cannam@0
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@0
|
2
|
cannam@0
|
3 /*
|
cannam@0
|
4 Vamp feature extraction plugins using Jamie Bullock's
|
cannam@0
|
5 libxtract audio feature extraction library.
|
cannam@0
|
6
|
cannam@0
|
7 Centre for Digital Music, Queen Mary, University of London.
|
cannam@14
|
8 This file copyright 2006-2008 Queen Mary, University of London.
|
cannam@0
|
9
|
cannam@0
|
10 This program is free software; you can redistribute it and/or
|
cannam@0
|
11 modify it under the terms of the GNU General Public License as
|
cannam@0
|
12 published by the Free Software Foundation; either version 2 of the
|
cannam@0
|
13 License, or (at your option) any later version. See the file
|
cannam@0
|
14 COPYING included with this distribution for more information.
|
cannam@0
|
15 */
|
cannam@0
|
16
|
cannam@0
|
17 #include "XTractPlugin.h"
|
cannam@0
|
18
|
cannam@0
|
19 #include <cassert>
|
cannam@1
|
20 #include <math.h>
|
cannam@0
|
21
|
cannam@0
|
22
|
cannam@0
|
23 using std::cerr;
|
cannam@0
|
24 using std::endl;
|
cannam@0
|
25 using std::string;
|
cannam@0
|
26
|
cannam@1
|
27 xtract_function_descriptor_t *
|
cannam@1
|
28 XTractPlugin::m_xtDescriptors = 0;
|
cannam@1
|
29
|
cannam@1
|
30 int
|
cannam@1
|
31 XTractPlugin::m_xtDescRefCount = 0;
|
cannam@1
|
32
|
cannam@0
|
33 XTractPlugin::XTractPlugin(unsigned int xtFeature, float inputSampleRate) :
|
cannam@0
|
34 Plugin(inputSampleRate),
|
cannam@0
|
35 m_xtFeature(xtFeature),
|
cannam@0
|
36 m_channels(0),
|
cannam@0
|
37 m_stepSize(0),
|
cannam@0
|
38 m_blockSize(0),
|
cannam@0
|
39 m_resultBuffer(0),
|
cannam@1
|
40 m_peakThreshold(10),
|
cannam@1
|
41 m_rolloffThreshold(90),
|
cannam@1
|
42 m_harmonicThreshold(.1),
|
cannam@0
|
43 m_minFreq(80),
|
cannam@0
|
44 m_maxFreq(18000),
|
cannam@9
|
45 m_coeffCount(40),
|
cannam@9
|
46 m_highestCoef(20),
|
cannam@9
|
47 m_lowestCoef(0),
|
cannam@0
|
48 m_mfccFilters(0),
|
cannam@1
|
49 m_mfccStyle((int)XTRACT_EQUAL_GAIN),
|
cannam@14
|
50 m_spectrumType((int)XTRACT_MAGNITUDE_SPECTRUM),
|
cannam@14
|
51 m_dc(0),
|
cannam@14
|
52 m_normalise(0),
|
cannam@0
|
53 m_barkBandLimits(0),
|
cannam@0
|
54 m_outputBinCount(0),
|
cannam@0
|
55 m_initialised(false)
|
cannam@0
|
56 {
|
cannam@1
|
57 if (m_xtDescRefCount++ == 0) {
|
cannam@1
|
58 m_xtDescriptors =
|
cannam@1
|
59 (xtract_function_descriptor_t *)xtract_make_descriptors();
|
cannam@1
|
60 }
|
cannam@0
|
61 }
|
cannam@0
|
62
|
cannam@0
|
63 XTractPlugin::~XTractPlugin()
|
cannam@0
|
64 {
|
cannam@0
|
65 if (m_mfccFilters) {
|
cannam@0
|
66 for (size_t i = 0; i < m_coeffCount; ++i) {
|
cannam@0
|
67 delete[] m_mfccFilters[i];
|
cannam@0
|
68 }
|
cannam@0
|
69 delete[] m_mfccFilters;
|
cannam@0
|
70 }
|
cannam@0
|
71 if (m_barkBandLimits) {
|
cannam@0
|
72 delete[] m_barkBandLimits;
|
cannam@0
|
73 }
|
cannam@0
|
74 if (m_resultBuffer) {
|
cannam@0
|
75 delete[] m_resultBuffer;
|
cannam@0
|
76 }
|
cannam@1
|
77
|
cannam@1
|
78 if (--m_xtDescRefCount == 0) {
|
cannam@1
|
79 xtract_free_descriptors(m_xtDescriptors);
|
cannam@1
|
80 }
|
cannam@0
|
81 }
|
cannam@0
|
82
|
cannam@0
|
83 string
|
cannam@2
|
84 XTractPlugin::getIdentifier() const
|
cannam@0
|
85 {
|
cannam@1
|
86 return xtDescriptor()->algo.name;
|
cannam@0
|
87 }
|
cannam@0
|
88
|
cannam@0
|
89 string
|
cannam@2
|
90 XTractPlugin::getName() const
|
cannam@2
|
91 {
|
cannam@2
|
92 return xtDescriptor()->algo.p_name;
|
cannam@2
|
93 }
|
cannam@2
|
94
|
cannam@2
|
95 string
|
cannam@0
|
96 XTractPlugin::getDescription() const
|
cannam@0
|
97 {
|
cannam@2
|
98 return xtDescriptor()->algo.p_desc;
|
cannam@0
|
99 }
|
cannam@1
|
100
|
cannam@0
|
101
|
cannam@0
|
102 string
|
cannam@0
|
103 XTractPlugin::getMaker() const
|
cannam@0
|
104 {
|
cannam@0
|
105 return "libxtract by Jamie Bullock (plugin by Chris Cannam)";
|
cannam@0
|
106 }
|
cannam@0
|
107
|
cannam@0
|
108 int
|
cannam@0
|
109 XTractPlugin::getPluginVersion() const
|
cannam@0
|
110 {
|
cannam@14
|
111 return 3;
|
cannam@0
|
112 }
|
cannam@0
|
113
|
cannam@0
|
114 string
|
cannam@0
|
115 XTractPlugin::getCopyright() const
|
cannam@0
|
116 {
|
cannam@14
|
117 string text = "Copyright 2006 Jamie Bullock, plugin Copyright 2006-2008 Queen Mary, University of London. ";
|
cannam@0
|
118
|
cannam@1
|
119 string method = "";
|
cannam@0
|
120
|
cannam@1
|
121 method += xtDescriptor()->algo.author;
|
cannam@0
|
122
|
cannam@9
|
123 if (method != "") {
|
cannam@9
|
124 int year = xtDescriptor()->algo.year;
|
cannam@9
|
125 if (year != 0) {
|
cannam@9
|
126 char yearstr[12];
|
cannam@9
|
127 sprintf(yearstr, " (%d)", year);
|
cannam@9
|
128 method += yearstr;
|
cannam@9
|
129 }
|
cannam@9
|
130 text += "Method from " + method + ". ";
|
cannam@9
|
131 }
|
cannam@9
|
132
|
cannam@0
|
133 text += "Distributed under the GNU General Public License";
|
cannam@0
|
134 return text;
|
cannam@0
|
135 }
|
cannam@0
|
136
|
cannam@0
|
137 XTractPlugin::InputDomain
|
cannam@0
|
138 XTractPlugin::getInputDomain() const
|
cannam@0
|
139 {
|
cannam@1
|
140
|
cannam@1
|
141 if (xtDescriptor()->data.format == XTRACT_AUDIO_SAMPLES)
|
cannam@1
|
142 return TimeDomain;
|
cannam@1
|
143 else
|
cannam@1
|
144 return FrequencyDomain;
|
cannam@0
|
145 }
|
cannam@1
|
146
|
cannam@1
|
147
|
cannam@9
|
148 bool XTractPlugin::m_anyInitialised = false;
|
cannam@0
|
149
|
cannam@0
|
150 bool
|
cannam@0
|
151 XTractPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
cannam@0
|
152 {
|
cannam@1
|
153
|
cannam@1
|
154 int donor = *(xtDescriptor()->argv.donor),
|
cannam@1
|
155 data_format = xtDescriptor()->data.format;
|
cannam@1
|
156
|
cannam@0
|
157 if (channels < getMinChannelCount() ||
|
cannam@0
|
158 channels > getMaxChannelCount()) return false;
|
cannam@0
|
159
|
cannam@9
|
160 if (blockSize != getPreferredBlockSize()) {
|
cannam@9
|
161 cerr << "XTractPlugin::initialise: ERROR: "
|
cannam@9
|
162 << "Only the standard block size of " << getPreferredBlockSize()
|
cannam@9
|
163 << " is supported (owing to global FFT initialisation requirements)" << endl;
|
cannam@9
|
164 return false;
|
cannam@9
|
165 }
|
cannam@9
|
166
|
cannam@0
|
167 m_channels = channels;
|
cannam@0
|
168 m_stepSize = stepSize;
|
cannam@0
|
169 m_blockSize = blockSize;
|
cannam@0
|
170
|
cannam@9
|
171 if (!m_anyInitialised) {
|
cannam@9
|
172 m_anyInitialised = true;
|
cannam@9
|
173 // initialise libxtract
|
cannam@9
|
174 xtract_init_fft(m_blockSize, XTRACT_SPECTRUM);
|
cannam@9
|
175 xtract_init_fft(m_blockSize, XTRACT_AUTOCORRELATION_FFT);
|
cannam@9
|
176 xtract_init_fft(m_blockSize, XTRACT_DCT);
|
cannam@9
|
177 xtract_init_fft(m_blockSize, XTRACT_MFCC);
|
cannam@9
|
178 }
|
cannam@9
|
179
|
cannam@1
|
180 if (donor == XTRACT_INIT_MFCC) {
|
cannam@0
|
181
|
cannam@0
|
182 m_mfccFilters = new float *[m_coeffCount];
|
cannam@0
|
183 for (size_t i = 0; i < m_coeffCount; ++i) {
|
cannam@0
|
184 m_mfccFilters[i] = new float[m_blockSize];
|
cannam@0
|
185 }
|
cannam@0
|
186
|
cannam@0
|
187 int error = (int)xtract_init_mfcc(m_blockSize, m_inputSampleRate/2,
|
cannam@0
|
188 m_mfccStyle, m_minFreq, m_maxFreq,
|
cannam@0
|
189 m_coeffCount, m_mfccFilters);
|
cannam@1
|
190 if (error != XTRACT_SUCCESS) {
|
cannam@0
|
191 cerr << "XTractPlugin::initialise: ERROR: "
|
cannam@0
|
192 << "xtract_init_mfcc returned error code " << error << endl;
|
cannam@0
|
193 return false;
|
cannam@0
|
194 }
|
cannam@0
|
195
|
cannam@1
|
196 } else if (donor == XTRACT_BARK_COEFFICIENTS ||
|
cannam@7
|
197 donor == XTRACT_INIT_BARK ||
|
cannam@1
|
198 data_format == XTRACT_BARK_COEFFS) {
|
cannam@7
|
199
|
cannam@1
|
200 m_barkBandLimits = new int[XTRACT_BARK_BANDS];
|
cannam@0
|
201
|
cannam@1
|
202 /*int error = *(int)*/xtract_init_bark(m_blockSize, m_inputSampleRate,
|
cannam@0
|
203 m_barkBandLimits);
|
cannam@0
|
204 // if (error != SUCCESS) {
|
cannam@0
|
205 // cerr << "XTractPlugin::initialise: ERROR: "
|
cannam@0
|
206 // << "xtract_init_bark returned error code " << error << endl;
|
cannam@0
|
207 // return false;
|
cannam@0
|
208 // }
|
cannam@0
|
209 }
|
cannam@0
|
210
|
cannam@0
|
211 switch (m_xtFeature) {
|
cannam@1
|
212 case XTRACT_SPECTRUM:
|
cannam@14
|
213 m_outputBinCount = m_blockSize / 2 + (m_dc ? 1 : 0); break;
|
cannam@1
|
214 case XTRACT_HARMONIC_SPECTRUM:
|
cannam@1
|
215 case XTRACT_PEAK_SPECTRUM:
|
cannam@1
|
216 m_outputBinCount = m_blockSize / 2; break;
|
cannam@1
|
217 case XTRACT_DCT:
|
cannam@1
|
218 case XTRACT_AUTOCORRELATION_FFT:
|
cannam@1
|
219 case XTRACT_AUTOCORRELATION:
|
cannam@1
|
220 case XTRACT_AMDF:
|
cannam@1
|
221 case XTRACT_ASDF:
|
cannam@1
|
222 m_outputBinCount = m_blockSize; break;
|
cannam@1
|
223 case XTRACT_MFCC:
|
cannam@9
|
224 m_outputBinCount = (m_highestCoef - m_lowestCoef)+1; break;
|
cannam@1
|
225 case XTRACT_BARK_COEFFICIENTS:
|
cannam@1
|
226 m_outputBinCount = XTRACT_BARK_BANDS; break;
|
cannam@1
|
227 default:
|
cannam@1
|
228 m_outputBinCount = 1; break;
|
cannam@0
|
229 }
|
cannam@0
|
230
|
cannam@13
|
231 m_outputDescriptors.clear();
|
cannam@0
|
232 setupOutputDescriptors();
|
cannam@0
|
233
|
cannam@0
|
234 m_initialised = true;
|
cannam@0
|
235
|
cannam@0
|
236 return true;
|
cannam@0
|
237 }
|
cannam@0
|
238
|
cannam@0
|
239 void
|
cannam@0
|
240 XTractPlugin::reset()
|
cannam@0
|
241 {
|
cannam@0
|
242 }
|
cannam@0
|
243
|
cannam@0
|
244 size_t
|
cannam@0
|
245 XTractPlugin::getMinChannelCount() const
|
cannam@0
|
246 {
|
cannam@0
|
247 return 1;
|
cannam@0
|
248 }
|
cannam@0
|
249
|
cannam@0
|
250 size_t
|
cannam@0
|
251 XTractPlugin::getMaxChannelCount() const
|
cannam@0
|
252 {
|
cannam@0
|
253 return 1;
|
cannam@0
|
254 }
|
cannam@0
|
255
|
cannam@0
|
256 size_t
|
cannam@0
|
257 XTractPlugin::getPreferredStepSize() const
|
cannam@0
|
258 {
|
cannam@0
|
259 if (getInputDomain() == FrequencyDomain) {
|
cannam@1
|
260 return getPreferredBlockSize();
|
cannam@1
|
261 } else {
|
cannam@0
|
262 return getPreferredBlockSize() / 2;
|
cannam@0
|
263 }
|
cannam@0
|
264 }
|
cannam@0
|
265
|
cannam@0
|
266 size_t
|
cannam@0
|
267 XTractPlugin::getPreferredBlockSize() const
|
cannam@0
|
268 {
|
cannam@0
|
269 return 1024;
|
cannam@0
|
270 }
|
cannam@0
|
271
|
cannam@0
|
272 XTractPlugin::ParameterList
|
cannam@0
|
273 XTractPlugin::getParameterDescriptors() const
|
cannam@0
|
274 {
|
cannam@0
|
275 ParameterList list;
|
cannam@0
|
276 ParameterDescriptor desc;
|
cannam@0
|
277
|
cannam@1
|
278 if (m_xtFeature == XTRACT_MFCC) {
|
cannam@0
|
279
|
cannam@2
|
280 desc.identifier = "minfreq";
|
cannam@2
|
281 desc.name = "Minimum Frequency";
|
cannam@0
|
282 desc.minValue = 0;
|
cannam@0
|
283 desc.maxValue = m_inputSampleRate / 2;
|
cannam@0
|
284 desc.defaultValue = 80;
|
cannam@0
|
285 desc.isQuantized = false;
|
cannam@0
|
286 desc.unit = "Hz";
|
cannam@0
|
287 list.push_back(desc);
|
cannam@0
|
288
|
cannam@2
|
289 desc.identifier = "maxfreq";
|
cannam@2
|
290 desc.name = "Maximum Frequency";
|
cannam@0
|
291 desc.defaultValue = 18000;
|
cannam@0
|
292 if (desc.defaultValue > m_inputSampleRate * 0.875) {
|
cannam@0
|
293 desc.defaultValue = m_inputSampleRate * 0.875;
|
cannam@0
|
294 }
|
cannam@0
|
295 list.push_back(desc);
|
cannam@0
|
296
|
cannam@2
|
297 desc.identifier = "bands";
|
cannam@9
|
298 desc.name = "# Mel Frequency Bands";
|
cannam@0
|
299 desc.minValue = 10;
|
cannam@9
|
300 desc.maxValue = 80;
|
cannam@9
|
301 desc.defaultValue = 40;
|
cannam@9
|
302 desc.unit = "";
|
cannam@9
|
303 desc.isQuantized = true;
|
cannam@9
|
304 desc.quantizeStep = 1;
|
cannam@9
|
305 list.push_back(desc);
|
cannam@9
|
306
|
cannam@9
|
307 desc.identifier = "lowestcoef";
|
cannam@9
|
308 desc.name = "Lowest Coefficient Returned";
|
cannam@9
|
309 desc.minValue = 0;
|
cannam@9
|
310 desc.maxValue = 80;
|
cannam@9
|
311 desc.defaultValue = 0;
|
cannam@9
|
312 desc.unit = "";
|
cannam@9
|
313 desc.isQuantized = true;
|
cannam@9
|
314 desc.quantizeStep = 1;
|
cannam@9
|
315 list.push_back(desc);
|
cannam@9
|
316
|
cannam@9
|
317 desc.identifier = "highestcoef";
|
cannam@9
|
318 desc.name = "Highest Coefficient Returned";
|
cannam@9
|
319 desc.minValue = 0;
|
cannam@9
|
320 desc.maxValue = 80;
|
cannam@0
|
321 desc.defaultValue = 20;
|
cannam@0
|
322 desc.unit = "";
|
cannam@0
|
323 desc.isQuantized = true;
|
cannam@0
|
324 desc.quantizeStep = 1;
|
cannam@0
|
325 list.push_back(desc);
|
cannam@0
|
326
|
cannam@2
|
327 desc.identifier = "style";
|
cannam@2
|
328 desc.name = "MFCC Type";
|
cannam@0
|
329 desc.minValue = 0;
|
cannam@0
|
330 desc.maxValue = 1;
|
cannam@0
|
331 desc.defaultValue = 0;
|
cannam@0
|
332 desc.valueNames.push_back("Equal Gain");
|
cannam@0
|
333 desc.valueNames.push_back("Equal Area");
|
cannam@0
|
334 list.push_back(desc);
|
cannam@0
|
335 }
|
cannam@0
|
336
|
cannam@14
|
337 if (m_xtFeature == XTRACT_SPECTRUM) {
|
cannam@14
|
338
|
cannam@14
|
339 desc.identifier = "spectrumtype";
|
cannam@14
|
340 desc.name = "Type";
|
cannam@14
|
341 desc.minValue = 0;
|
cannam@14
|
342 desc.maxValue = 3;
|
cannam@14
|
343 desc.defaultValue = int(XTRACT_MAGNITUDE_SPECTRUM);
|
cannam@14
|
344 desc.isQuantized = true;
|
cannam@14
|
345 desc.quantizeStep = 1;
|
cannam@14
|
346 desc.valueNames.push_back("Magnitude Spectrum");
|
cannam@14
|
347 desc.valueNames.push_back("Log Magnitude Spectrum");
|
cannam@14
|
348 desc.valueNames.push_back("Power Spectrum");
|
cannam@14
|
349 desc.valueNames.push_back("Log Power Spectrum");
|
cannam@14
|
350 list.push_back(desc);
|
cannam@14
|
351
|
cannam@14
|
352 desc.identifier = "dc";
|
cannam@14
|
353 desc.name = "Include DC";
|
cannam@14
|
354 desc.maxValue = 1;
|
cannam@14
|
355 desc.defaultValue = 0;
|
cannam@14
|
356 desc.valueNames.clear();
|
cannam@14
|
357 list.push_back(desc);
|
cannam@14
|
358
|
cannam@14
|
359 desc.identifier = "normalise";
|
cannam@14
|
360 desc.name = "Normalise";
|
cannam@14
|
361 list.push_back(desc);
|
cannam@14
|
362 }
|
cannam@14
|
363
|
cannam@0
|
364 if (needPeakThreshold()) {
|
cannam@0
|
365
|
cannam@10
|
366 desc.identifier = "peak-threshold";
|
cannam@2
|
367 desc.name = "Peak Threshold";
|
cannam@0
|
368 desc.minValue = 0;
|
cannam@0
|
369 desc.maxValue = 100;
|
cannam@1
|
370 desc.defaultValue = 10; /* Threshold as % of maximum peak found */
|
cannam@0
|
371 desc.isQuantized = false;
|
cannam@0
|
372 desc.valueNames.clear();
|
cannam@0
|
373 desc.unit = "%";
|
cannam@0
|
374 list.push_back(desc);
|
cannam@0
|
375
|
cannam@1
|
376 }
|
cannam@1
|
377
|
cannam@1
|
378 if (needRolloffThreshold()) {
|
cannam@0
|
379
|
cannam@10
|
380 desc.identifier = "rolloff-threshold";
|
cannam@2
|
381 desc.name = "Rolloff Threshold";
|
cannam@0
|
382 desc.minValue = 0;
|
cannam@0
|
383 desc.maxValue = 100;
|
cannam@1
|
384 desc.defaultValue = 90; /* Freq below which 90% of energy is */
|
cannam@0
|
385 desc.isQuantized = false;
|
cannam@0
|
386 desc.valueNames.clear();
|
cannam@0
|
387 desc.unit = "%";
|
cannam@0
|
388 list.push_back(desc);
|
cannam@1
|
389
|
cannam@1
|
390 }
|
cannam@1
|
391
|
cannam@1
|
392 if (needHarmonicThreshold()) {
|
cannam@1
|
393
|
cannam@10
|
394 desc.identifier = "harmonic-threshold";
|
cannam@2
|
395 desc.name = "Harmonic Threshold";
|
cannam@1
|
396 desc.minValue = 0;
|
cannam@1
|
397 desc.maxValue = 1.0;
|
cannam@1
|
398 desc.defaultValue = .1; /* Distance from nearesst harmonic number */
|
cannam@1
|
399 desc.isQuantized = false;
|
cannam@1
|
400 desc.valueNames.clear();
|
cannam@1
|
401 desc.unit = "";
|
cannam@1
|
402 list.push_back(desc);
|
cannam@0
|
403 }
|
cannam@0
|
404
|
cannam@0
|
405 return list;
|
cannam@0
|
406 }
|
cannam@0
|
407
|
cannam@0
|
408 float
|
cannam@0
|
409 XTractPlugin::getParameter(string param) const
|
cannam@0
|
410 {
|
cannam@1
|
411 if (m_xtFeature == XTRACT_MFCC) {
|
cannam@0
|
412 if (param == "minfreq") return m_minFreq;
|
cannam@0
|
413 if (param == "maxfreq") return m_maxFreq;
|
cannam@0
|
414 if (param == "bands") return m_coeffCount;
|
cannam@9
|
415 if (param == "lowestcoef") return m_lowestCoef;
|
cannam@9
|
416 if (param == "highestcoef") return m_highestCoef;
|
cannam@0
|
417 if (param == "style") return m_mfccStyle;
|
cannam@0
|
418 }
|
cannam@0
|
419
|
cannam@14
|
420 if (m_xtFeature == XTRACT_SPECTRUM) {
|
cannam@14
|
421 if (param == "spectrumtype") return m_spectrumType;
|
cannam@14
|
422 if (param == "dc") return m_dc;
|
cannam@14
|
423 if (param == "normalise") return m_normalise;
|
cannam@14
|
424 }
|
cannam@14
|
425
|
cannam@10
|
426 if (param == "peak-threshold") return m_peakThreshold;
|
cannam@10
|
427 if (param == "rolloff-threshold") return m_rolloffThreshold;
|
cannam@10
|
428 if (param == "harmonic-threshold") return m_harmonicThreshold;
|
cannam@0
|
429
|
cannam@0
|
430 return 0.f;
|
cannam@0
|
431 }
|
cannam@0
|
432
|
cannam@0
|
433 void
|
cannam@0
|
434 XTractPlugin::setParameter(string param, float value)
|
cannam@0
|
435 {
|
cannam@1
|
436 if (m_xtFeature == XTRACT_MFCC) {
|
cannam@0
|
437 if (param == "minfreq") m_minFreq = value;
|
cannam@0
|
438 else if (param == "maxfreq") m_maxFreq = value;
|
cannam@14
|
439 else if (param == "bands") m_coeffCount = int(value + .1);
|
cannam@9
|
440 else if (param == "lowestcoef"){
|
cannam@14
|
441 m_lowestCoef = int(value + .1);
|
cannam@9
|
442 if(m_lowestCoef >= m_coeffCount) m_lowestCoef = m_coeffCount - 1;
|
cannam@9
|
443 if(m_lowestCoef > m_highestCoef) m_lowestCoef = m_highestCoef;
|
cannam@9
|
444 }
|
cannam@9
|
445 else if (param == "highestcoef"){
|
cannam@14
|
446 m_highestCoef = int(value + .1);
|
cannam@9
|
447 if(m_highestCoef >= m_coeffCount) m_highestCoef = m_coeffCount - 1;
|
cannam@9
|
448 if(m_highestCoef < m_lowestCoef) m_highestCoef = m_lowestCoef;
|
cannam@9
|
449 }
|
cannam@14
|
450 else if (param == "style") m_mfccStyle = int(value + .1);
|
cannam@14
|
451 }
|
cannam@14
|
452
|
cannam@14
|
453 if (m_xtFeature == XTRACT_SPECTRUM) {
|
cannam@14
|
454 if (param == "spectrumtype") m_spectrumType = int(value + .1);
|
cannam@14
|
455 if (param == "dc") m_dc = int(value + .1);
|
cannam@14
|
456 if (param == "normalise") m_normalise = int(value + .1);
|
cannam@0
|
457 }
|
cannam@0
|
458
|
cannam@10
|
459 if (param == "peak-threshold") m_peakThreshold = value;
|
cannam@10
|
460 if (param == "rolloff-threshold") m_rolloffThreshold = value;
|
cannam@10
|
461 if (param == "harmonic-threshold") m_harmonicThreshold = value;
|
cannam@0
|
462 }
|
cannam@0
|
463
|
cannam@0
|
464 XTractPlugin::OutputList
|
cannam@0
|
465 XTractPlugin::getOutputDescriptors() const
|
cannam@0
|
466 {
|
cannam@13
|
467 if (m_outputDescriptors.empty()) {
|
cannam@13
|
468 setupOutputDescriptors();
|
cannam@13
|
469 }
|
cannam@0
|
470 return m_outputDescriptors;
|
cannam@0
|
471 }
|
cannam@0
|
472
|
cannam@0
|
473 void
|
cannam@0
|
474 XTractPlugin::setupOutputDescriptors() const
|
cannam@0
|
475 {
|
cannam@0
|
476 OutputDescriptor d;
|
cannam@1
|
477 const xtract_function_descriptor_t *xtFd = xtDescriptor();
|
cannam@2
|
478 d.identifier = getIdentifier();
|
cannam@2
|
479 d.name = getName();
|
cannam@2
|
480 d.description = getDescription();
|
cannam@0
|
481 d.unit = "";
|
cannam@0
|
482 d.hasFixedBinCount = true;
|
cannam@0
|
483 d.binCount = m_outputBinCount;
|
cannam@0
|
484 d.hasKnownExtents = false;
|
cannam@0
|
485 d.isQuantized = false;
|
cannam@0
|
486 d.sampleType = OutputDescriptor::OneSamplePerStep;
|
cannam@0
|
487
|
cannam@9
|
488 if (xtFd->is_scalar){
|
cannam@1
|
489 switch(xtFd->result.scalar.unit){
|
cannam@1
|
490 case XTRACT_HERTZ: d.unit = "Hz"; break;
|
cannam@1
|
491 case XTRACT_DBFS: d.unit = "dB"; break;
|
cannam@1
|
492 default: d.unit = ""; break;
|
cannam@1
|
493 }
|
cannam@1
|
494 }
|
cannam@1
|
495 else {
|
cannam@1
|
496 if (xtFd->result.vector.format == XTRACT_SPECTRAL){
|
cannam@0
|
497
|
cannam@1
|
498 d.binCount /= 2;
|
cannam@2
|
499 d.identifier = "amplitudes";
|
cannam@2
|
500 d.name = "Peak Amplitudes";
|
cannam@2
|
501 d.description = "";
|
cannam@1
|
502 }
|
cannam@1
|
503 }
|
cannam@0
|
504
|
cannam@0
|
505 m_outputDescriptors.push_back(d);
|
cannam@0
|
506 }
|
cannam@0
|
507
|
cannam@0
|
508 bool
|
cannam@0
|
509 XTractPlugin::needPeakThreshold() const
|
cannam@0
|
510 {
|
cannam@1
|
511 const xtract_function_descriptor_t *xtFd = xtDescriptor();
|
cannam@0
|
512
|
cannam@1
|
513 if(m_xtFeature == XTRACT_PEAK_SPECTRUM ||
|
cannam@1
|
514 xtFd->data.format == XTRACT_SPECTRAL_PEAKS ||
|
cannam@1
|
515 xtFd->data.format == XTRACT_SPECTRAL_PEAKS_MAGNITUDES ||
|
cannam@1
|
516 needHarmonicThreshold())
|
cannam@1
|
517 return true;
|
cannam@1
|
518 else return false;
|
cannam@1
|
519 }
|
cannam@1
|
520
|
cannam@1
|
521 bool
|
cannam@1
|
522 XTractPlugin::needHarmonicThreshold() const
|
cannam@1
|
523 {
|
cannam@1
|
524 const xtract_function_descriptor_t *xtFd = xtDescriptor();
|
cannam@1
|
525
|
cannam@1
|
526 if(m_xtFeature == XTRACT_HARMONIC_SPECTRUM ||
|
cannam@1
|
527 xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_FREQUENCIES ||
|
cannam@1
|
528 m_xtFeature == XTRACT_NOISINESS ||
|
cannam@1
|
529 xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_MAGNITUDES)
|
cannam@1
|
530 return true;
|
cannam@1
|
531 else return false;
|
cannam@1
|
532 }
|
cannam@1
|
533
|
cannam@1
|
534 bool
|
cannam@1
|
535 XTractPlugin::needRolloffThreshold() const
|
cannam@1
|
536 {
|
cannam@1
|
537 if(m_xtFeature == XTRACT_ROLLOFF)
|
cannam@1
|
538 return true;
|
cannam@1
|
539 else
|
cannam@1
|
540 return false;
|
cannam@0
|
541 }
|
cannam@0
|
542
|
cannam@0
|
543 XTractPlugin::FeatureSet
|
cannam@0
|
544 XTractPlugin::process(const float *const *inputBuffers,
|
cannam@0
|
545 Vamp::RealTime timestamp)
|
cannam@0
|
546 {
|
cannam@13
|
547 if (m_outputDescriptors.empty()) {
|
cannam@13
|
548 setupOutputDescriptors();
|
cannam@13
|
549 }
|
cannam@0
|
550
|
cannam@14
|
551 int rbs =
|
cannam@14
|
552 // Add 2 here to accommodate extra data for spectrum with DC
|
cannam@14
|
553 2 + (m_outputBinCount > m_blockSize ? m_outputBinCount : m_blockSize);
|
cannam@0
|
554 if (!m_resultBuffer) {
|
cannam@0
|
555 m_resultBuffer = new float[rbs];
|
cannam@0
|
556 }
|
cannam@0
|
557
|
cannam@1
|
558 int i;
|
cannam@1
|
559
|
cannam@1
|
560 for (i = 0; i < rbs; ++i) m_resultBuffer[i] = 0.f;
|
cannam@1
|
561
|
cannam@1
|
562 const float *data = 0;
|
cannam@1
|
563 float *fft_temp = 0, *data_temp = 0;
|
cannam@1
|
564 int N = m_blockSize, M = N >> 1;
|
cannam@0
|
565 void *argv = 0;
|
cannam@1
|
566 bool isSpectral = false;
|
cannam@1
|
567 xtract_function_descriptor_t *xtFd = xtDescriptor();
|
cannam@0
|
568
|
cannam@0
|
569 FeatureSet fs;
|
cannam@0
|
570
|
cannam@1
|
571 switch (xtFd->data.format) {
|
cannam@1
|
572 case XTRACT_AUDIO_SAMPLES:
|
cannam@1
|
573 data = &inputBuffers[0][0];
|
cannam@1
|
574 break;
|
cannam@1
|
575 case XTRACT_SPECTRAL:
|
cannam@1
|
576 default:
|
cannam@1
|
577 // All the rest are derived from the spectrum
|
cannam@1
|
578 // Need same format as would be output by xtract_spectrum
|
cannam@1
|
579 float q = m_inputSampleRate / N;
|
cannam@1
|
580 fft_temp = new float[N];
|
cannam@1
|
581 for (int n = 1; n < N/2; ++n) {
|
cannam@1
|
582 fft_temp[n] = sqrt(inputBuffers[0][n*2] *
|
cannam@1
|
583 inputBuffers[0][n*2] + inputBuffers[0][n*2+1] *
|
cannam@1
|
584 inputBuffers[0][n*2+1]) / N;
|
cannam@1
|
585 fft_temp[N-n] = (N/2 - n) * q;
|
cannam@1
|
586 }
|
cannam@1
|
587 fft_temp[0] = fabs(inputBuffers[0][0]) / N;
|
cannam@1
|
588 fft_temp[N/2] = fabs(inputBuffers[0][N]) / N;
|
cannam@1
|
589 data = &fft_temp[0];
|
cannam@1
|
590 isSpectral = true;
|
cannam@1
|
591 break;
|
cannam@0
|
592 }
|
cannam@0
|
593
|
cannam@0
|
594 assert(m_outputBinCount > 0);
|
cannam@0
|
595
|
cannam@0
|
596 float *result = m_resultBuffer;
|
cannam@0
|
597
|
cannam@1
|
598 float argf[XTRACT_MAXARGS];
|
cannam@0
|
599 argv = &argf[0];
|
cannam@14
|
600 argf[0] = 0.f; // handy for some, e.g. lowest_value which has a threshold
|
cannam@0
|
601
|
cannam@1
|
602 float mean, variance, sd, npartials, nharmonics;
|
cannam@0
|
603
|
cannam@1
|
604 bool needSD, needVariance, needMean, needPeaks,
|
cannam@1
|
605 needBarkCoefficients, needHarmonics, needF0, needSFM, needMax,
|
cannam@1
|
606 needNumPartials, needNumHarmonics;
|
cannam@0
|
607
|
cannam@1
|
608 int donor;
|
cannam@0
|
609
|
cannam@1
|
610 needSD = needVariance = needMean = needPeaks =
|
cannam@1
|
611 needBarkCoefficients = needF0 = needHarmonics = needSFM = needMax =
|
cannam@1
|
612 needNumPartials = needNumHarmonics = 0;
|
cannam@0
|
613
|
cannam@1
|
614 mean = variance = sd = npartials = nharmonics = 0.f;
|
cannam@0
|
615
|
cannam@1
|
616 i = xtFd->argc;
|
cannam@0
|
617
|
cannam@1
|
618 while(i--){
|
cannam@14
|
619 if (m_xtFeature == XTRACT_BARK_COEFFICIENTS) {
|
cannam@14
|
620 /* "BARK_COEFFICIENTS is special because argc = BARK_BANDS" */
|
cannam@14
|
621 break;
|
cannam@14
|
622 }
|
cannam@1
|
623 donor = xtFd->argv.donor[i];
|
cannam@1
|
624 switch(donor){
|
cannam@1
|
625 case XTRACT_STANDARD_DEVIATION:
|
cannam@1
|
626 case XTRACT_SPECTRAL_STANDARD_DEVIATION:
|
cannam@1
|
627 needSD = 1;
|
cannam@1
|
628 break;
|
cannam@1
|
629 case XTRACT_VARIANCE:
|
cannam@1
|
630 case XTRACT_SPECTRAL_VARIANCE:
|
cannam@1
|
631 needVariance = 1;
|
cannam@1
|
632 break;
|
cannam@1
|
633 case XTRACT_MEAN:
|
cannam@1
|
634 case XTRACT_SPECTRAL_MEAN:
|
cannam@1
|
635 needMean = 1;
|
cannam@1
|
636 break;
|
cannam@1
|
637 case XTRACT_F0:
|
cannam@1
|
638 case XTRACT_FAILSAFE_F0:
|
cannam@1
|
639 needF0 = 1;
|
cannam@1
|
640 break;
|
cannam@1
|
641 case XTRACT_FLATNESS:
|
cannam@1
|
642 needSFM = 1;
|
cannam@1
|
643 case XTRACT_HIGHEST_VALUE:
|
cannam@1
|
644 needMax = 1;
|
cannam@1
|
645 break;
|
cannam@1
|
646 }
|
cannam@1
|
647 }
|
cannam@1
|
648
|
cannam@1
|
649 if(needHarmonicThreshold() && m_xtFeature != XTRACT_HARMONIC_SPECTRUM)
|
cannam@1
|
650 needHarmonics = needF0 = 1;
|
cannam@1
|
651
|
cannam@1
|
652 if(needPeakThreshold() && m_xtFeature != XTRACT_PEAK_SPECTRUM)
|
cannam@1
|
653 needPeaks = 1;
|
cannam@1
|
654
|
cannam@1
|
655 if(xtFd->data.format == XTRACT_BARK_COEFFS &&
|
cannam@1
|
656 m_xtFeature != XTRACT_BARK_COEFFICIENTS){
|
cannam@1
|
657 needBarkCoefficients = 1;
|
cannam@0
|
658 }
|
cannam@0
|
659
|
cannam@0
|
660 if (needMean) {
|
cannam@1
|
661 if(isSpectral)
|
cannam@1
|
662 xtract_spectral_mean(data, N, 0, result);
|
cannam@1
|
663 else
|
cannam@1
|
664 xtract_mean(data, M, 0, result);
|
cannam@0
|
665 mean = *result;
|
cannam@0
|
666 *result = 0.f;
|
cannam@0
|
667 }
|
cannam@0
|
668
|
cannam@1
|
669 if (needVariance || needSD) {
|
cannam@0
|
670 argf[0] = mean;
|
cannam@1
|
671 if(isSpectral)
|
cannam@1
|
672 xtract_spectral_variance(data, N, argv, result);
|
cannam@1
|
673 else
|
cannam@1
|
674 xtract_variance(data, M, argv, result);
|
cannam@0
|
675 variance = *result;
|
cannam@0
|
676 *result = 0.f;
|
cannam@0
|
677 }
|
cannam@0
|
678
|
cannam@0
|
679 if (needSD) {
|
cannam@0
|
680 argf[0] = variance;
|
cannam@1
|
681 if(isSpectral)
|
cannam@1
|
682 xtract_spectral_standard_deviation(data, N, argv, result);
|
cannam@1
|
683 else
|
cannam@1
|
684 xtract_standard_deviation(data, M, argv, result);
|
cannam@0
|
685 sd = *result;
|
cannam@0
|
686 *result = 0.f;
|
cannam@0
|
687 }
|
cannam@0
|
688
|
cannam@1
|
689 if (needMax) {
|
cannam@1
|
690 xtract_highest_value(data, M, argv, result);
|
cannam@1
|
691 argf[1] = *result;
|
cannam@1
|
692 *result = 0.f;
|
cannam@1
|
693 }
|
cannam@1
|
694
|
cannam@0
|
695 if (needSD) {
|
cannam@0
|
696 argf[0] = mean;
|
cannam@0
|
697 argf[1] = sd;
|
cannam@0
|
698 } else if (needVariance) {
|
cannam@0
|
699 argf[0] = variance;
|
cannam@0
|
700 } else if (needMean) {
|
cannam@0
|
701 argf[0] = mean;
|
cannam@0
|
702 }
|
cannam@0
|
703
|
cannam@0
|
704 // data should be now correct for all except:
|
cannam@1
|
705 // XTRACT_SPECTRAL_CENTROID -- N/2 magnitude peaks and N/2 frequencies
|
cannam@1
|
706 // TONALITY -- SFM
|
cannam@0
|
707 // TRISTIMULUS_1/2/3 -- harmonic spectrum
|
cannam@0
|
708 // ODD_EVEN_RATIO -- harmonic spectrum
|
cannam@0
|
709 // LOUDNESS -- Bark coefficients
|
cannam@1
|
710 // XTRACT_HARMONIC_SPECTRUM -- peak spectrum
|
cannam@0
|
711
|
cannam@0
|
712 // argv should be now correct for all except:
|
cannam@0
|
713 //
|
cannam@1
|
714 // XTRACT_ROLLOFF -- (sr/N), threshold (%)
|
cannam@1
|
715 // XTRACT_PEAK_SPECTRUM -- (sr / N), peak threshold (%)
|
cannam@1
|
716 // XTRACT_HARMONIC_SPECTRUM -- f0, harmonic threshold
|
cannam@1
|
717 // XTRACT_F0 -- samplerate
|
cannam@1
|
718 // XTRACT_MFCC -- Mel filter coefficients
|
cannam@1
|
719 // XTRACT_BARK_COEFFICIENTS -- Bark band limits
|
cannam@1
|
720 // XTRACT_NOISINESS -- npartials, nharmonics.
|
cannam@14
|
721 // XTRACT_SPECTRUM -- q, spectrum type, dc, normalise
|
cannam@0
|
722
|
cannam@1
|
723 data_temp = new float[N];
|
cannam@1
|
724
|
cannam@1
|
725 if (m_xtFeature == XTRACT_ROLLOFF ||
|
cannam@9
|
726 m_xtFeature == XTRACT_PEAK_SPECTRUM || needPeaks) {
|
cannam@1
|
727 argf[0] = m_inputSampleRate / N;
|
cannam@1
|
728 if(m_xtFeature == XTRACT_ROLLOFF)
|
cannam@1
|
729 argf[1] = m_rolloffThreshold;
|
cannam@1
|
730 else
|
cannam@1
|
731 argf[1] = m_peakThreshold;
|
cannam@0
|
732 argv = &argf[0];
|
cannam@0
|
733 }
|
cannam@0
|
734
|
cannam@14
|
735 if (m_xtFeature == XTRACT_SPECTRUM) {
|
cannam@14
|
736 argf[0] = 0; // xtract_spectrum will calculate this for us
|
cannam@14
|
737 argf[1] = m_spectrumType;
|
cannam@14
|
738 argf[2] = m_dc;
|
cannam@14
|
739 argf[3] = m_normalise;
|
cannam@14
|
740 argv = &argf[0];
|
cannam@14
|
741 }
|
cannam@14
|
742
|
cannam@0
|
743 if (needPeaks) {
|
cannam@1
|
744 //We only read in the magnitudes (M)
|
cannam@1
|
745 /*int rv = */ xtract_peak_spectrum(data, M, argv, result);
|
cannam@0
|
746 for (int n = 0; n < N; ++n) {
|
cannam@1
|
747 data_temp[n] = result[n];
|
cannam@0
|
748 result[n] = 0.f;
|
cannam@0
|
749 }
|
cannam@0
|
750 // rv not trustworthy
|
cannam@0
|
751 // if (rv != SUCCESS) {
|
cannam@0
|
752 // cerr << "ERROR: XTractPlugin::process: xtract_peaks failed (error code = " << rv << ")" << endl;
|
cannam@0
|
753 // goto done;
|
cannam@0
|
754 // }
|
cannam@0
|
755 }
|
cannam@0
|
756
|
cannam@1
|
757 if (needNumPartials) {
|
cannam@1
|
758 xtract_nonzero_count(data_temp, M, NULL, &npartials);
|
cannam@1
|
759 }
|
cannam@1
|
760
|
cannam@1
|
761 if (needF0 || m_xtFeature == XTRACT_FAILSAFE_F0 ||
|
cannam@1
|
762 m_xtFeature == XTRACT_F0) {
|
cannam@1
|
763 argf[0] = m_inputSampleRate;
|
cannam@1
|
764 argv = &argf[0];
|
cannam@1
|
765 }
|
cannam@1
|
766
|
cannam@1
|
767 if (needF0) {
|
cannam@1
|
768 xtract_failsafe_f0(&inputBuffers[0][0], N,
|
cannam@1
|
769 (void *)&m_inputSampleRate, result);
|
cannam@1
|
770 argf[0] = *result;
|
cannam@1
|
771 argv = &argf[0];
|
cannam@1
|
772 }
|
cannam@1
|
773
|
cannam@1
|
774 if (needSFM) {
|
cannam@1
|
775 xtract_flatness(data, N >> 1, 0, &argf[0]);
|
cannam@1
|
776 argv = &argf[0];
|
cannam@1
|
777 }
|
cannam@1
|
778
|
cannam@1
|
779 if (needHarmonics || m_xtFeature == XTRACT_HARMONIC_SPECTRUM){
|
cannam@1
|
780 argf[1] = m_harmonicThreshold;
|
cannam@1
|
781 }
|
cannam@1
|
782
|
cannam@1
|
783 if (needHarmonics){
|
cannam@1
|
784 xtract_harmonic_spectrum(data_temp, N, argv, result);
|
cannam@1
|
785 for (int n = 0; n < N; ++n) {
|
cannam@1
|
786 data_temp[n] = result[n];
|
cannam@1
|
787 result[n] = 0.f;
|
cannam@1
|
788 }
|
cannam@1
|
789 }
|
cannam@1
|
790
|
cannam@1
|
791 if (needNumHarmonics) {
|
cannam@1
|
792 xtract_nonzero_count(data_temp, M, NULL, &nharmonics);
|
cannam@1
|
793 }
|
cannam@1
|
794
|
cannam@1
|
795 if (m_xtFeature == XTRACT_NOISINESS) {
|
cannam@1
|
796
|
cannam@1
|
797 argf[0] = nharmonics;
|
cannam@1
|
798 argf[1] = npartials;
|
cannam@1
|
799 argv = &argf[0];
|
cannam@1
|
800
|
cannam@1
|
801 }
|
cannam@1
|
802
|
cannam@1
|
803 if (needBarkCoefficients || m_xtFeature == XTRACT_BARK_COEFFICIENTS) {
|
cannam@1
|
804 argv = &m_barkBandLimits[0];
|
cannam@1
|
805 }
|
cannam@1
|
806
|
cannam@1
|
807 xtract_mel_filter mfccFilterBank;
|
cannam@1
|
808 if (m_xtFeature == XTRACT_MFCC) {
|
cannam@1
|
809 mfccFilterBank.n_filters = m_coeffCount;
|
cannam@1
|
810 mfccFilterBank.filters = m_mfccFilters;
|
cannam@1
|
811 argv = &mfccFilterBank;
|
cannam@1
|
812 }
|
cannam@1
|
813
|
cannam@0
|
814 if (needBarkCoefficients) {
|
cannam@1
|
815
|
cannam@1
|
816 /*int rv = */ xtract_bark_coefficients(data, 0, argv, data_temp);
|
cannam@0
|
817 // if (rv != SUCCESS) {
|
cannam@0
|
818 // cerr << "ERROR: XTractPlugin::process: xtract_bark_coefficients failed (error code = " << rv << ")" << endl;
|
cannam@0
|
819 // goto done;
|
cannam@0
|
820 // }
|
cannam@1
|
821 data = &data_temp[0];
|
cannam@0
|
822 argv = 0;
|
cannam@0
|
823 }
|
cannam@1
|
824
|
cannam@1
|
825 if (xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_FREQUENCIES) {
|
cannam@0
|
826
|
cannam@1
|
827 N = M;
|
cannam@1
|
828 data = &data_temp[N];
|
cannam@0
|
829
|
cannam@1
|
830 } else if (xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_MAGNITUDES) {
|
cannam@0
|
831
|
cannam@1
|
832 N = M;
|
cannam@1
|
833 data = &data_temp[0];
|
cannam@1
|
834
|
cannam@1
|
835 }
|
cannam@0
|
836
|
cannam@1
|
837 // If we only want spectral magnitudes, use first half of the input array
|
cannam@1
|
838 else if(xtFd->data.format == XTRACT_SPECTRAL_MAGNITUDES ||
|
cannam@1
|
839 xtFd->data.format == XTRACT_SPECTRAL_PEAKS_MAGNITUDES ||
|
cannam@1
|
840 xtFd->data.format == XTRACT_ARBITRARY_SERIES) {
|
cannam@1
|
841 N = M;
|
cannam@1
|
842 }
|
cannam@1
|
843
|
cannam@1
|
844 else if(xtFd->data.format == XTRACT_BARK_COEFFS) {
|
cannam@1
|
845
|
cannam@1
|
846 N = XTRACT_BARK_BANDS - 1; /* Because our SR is 44100 (< 54000)*/
|
cannam@1
|
847 }
|
cannam@1
|
848
|
cannam@1
|
849 if (needPeaks && !needHarmonics) {
|
cannam@1
|
850
|
cannam@1
|
851 data = &data_temp[0];
|
cannam@1
|
852
|
cannam@0
|
853 }
|
cannam@0
|
854
|
cannam@0
|
855 // now the main result
|
cannam@0
|
856 xtract[m_xtFeature](data, N, argv, result);
|
cannam@0
|
857
|
cannam@1
|
858 //haveResult:
|
cannam@1
|
859 // {
|
cannam@0
|
860 int index = 0;
|
cannam@0
|
861
|
cannam@0
|
862 for (size_t output = 0; output < m_outputDescriptors.size(); ++output) {
|
cannam@0
|
863
|
cannam@0
|
864 Feature feature;
|
cannam@0
|
865 feature.hasTimestamp = false;
|
cannam@0
|
866 bool good = true;
|
cannam@0
|
867
|
cannam@0
|
868 for (size_t n = 0; n < m_outputDescriptors[output].binCount; ++n) {
|
cannam@9
|
869 float value = m_resultBuffer[index + m_lowestCoef];
|
cannam@0
|
870 if (isnan(value) || isinf(value)) {
|
cannam@0
|
871 good = false;
|
cannam@0
|
872 index += (m_outputDescriptors[output].binCount - n);
|
cannam@0
|
873 break;
|
cannam@0
|
874 }
|
cannam@0
|
875 feature.values.push_back(value);
|
cannam@0
|
876 ++index;
|
cannam@0
|
877 }
|
cannam@13
|
878
|
cannam@0
|
879 if (good) fs[output].push_back(feature);
|
cannam@0
|
880 }
|
cannam@1
|
881 // }
|
cannam@0
|
882
|
cannam@1
|
883 //done:
|
cannam@1
|
884 delete[] fft_temp;
|
cannam@1
|
885 delete[] data_temp;
|
cannam@0
|
886
|
cannam@3
|
887 // cerr << "XTractPlugin::process returning" << endl;
|
cannam@0
|
888
|
cannam@0
|
889 return fs;
|
cannam@0
|
890 }
|
cannam@0
|
891
|
cannam@0
|
892 XTractPlugin::FeatureSet
|
cannam@0
|
893 XTractPlugin::getRemainingFeatures()
|
cannam@0
|
894 {
|
cannam@0
|
895 return FeatureSet();
|
cannam@0
|
896 }
|
cannam@0
|
897
|