
cannam@0 458 }
cannam@0 459
cannam@10 460 if (param == "peak-threshold") m_peakThreshold = value;
cannam@10 461 if (param == "rolloff-threshold") m_rolloffThreshold = value;
cannam@10 462 if (param == "harmonic-threshold") m_harmonicThreshold = value;
cannam@0 463 }
cannam@0 464
cannam@0 465 XTractPlugin::OutputList
cannam@0 466 XTractPlugin::getOutputDescriptors() const
cannam@0 467 {
cannam@13 468 if (m_outputDescriptors.empty()) {
cannam@13 469 setupOutputDescriptors();
cannam@13 470 }
cannam@0 471 return m_outputDescriptors;
cannam@0 472 }
cannam@0 473
cannam@0 474 void
cannam@0 475 XTractPlugin::setupOutputDescriptors() const
cannam@0 476 {
cannam@0 477 OutputDescriptor d;
cannam@1 478 const xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@2 479 d.identifier = getIdentifier();
cannam@2 480 d.name = getName();
cannam@2 481 d.description = getDescription();
cannam@0 482 d.unit = "";
cannam@0 483 d.hasFixedBinCount = true;
cannam@0 484 d.binCount = m_outputBinCount;
cannam@0 485 d.hasKnownExtents = false;
cannam@0 486 d.isQuantized = false;
cannam@0 487 d.sampleType = OutputDescriptor::OneSamplePerStep;
cannam@0 488
cannam@9 489 if (xtFd->is_scalar){
cannam@1 490 switch(xtFd->result.scalar.unit){
cannam@1 491 case XTRACT_HERTZ: d.unit = "Hz"; break;
cannam@1 492 case XTRACT_DBFS: d.unit = "dB"; break;
cannam@1 493 default: d.unit = ""; break;
cannam@1 494 }
cannam@1 495 }
cannam@1 496 else {
cannam@1 497 if (xtFd->result.vector.format == XTRACT_SPECTRAL){
cannam@0 498
cannam@1 499 d.binCount /= 2;
cannam@2 500 d.identifier = "amplitudes";
cannam@2 501 d.name = "Peak Amplitudes";
cannam@2 502 d.description = "";
cannam@1 503 }
cannam@1 504 }
cannam@0 505
cannam@0 506 m_outputDescriptors.push_back(d);
cannam@0 507 }
cannam@0 508
cannam@0 509 bool
cannam@0 510 XTractPlugin::needPeakThreshold() const
cannam@0 511 {
cannam@1 512 const xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@0 513
cannam@1 514 if(m_xtFeature == XTRACT_PEAK_SPECTRUM ||
cannam@1 515 xtFd->data.format == XTRACT_SPECTRAL_PEAKS ||
cannam@1 516 xtFd->data.format == XTRACT_SPECTRAL_PEAKS_MAGNITUDES ||
cannam@1 517 needHarmonicThreshold())
cannam@1 518 return true;
cannam@1 519 else return false;
cannam@1 520 }
cannam@1 521
cannam@1 522 bool
cannam@1 523 XTractPlugin::needHarmonicThreshold() const
cannam@1 524 {
cannam@1 525 const xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@1 526
cannam@1 527 if(m_xtFeature == XTRACT_HARMONIC_SPECTRUM ||
cannam@1 528 xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_FREQUENCIES ||
cannam@1 529 m_xtFeature == XTRACT_NOISINESS ||
cannam@1 530 xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_MAGNITUDES)
cannam@1 531 return true;
cannam@1 532 else return false;
cannam@1 533 }
cannam@1 534
cannam@1 535 bool
cannam@1 536 XTractPlugin::needRolloffThreshold() const
cannam@1 537 {
cannam@1 538 if(m_xtFeature == XTRACT_ROLLOFF)
cannam@1 539 return true;
cannam@1 540 else
cannam@1 541 return false;
cannam@0 542 }
cannam@0 543
cannam@0 544 XTractPlugin::FeatureSet
cannam@0 545 XTractPlugin::process(const float *const *inputBuffers,
cannam@0 546 Vamp::RealTime timestamp)
cannam@0 547 {
cannam@13 548 if (m_outputDescriptors.empty()) {
cannam@13 549 setupOutputDescriptors();
cannam@13 550 }
cannam@0 551
cannam@14 552 int rbs =
cannam@14 553 // Add 2 here to accommodate extra data for spectrum with DC
cannam@14 554 2 + (m_outputBinCount > m_blockSize ? m_outputBinCount : m_blockSize);
cannam@0 555 if (!m_resultBuffer) {
cannam@0 556 m_resultBuffer = new float[rbs];
cannam@0 557 }
cannam@0 558
cannam@1 559 int i;
cannam@1 560
cannam@1 561 for (i = 0; i < rbs; ++i) m_resultBuffer[i] = 0.f;
cannam@1 562
cannam@1 563 const float *data = 0;
cannam@1 564 float *fft_temp = 0, *data_temp = 0;
cannam@1 565 int N = m_blockSize, M = N >> 1;
cannam@0 566 void *argv = 0;
cannam@1 567 bool isSpectral = false;
cannam@1 568 xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@0 569
cannam@0 570 FeatureSet fs;
cannam@0 571
cannam@1 572 switch (xtFd->data.format) {
cannam@1 573 case XTRACT_AUDIO_SAMPLES:
cannam@1 574 data = &inputBuffers[0][0];
cannam@1 575 break;
cannam@1 576 case XTRACT_SPECTRAL:
cannam@1 577 default:
cannam@1 578 // All the rest are derived from the spectrum
cannam@1 579 // Need same format as would be output by xtract_spectrum
cannam@1 580 float q = m_inputSampleRate / N;
cannam@1 581 fft_temp = new float[N];
cannam@1 582 for (int n = 1; n < N/2; ++n) {
cannam@1 583 fft_temp[n] = sqrt(inputBuffers[0][n*2] *
cannam@1 584 inputBuffers[0][n*2] + inputBuffers[0][n*2+1] *
cannam@1 585 inputBuffers[0][n*2+1]) / N;
cannam@1 586 fft_temp[N-n] = (N/2 - n) * q;
cannam@1 587 }
cannam@1 588 fft_temp[0] = fabs(inputBuffers[0][0]) / N;
cannam@1 589 fft_temp[N/2] = fabs(inputBuffers[0][N]) / N;
cannam@1 590 data = &fft_temp[0];
cannam@1 591 isSpectral = true;
cannam@1 592 break;
cannam@0 593 }
cannam@0 594
cannam@0 595 assert(m_outputBinCount > 0);
cannam@0 596
cannam@0 597 float *result = m_resultBuffer;
cannam@0 598
cannam@1 599 float argf[XTRACT_MAXARGS];
cannam@0 600 argv = &argf[0];
cannam@14 601 argf[0] = 0.f; // handy for some, e.g. lowest_value which has a threshold
cannam@0 602
cannam@1 603 float mean, variance, sd, npartials, nharmonics;
cannam@0 604
cannam@1 605 bool needSD, needVariance, needMean, needPeaks,
cannam@1 606 needBarkCoefficients, needHarmonics, needF0, needSFM, needMax,
cannam@1 607 needNumPartials, needNumHarmonics;
cannam@0 608
cannam@1 609 int donor;
cannam@0 610
cannam@1 611 needSD = needVariance = needMean = needPeaks =
cannam@1 612 needBarkCoefficients = needF0 = needHarmonics = needSFM = needMax =
cannam@1 613 needNumPartials = needNumHarmonics = 0;
cannam@0 614
cannam@1 615 mean = variance = sd = npartials = nharmonics = 0.f;
cannam@0 616
cannam@1 617 i = xtFd->argc;
cannam@0 618
cannam@1 619 while(i--){
cannam@14 620 if (m_xtFeature == XTRACT_BARK_COEFFICIENTS) {
cannam@14 621 /* "BARK_COEFFICIENTS is special because argc = BARK_BANDS" */
cannam@14 622 break;
cannam@14 623 }
cannam@1 624 donor = xtFd->argv.donor[i];
cannam@1 625 switch(donor){
cannam@1 626 case XTRACT_STANDARD_DEVIATION:
cannam@1 627 case XTRACT_SPECTRAL_STANDARD_DEVIATION:
cannam@1 628 needSD = 1;
cannam@1 629 break;
cannam@1 630 case XTRACT_VARIANCE:
cannam@1 631 case XTRACT_SPECTRAL_VARIANCE:
cannam@1 632 needVariance = 1;
cannam@1 633 break;
cannam@1 634 case XTRACT_MEAN:
cannam@1 635 case XTRACT_SPECTRAL_MEAN:
cannam@1 636 needMean = 1;
cannam@1 637 break;
cannam@1 638 case XTRACT_F0:
cannam@1 639 case XTRACT_FAILSAFE_F0:
cannam@1 640 needF0 = 1;
cannam@1 641 break;
cannam@1 642 case XTRACT_FLATNESS:
cannam@1 643 needSFM = 1;
cannam@1 644 case XTRACT_HIGHEST_VALUE:
cannam@1 645 needMax = 1;
cannam@1 646 break;
cannam@1 647 }
cannam@1 648 }
cannam@1 649
cannam@1 650 if(needHarmonicThreshold() && m_xtFeature != XTRACT_HARMONIC_SPECTRUM)
cannam@1 651 needHarmonics = needF0 = 1;
cannam@1 652
cannam@1 653 if(needPeakThreshold() && m_xtFeature != XTRACT_PEAK_SPECTRUM)
cannam@1 654 needPeaks = 1;
cannam@1 655
cannam@1 656 if(xtFd->data.format == XTRACT_BARK_COEFFS &&
cannam@1 657 m_xtFeature != XTRACT_BARK_COEFFICIENTS){
cannam@1 658 needBarkCoefficients = 1;
cannam@0 659 }
cannam@0 660
cannam@0 661 if (needMean) {
cannam@1 662 if(isSpectral)
cannam@1 663 xtract_spectral_mean(data, N, 0, result);
cannam@1 664 else
cannam@1 665 xtract_mean(data, M, 0, result);
cannam@0 666 mean = *result;
cannam@0 667 *result = 0.f;
cannam@0 668 }
cannam@0 669
cannam@1 670 if (needVariance || needSD) {
cannam@0 671 argf[0] = mean;
cannam@1 672 if(isSpectral)
cannam@1 673 xtract_spectral_variance(data, N, argv, result);
cannam@1 674 else
cannam@1 675 xtract_variance(data, M, argv, result);
cannam@0 676 variance = *result;
cannam@0 677 *result = 0.f;
cannam@0 678 }
cannam@0 679
cannam@0 680 if (needSD) {
cannam@0 681 argf[0] = variance;
cannam@1 682 if(isSpectral)
cannam@1 683 xtract_spectral_standard_deviation(data, N, argv, result);
cannam@1 684 else
cannam@1 685 xtract_standard_deviation(data, M, argv, result);
cannam@0 686 sd = *result;
cannam@0 687 *result = 0.f;
cannam@0 688 }
cannam@0 689
cannam@1 690 if (needMax) {
cannam@1 691 xtract_highest_value(data, M, argv, result);
cannam@1 692 argf[1] = *result;
cannam@1 693 *result = 0.f;
cannam@1 694 }
cannam@1 695
cannam@0 696 if (needSD) {
cannam@0 697 argf[0] = mean;
cannam@0 698 argf[1] = sd;
cannam@0 699 } else if (needVariance) {
cannam@0 700 argf[0] = variance;
cannam@0 701 } else if (needMean) {
cannam@0 702 argf[0] = mean;
cannam@0 703 }
cannam@0 704
cannam@0 705 // data should be now correct for all except:
cannam@1 706 // XTRACT_SPECTRAL_CENTROID -- N/2 magnitude peaks and N/2 frequencies
cannam@1 707 // TONALITY -- SFM
cannam@0 708 // TRISTIMULUS_1/2/3 -- harmonic spectrum
cannam@0 709 // ODD_EVEN_RATIO -- harmonic spectrum
cannam@0 710 // LOUDNESS -- Bark coefficients
cannam@1 711 // XTRACT_HARMONIC_SPECTRUM -- peak spectrum
cannam@0 712
cannam@0 713 // argv should be now correct for all except:
cannam@0 714 //
cannam@1 715 // XTRACT_ROLLOFF -- (sr/N), threshold (%)
cannam@1 716 // XTRACT_PEAK_SPECTRUM -- (sr / N), peak threshold (%)
cannam@1 717 // XTRACT_HARMONIC_SPECTRUM -- f0, harmonic threshold
cannam@1 718 // XTRACT_F0 -- samplerate
cannam@1 719 // XTRACT_MFCC -- Mel filter coefficients
cannam@1 720 // XTRACT_BARK_COEFFICIENTS -- Bark band limits
cannam@1 721 // XTRACT_NOISINESS -- npartials, nharmonics.
cannam@14 722 // XTRACT_SPECTRUM -- q, spectrum type, dc, normalise
cannam@0 723
cannam@1 724 data_temp = new float[N];
cannam@1 725
cannam@1 726 if (m_xtFeature == XTRACT_ROLLOFF ||
cannam@9 727 m_xtFeature == XTRACT_PEAK_SPECTRUM || needPeaks) {
cannam@1 728 argf[0] = m_inputSampleRate / N;
cannam@1 729 if(m_xtFeature == XTRACT_ROLLOFF)
cannam@1 730 argf[1] = m_rolloffThreshold;
cannam@1 731 else
cannam@1 732 argf[1] = m_peakThreshold;
cannam@0 733 argv = &argf[0];
cannam@0 734 }
cannam@0 735
cannam@14 736 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 737 argf[0] = 0; // xtract_spectrum will calculate this for us
cannam@14 738 argf[1] = m_spectrumType;
cannam@14 739 argf[2] = m_dc;
cannam@14 740 argf[3] = m_normalise;
cannam@14 741 argv = &argf[0];
cannam@14 742 }
cannam@14 743
cannam@0 744 if (needPeaks) {
cannam@1 745 //We only read in the magnitudes (M)
cannam@1 746 /*int rv = */ xtract_peak_spectrum(data, M, argv, result);
cannam@0 747 for (int n = 0; n < N; ++n) {
cannam@1 748 data_temp[n] = result[n];
cannam@0 749 result[n] = 0.f;
cannam@0 750 }
cannam@0 751 // rv not trustworthy
cannam@0 752 // if (rv != SUCCESS) {
cannam@0 753 // cerr << "ERROR: XTractPlugin::process: xtract_peaks failed (error code = " << rv << ")" << endl;
cannam@0 754 // goto done;
cannam@0 755 // }
cannam@0 756 }
cannam@0 757
cannam@1 758 if (needNumPartials) {
cannam@1 759 xtract_nonzero_count(data_temp, M, NULL, &npartials);
cannam@1 760 }
cannam@1 761
cannam@1 762 if (needF0 || m_xtFeature == XTRACT_FAILSAFE_F0 ||
cannam@1 763 m_xtFeature == XTRACT_F0) {
cannam@1 764 argf[0] = m_inputSampleRate;
cannam@1 765 argv = &argf[0];
cannam@1 766 }
cannam@1 767
cannam@1 768 if (needF0) {
cannam@1 769 xtract_failsafe_f0(&inputBuffers[0][0], N,
cannam@1 770 (void *)&m_inputSampleRate, result);
cannam@1 771 argf[0] = *result;
cannam@1 772 argv = &argf[0];
cannam@1 773 }
cannam@1 774
cannam@1 775 if (needSFM) {
cannam@1 776 xtract_flatness(data, N >> 1, 0, &argf[0]);
cannam@1 777 argv = &argf[0];
cannam@1 778 }
cannam@1 779
cannam@1 780 if (needHarmonics || m_xtFeature == XTRACT_HARMONIC_SPECTRUM){
cannam@1 781 argf[1] = m_harmonicThreshold;
cannam@1 782 }
cannam@1 783
cannam@1 784 if (needHarmonics){
cannam@1 785 xtract_harmonic_spectrum(data_temp, N, argv, result);
cannam@1 786 for (int n = 0; n < N; ++n) {
cannam@1 787 data_temp[n] = result[n];
cannam@1 788 result[n] = 0.f;
cannam@1 789 }
cannam@1 790 }
cannam@1 791
cannam@1 792 if (needNumHarmonics) {
cannam@1 793 xtract_nonzero_count(data_temp, M, NULL, &nharmonics);
cannam@1 794 }
cannam@1 795
cannam@1 796 if (m_xtFeature == XTRACT_NOISINESS) {
cannam@1 797
cannam@1 798 argf[0] = nharmonics;
cannam@1 799 argf[1] = npartials;
cannam@1 800 argv = &argf[0];
cannam@1 801
cannam@1 802 }
cannam@1 803
cannam@1 804 if (needBarkCoefficients || m_xtFeature == XTRACT_BARK_COEFFICIENTS) {
cannam@1 805 argv = &m_barkBandLimits[0];
cannam@1 806 }
cannam@1 807
cannam@1 808 xtract_mel_filter mfccFilterBank;
cannam@1 809 if (m_xtFeature == XTRACT_MFCC) {
cannam@1 810 mfccFilterBank.n_filters = m_coeffCount;
cannam@1 811 mfccFilterBank.filters = m_mfccFilters;
cannam@1 812 argv = &mfccFilterBank;
cannam@1 813 }
cannam@1 814
cannam@0 815 if (needBarkCoefficients) {
cannam@1 816
cannam@1 817 /*int rv = */ xtract_bark_coefficients(data, 0, argv, data_temp);
cannam@0 818 // if (rv != SUCCESS) {
cannam@0 819 // cerr << "ERROR: XTractPlugin::process: xtract_bark_coefficients failed (error code = " << rv << ")" << endl;
cannam@0 820 // goto done;
cannam@0 821 // }
cannam@1 822 data = &data_temp[0];
cannam@0 823 argv = 0;
cannam@0 824 }
cannam@1 825
cannam@1 826 if (xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_FREQUENCIES) {
cannam@0 827
cannam@1 828 N = M;
cannam@1 829 data = &data_temp[N];
cannam@0 830
cannam@1 831 } else if (xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_MAGNITUDES) {
cannam@0 832
cannam@1 833 N = M;
cannam@1 834 data = &data_temp[0];
cannam@1 835
cannam@1 836 }
cannam@0 837
cannam@1 838 // If we only want spectral magnitudes, use first half of the input array
cannam@1 839 else if(xtFd->data.format == XTRACT_SPECTRAL_MAGNITUDES ||
cannam@1 840 xtFd->data.format == XTRACT_SPECTRAL_PEAKS_MAGNITUDES ||
cannam@1 841 xtFd->data.format == XTRACT_ARBITRARY_SERIES) {
cannam@1 842 N = M;
cannam@1 843 }
cannam@1 844
cannam@1 845 else if(xtFd->data.format == XTRACT_BARK_COEFFS) {
cannam@1 846
cannam@1 847 N = XTRACT_BARK_BANDS - 1; /* Because our SR is 44100 (< 54000)*/
cannam@1 848 }
cannam@1 849
cannam@1 850 if (needPeaks && !needHarmonics) {
cannam@1 851
cannam@1 852 data = &data_temp[0];
cannam@1 853
cannam@0 854 }
cannam@0 855
cannam@0 856 // now the main result
cannam@0 857 xtract[m_xtFeature](data, N, argv, result);
cannam@0 858
cannam@1 859 //haveResult:
cannam@1 860 // {
cannam@0 861 int index = 0;
cannam@0 862
cannam@0 863 for (size_t output = 0; output < m_outputDescriptors.size(); ++output) {
cannam@0 864
cannam@0 865 Feature feature;
cannam@0 866 feature.hasTimestamp = false;
cannam@0 867 bool good = true;
cannam@0 868
cannam@0 869 for (size_t n = 0; n < m_outputDescriptors[output].binCount; ++n) {
cannam@9 870 float value = m_resultBuffer[index + m_lowestCoef];
cannam@0 871 if (isnan(value) || isinf(value)) {
cannam@0 872 good = false;
cannam@0 873 index += (m_outputDescriptors[output].binCount - n);
cannam@0 874 break;
cannam@0 875 }
cannam@0 876 feature.values.push_back(value);
cannam@0 877 ++index;
cannam@0 878 }
cannam@13 879
cannam@0 880 if (good) fs[output].push_back(feature);
cannam@0 881 }
cannam@1 882 // }
cannam@0 883
cannam@1 884 //done:
cannam@1 885 delete[] fft_temp;
cannam@1 886 delete[] data_temp;
cannam@0 887
cannam@3 888 // cerr << "XTractPlugin::process returning" << endl;
cannam@0 889
cannam@0 890 return fs;
cannam@0 891 }
cannam@0 892
cannam@0 893 XTractPlugin::FeatureSet
cannam@0 894 XTractPlugin::getRemainingFeatures()
cannam@0 895 {
cannam@0 896 return FeatureSet();
cannam@0 897 }
cannam@0 898