annotate plugins/XTractPlugin.cpp @ 23:06f5888f0897

Remove scrap file
author Chris Cannam
date Tue, 04 Dec 2012 15:56:48 +0000
parents 0dd75140d034
children 64b85e38dd52 0d26e1096bac
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 Vamp feature extraction plugins using Jamie Bullock's
cannam@0 5 libxtract audio feature extraction library.
cannam@0 6
cannam@0 7 Centre for Digital Music, Queen Mary, University of London.
cannam@14 8 This file copyright 2006-2008 Queen Mary, University of London.
cannam@0 9
cannam@0 10 This program is free software; you can redistribute it and/or
cannam@0 11 modify it under the terms of the GNU General Public License as
cannam@0 12 published by the Free Software Foundation; either version 2 of the
cannam@0 13 License, or (at your option) any later version. See the file
cannam@0 14 COPYING included with this distribution for more information.
cannam@0 15 */
cannam@0 16
cannam@0 17 #include "XTractPlugin.h"
cannam@0 18
cannam@0 19 #include <cassert>
cannam@1 20 #include <math.h>
cannam@0 21
cannam@0 22
cannam@0 23 using std::cerr;
cannam@0 24 using std::endl;
cannam@0 25 using std::string;
cannam@0 26
cannam@1 27 xtract_function_descriptor_t *
cannam@1 28 XTractPlugin::m_xtDescriptors = 0;
cannam@1 29
cannam@1 30 int
cannam@1 31 XTractPlugin::m_xtDescRefCount = 0;
cannam@1 32
cannam@0 33 XTractPlugin::XTractPlugin(unsigned int xtFeature, float inputSampleRate) :
cannam@0 34 Plugin(inputSampleRate),
cannam@0 35 m_xtFeature(xtFeature),
cannam@0 36 m_channels(0),
cannam@0 37 m_stepSize(0),
cannam@0 38 m_blockSize(0),
cannam@0 39 m_resultBuffer(0),
cannam@1 40 m_peakThreshold(10),
cannam@1 41 m_rolloffThreshold(90),
cannam@1 42 m_harmonicThreshold(.1),
cannam@0 43 m_minFreq(80),
cannam@0 44 m_maxFreq(18000),
cannam@9 45 m_coeffCount(40),
cannam@9 46 m_highestCoef(20),
cannam@9 47 m_lowestCoef(0),
cannam@0 48 m_mfccFilters(0),
cannam@1 49 m_mfccStyle((int)XTRACT_EQUAL_GAIN),
cannam@14 50 m_spectrumType((int)XTRACT_MAGNITUDE_SPECTRUM),
cannam@14 51 m_dc(0),
cannam@14 52 m_normalise(0),
cannam@0 53 m_barkBandLimits(0),
cannam@0 54 m_outputBinCount(0),
cannam@0 55 m_initialised(false)
cannam@0 56 {
cannam@1 57 if (m_xtDescRefCount++ == 0) {
cannam@1 58 m_xtDescriptors =
cannam@1 59 (xtract_function_descriptor_t *)xtract_make_descriptors();
cannam@1 60 }
cannam@0 61 }
cannam@0 62
cannam@0 63 XTractPlugin::~XTractPlugin()
cannam@0 64 {
cannam@0 65 if (m_mfccFilters) {
cannam@0 66 for (size_t i = 0; i < m_coeffCount; ++i) {
cannam@0 67 delete[] m_mfccFilters[i];
cannam@0 68 }
cannam@0 69 delete[] m_mfccFilters;
cannam@0 70 }
cannam@0 71 if (m_barkBandLimits) {
cannam@0 72 delete[] m_barkBandLimits;
cannam@0 73 }
cannam@0 74 if (m_resultBuffer) {
cannam@0 75 delete[] m_resultBuffer;
cannam@0 76 }
cannam@1 77
cannam@1 78 if (--m_xtDescRefCount == 0) {
cannam@1 79 xtract_free_descriptors(m_xtDescriptors);
cannam@1 80 }
cannam@0 81 }
cannam@0 82
cannam@0 83 string
cannam@2 84 XTractPlugin::getIdentifier() const
cannam@0 85 {
cannam@1 86 return xtDescriptor()->algo.name;
cannam@0 87 }
cannam@0 88
cannam@0 89 string
cannam@2 90 XTractPlugin::getName() const
cannam@2 91 {
cannam@2 92 return xtDescriptor()->algo.p_name;
cannam@2 93 }
cannam@2 94
cannam@2 95 string
cannam@0 96 XTractPlugin::getDescription() const
cannam@0 97 {
cannam@2 98 return xtDescriptor()->algo.p_desc;
cannam@0 99 }
cannam@1 100
cannam@0 101
cannam@0 102 string
cannam@0 103 XTractPlugin::getMaker() const
cannam@0 104 {
cannam@0 105 return "libxtract by Jamie Bullock (plugin by Chris Cannam)";
cannam@0 106 }
cannam@0 107
cannam@0 108 int
cannam@0 109 XTractPlugin::getPluginVersion() const
cannam@0 110 {
cannam@14 111 return 3;
cannam@0 112 }
cannam@0 113
cannam@0 114 string
cannam@0 115 XTractPlugin::getCopyright() const
cannam@0 116 {
cannam@14 117 string text = "Copyright 2006 Jamie Bullock, plugin Copyright 2006-2008 Queen Mary, University of London. ";
cannam@0 118
cannam@1 119 string method = "";
cannam@0 120
cannam@1 121 method += xtDescriptor()->algo.author;
cannam@0 122
cannam@9 123 if (method != "") {
cannam@9 124 int year = xtDescriptor()->algo.year;
cannam@9 125 if (year != 0) {
cannam@9 126 char yearstr[12];
cannam@9 127 sprintf(yearstr, " (%d)", year);
cannam@9 128 method += yearstr;
cannam@9 129 }
cannam@9 130 text += "Method from " + method + ". ";
cannam@9 131 }
cannam@9 132
cannam@0 133 text += "Distributed under the GNU General Public License";
cannam@0 134 return text;
cannam@0 135 }
cannam@0 136
cannam@0 137 XTractPlugin::InputDomain
cannam@0 138 XTractPlugin::getInputDomain() const
cannam@0 139 {
cannam@1 140
cannam@1 141 if (xtDescriptor()->data.format == XTRACT_AUDIO_SAMPLES)
cannam@1 142 return TimeDomain;
cannam@1 143 else
cannam@1 144 return FrequencyDomain;
cannam@0 145 }
cannam@1 146
cannam@1 147
cannam@9 148 bool XTractPlugin::m_anyInitialised = false;
cannam@0 149
cannam@0 150 bool
cannam@0 151 XTractPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
cannam@0 152 {
cannam@1 153
cannam@1 154 int donor = *(xtDescriptor()->argv.donor),
cannam@1 155 data_format = xtDescriptor()->data.format;
cannam@1 156
cannam@0 157 if (channels < getMinChannelCount() ||
cannam@0 158 channels > getMaxChannelCount()) return false;
cannam@0 159
cannam@9 160 if (blockSize != getPreferredBlockSize()) {
cannam@9 161 cerr << "XTractPlugin::initialise: ERROR: "
cannam@9 162 << "Only the standard block size of " << getPreferredBlockSize()
cannam@9 163 << " is supported (owing to global FFT initialisation requirements)" << endl;
cannam@9 164 return false;
cannam@9 165 }
cannam@9 166
cannam@0 167 m_channels = channels;
cannam@0 168 m_stepSize = stepSize;
cannam@0 169 m_blockSize = blockSize;
cannam@0 170
cannam@9 171 if (!m_anyInitialised) {
cannam@9 172 m_anyInitialised = true;
cannam@9 173 // initialise libxtract
cannam@9 174 xtract_init_fft(m_blockSize, XTRACT_SPECTRUM);
cannam@9 175 xtract_init_fft(m_blockSize, XTRACT_AUTOCORRELATION_FFT);
cannam@9 176 xtract_init_fft(m_blockSize, XTRACT_DCT);
cannam@9 177 xtract_init_fft(m_blockSize, XTRACT_MFCC);
cannam@9 178 }
cannam@9 179
cannam@1 180 if (donor == XTRACT_INIT_MFCC) {
cannam@0 181
cannam@0 182 m_mfccFilters = new float *[m_coeffCount];
cannam@0 183 for (size_t i = 0; i < m_coeffCount; ++i) {
cannam@0 184 m_mfccFilters[i] = new float[m_blockSize];
cannam@0 185 }
cannam@0 186
cannam@0 187 int error = (int)xtract_init_mfcc(m_blockSize, m_inputSampleRate/2,
cannam@0 188 m_mfccStyle, m_minFreq, m_maxFreq,
cannam@0 189 m_coeffCount, m_mfccFilters);
cannam@1 190 if (error != XTRACT_SUCCESS) {
cannam@0 191 cerr << "XTractPlugin::initialise: ERROR: "
cannam@0 192 << "xtract_init_mfcc returned error code " << error << endl;
cannam@0 193 return false;
cannam@0 194 }
cannam@0 195
cannam@1 196 } else if (donor == XTRACT_BARK_COEFFICIENTS ||
cannam@7 197 donor == XTRACT_INIT_BARK ||
cannam@1 198 data_format == XTRACT_BARK_COEFFS) {
cannam@7 199
cannam@1 200 m_barkBandLimits = new int[XTRACT_BARK_BANDS];
cannam@0 201
cannam@1 202 /*int error = *(int)*/xtract_init_bark(m_blockSize, m_inputSampleRate,
cannam@0 203 m_barkBandLimits);
cannam@0 204 // if (error != SUCCESS) {
cannam@0 205 // cerr << "XTractPlugin::initialise: ERROR: "
cannam@0 206 // << "xtract_init_bark returned error code " << error << endl;
cannam@0 207 // return false;
cannam@0 208 // }
cannam@0 209 }
cannam@0 210
cannam@0 211 switch (m_xtFeature) {
cannam@1 212 case XTRACT_SPECTRUM:
cannam@14 213 m_outputBinCount = m_blockSize / 2 + (m_dc ? 1 : 0); break;
cannam@1 214 case XTRACT_HARMONIC_SPECTRUM:
cannam@1 215 case XTRACT_PEAK_SPECTRUM:
cannam@1 216 m_outputBinCount = m_blockSize / 2; break;
cannam@1 217 case XTRACT_DCT:
cannam@1 218 case XTRACT_AUTOCORRELATION_FFT:
cannam@1 219 case XTRACT_AUTOCORRELATION:
cannam@1 220 case XTRACT_AMDF:
cannam@1 221 case XTRACT_ASDF:
cannam@1 222 m_outputBinCount = m_blockSize; break;
cannam@1 223 case XTRACT_MFCC:
cannam@9 224 m_outputBinCount = (m_highestCoef - m_lowestCoef)+1; break;
cannam@1 225 case XTRACT_BARK_COEFFICIENTS:
cannam@1 226 m_outputBinCount = XTRACT_BARK_BANDS; break;
cannam@1 227 default:
cannam@1 228 m_outputBinCount = 1; break;
cannam@0 229 }
cannam@0 230
cannam@13 231 m_outputDescriptors.clear();
cannam@0 232 setupOutputDescriptors();
cannam@0 233
cannam@0 234 m_initialised = true;
cannam@0 235
cannam@0 236 return true;
cannam@0 237 }
cannam@0 238
cannam@0 239 void
cannam@0 240 XTractPlugin::reset()
cannam@0 241 {
cannam@0 242 }
cannam@0 243
cannam@0 244 size_t
cannam@0 245 XTractPlugin::getMinChannelCount() const
cannam@0 246 {
cannam@0 247 return 1;
cannam@0 248 }
cannam@0 249
cannam@0 250 size_t
cannam@0 251 XTractPlugin::getMaxChannelCount() const
cannam@0 252 {
cannam@0 253 return 1;
cannam@0 254 }
cannam@0 255
cannam@0 256 size_t
cannam@0 257 XTractPlugin::getPreferredStepSize() const
cannam@0 258 {
cannam@0 259 if (getInputDomain() == FrequencyDomain) {
cannam@1 260 return getPreferredBlockSize();
cannam@1 261 } else {
cannam@0 262 return getPreferredBlockSize() / 2;
cannam@0 263 }
cannam@0 264 }
cannam@0 265
cannam@0 266 size_t
cannam@0 267 XTractPlugin::getPreferredBlockSize() const
cannam@0 268 {
cannam@0 269 return 1024;
cannam@0 270 }
cannam@0 271
cannam@0 272 XTractPlugin::ParameterList
cannam@0 273 XTractPlugin::getParameterDescriptors() const
cannam@0 274 {
cannam@0 275 ParameterList list;
cannam@0 276 ParameterDescriptor desc;
cannam@0 277
cannam@1 278 if (m_xtFeature == XTRACT_MFCC) {
cannam@0 279
cannam@2 280 desc.identifier = "minfreq";
cannam@2 281 desc.name = "Minimum Frequency";
cannam@0 282 desc.minValue = 0;
cannam@0 283 desc.maxValue = m_inputSampleRate / 2;
cannam@0 284 desc.defaultValue = 80;
cannam@0 285 desc.isQuantized = false;
cannam@0 286 desc.unit = "Hz";
cannam@0 287 list.push_back(desc);
cannam@0 288
cannam@2 289 desc.identifier = "maxfreq";
cannam@2 290 desc.name = "Maximum Frequency";
cannam@0 291 desc.defaultValue = 18000;
cannam@0 292 if (desc.defaultValue > m_inputSampleRate * 0.875) {
cannam@0 293 desc.defaultValue = m_inputSampleRate * 0.875;
cannam@0 294 }
cannam@0 295 list.push_back(desc);
cannam@0 296
cannam@2 297 desc.identifier = "bands";
cannam@9 298 desc.name = "# Mel Frequency Bands";
cannam@0 299 desc.minValue = 10;
cannam@9 300 desc.maxValue = 80;
cannam@9 301 desc.defaultValue = 40;
cannam@9 302 desc.unit = "";
cannam@9 303 desc.isQuantized = true;
cannam@9 304 desc.quantizeStep = 1;
cannam@9 305 list.push_back(desc);
cannam@9 306
cannam@9 307 desc.identifier = "lowestcoef";
cannam@9 308 desc.name = "Lowest Coefficient Returned";
cannam@9 309 desc.minValue = 0;
cannam@9 310 desc.maxValue = 80;
cannam@9 311 desc.defaultValue = 0;
cannam@9 312 desc.unit = "";
cannam@9 313 desc.isQuantized = true;
cannam@9 314 desc.quantizeStep = 1;
cannam@9 315 list.push_back(desc);
cannam@9 316
cannam@9 317 desc.identifier = "highestcoef";
cannam@9 318 desc.name = "Highest Coefficient Returned";
cannam@9 319 desc.minValue = 0;
cannam@9 320 desc.maxValue = 80;
cannam@0 321 desc.defaultValue = 20;
cannam@0 322 desc.unit = "";
cannam@0 323 desc.isQuantized = true;
cannam@0 324 desc.quantizeStep = 1;
cannam@0 325 list.push_back(desc);
cannam@0 326
cannam@2 327 desc.identifier = "style";
cannam@2 328 desc.name = "MFCC Type";
cannam@0 329 desc.minValue = 0;
cannam@0 330 desc.maxValue = 1;
cannam@0 331 desc.defaultValue = 0;
cannam@0 332 desc.valueNames.push_back("Equal Gain");
cannam@0 333 desc.valueNames.push_back("Equal Area");
cannam@0 334 list.push_back(desc);
cannam@0 335 }
cannam@0 336
cannam@14 337 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 338
cannam@14 339 desc.identifier = "spectrumtype";
cannam@14 340 desc.name = "Type";
cannam@14 341 desc.minValue = 0;
cannam@14 342 desc.maxValue = 3;
cannam@14 343 desc.defaultValue = int(XTRACT_MAGNITUDE_SPECTRUM);
cannam@14 344 desc.isQuantized = true;
cannam@14 345 desc.quantizeStep = 1;
cannam@14 346 desc.valueNames.push_back("Magnitude Spectrum");
cannam@14 347 desc.valueNames.push_back("Log Magnitude Spectrum");
cannam@14 348 desc.valueNames.push_back("Power Spectrum");
cannam@14 349 desc.valueNames.push_back("Log Power Spectrum");
cannam@14 350 list.push_back(desc);
cannam@14 351
cannam@14 352 desc.identifier = "dc";
cannam@14 353 desc.name = "Include DC";
cannam@14 354 desc.maxValue = 1;
cannam@14 355 desc.defaultValue = 0;
cannam@14 356 desc.valueNames.clear();
cannam@14 357 list.push_back(desc);
cannam@14 358
cannam@14 359 desc.identifier = "normalise";
cannam@14 360 desc.name = "Normalise";
cannam@14 361 list.push_back(desc);
cannam@14 362 }
cannam@14 363
cannam@0 364 if (needPeakThreshold()) {
cannam@0 365
cannam@10 366 desc.identifier = "peak-threshold";
cannam@2 367 desc.name = "Peak Threshold";
cannam@0 368 desc.minValue = 0;
cannam@0 369 desc.maxValue = 100;
cannam@1 370 desc.defaultValue = 10; /* Threshold as % of maximum peak found */
cannam@0 371 desc.isQuantized = false;
cannam@0 372 desc.valueNames.clear();
cannam@0 373 desc.unit = "%";
cannam@0 374 list.push_back(desc);
cannam@0 375
cannam@1 376 }
cannam@1 377
cannam@1 378 if (needRolloffThreshold()) {
cannam@0 379
cannam@10 380 desc.identifier = "rolloff-threshold";
cannam@2 381 desc.name = "Rolloff Threshold";
cannam@0 382 desc.minValue = 0;
cannam@0 383 desc.maxValue = 100;
cannam@1 384 desc.defaultValue = 90; /* Freq below which 90% of energy is */
cannam@0 385 desc.isQuantized = false;
cannam@0 386 desc.valueNames.clear();
cannam@0 387 desc.unit = "%";
cannam@0 388 list.push_back(desc);
cannam@1 389
cannam@1 390 }
cannam@1 391
cannam@1 392 if (needHarmonicThreshold()) {
cannam@1 393
cannam@10 394 desc.identifier = "harmonic-threshold";
cannam@2 395 desc.name = "Harmonic Threshold";
cannam@1 396 desc.minValue = 0;
cannam@1 397 desc.maxValue = 1.0;
cannam@1 398 desc.defaultValue = .1; /* Distance from nearesst harmonic number */
cannam@1 399 desc.isQuantized = false;
cannam@1 400 desc.valueNames.clear();
cannam@1 401 desc.unit = "";
cannam@1 402 list.push_back(desc);
cannam@0 403 }
cannam@0 404
cannam@0 405 return list;
cannam@0 406 }
cannam@0 407
cannam@0 408 float
cannam@0 409 XTractPlugin::getParameter(string param) const
cannam@0 410 {
cannam@1 411 if (m_xtFeature == XTRACT_MFCC) {
cannam@0 412 if (param == "minfreq") return m_minFreq;
cannam@0 413 if (param == "maxfreq") return m_maxFreq;
cannam@0 414 if (param == "bands") return m_coeffCount;
cannam@9 415 if (param == "lowestcoef") return m_lowestCoef;
cannam@9 416 if (param == "highestcoef") return m_highestCoef;
cannam@0 417 if (param == "style") return m_mfccStyle;
cannam@0 418 }
cannam@0 419
cannam@14 420 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 421 if (param == "spectrumtype") return m_spectrumType;
cannam@14 422 if (param == "dc") return m_dc;
cannam@14 423 if (param == "normalise") return m_normalise;
cannam@14 424 }
cannam@14 425
cannam@10 426 if (param == "peak-threshold") return m_peakThreshold;
cannam@10 427 if (param == "rolloff-threshold") return m_rolloffThreshold;
cannam@10 428 if (param == "harmonic-threshold") return m_harmonicThreshold;
cannam@0 429
cannam@0 430 return 0.f;
cannam@0 431 }
cannam@0 432
cannam@0 433 void
cannam@0 434 XTractPlugin::setParameter(string param, float value)
cannam@0 435 {
cannam@1 436 if (m_xtFeature == XTRACT_MFCC) {
cannam@0 437 if (param == "minfreq") m_minFreq = value;
cannam@0 438 else if (param == "maxfreq") m_maxFreq = value;
cannam@14 439 else if (param == "bands") m_coeffCount = int(value + .1);
cannam@9 440 else if (param == "lowestcoef"){
cannam@14 441 m_lowestCoef = int(value + .1);
cannam@9 442 if(m_lowestCoef >= m_coeffCount) m_lowestCoef = m_coeffCount - 1;
cannam@9 443 if(m_lowestCoef > m_highestCoef) m_lowestCoef = m_highestCoef;
cannam@9 444 }
cannam@9 445 else if (param == "highestcoef"){
cannam@14 446 m_highestCoef = int(value + .1);
cannam@9 447 if(m_highestCoef >= m_coeffCount) m_highestCoef = m_coeffCount - 1;
cannam@9 448 if(m_highestCoef < m_lowestCoef) m_highestCoef = m_lowestCoef;
cannam@9 449 }
cannam@14 450 else if (param == "style") m_mfccStyle = int(value + .1);
cannam@14 451 }
cannam@14 452
cannam@14 453 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 454 if (param == "spectrumtype") m_spectrumType = int(value + .1);
cannam@14 455 if (param == "dc") m_dc = int(value + .1);
cannam@14 456 if (param == "normalise") m_normalise = int(value + .1);
cannam@0 457 }
cannam@0 458
cannam@10 459 if (param == "peak-threshold") m_peakThreshold = value;
cannam@10 460 if (param == "rolloff-threshold") m_rolloffThreshold = value;
cannam@10 461 if (param == "harmonic-threshold") m_harmonicThreshold = value;
cannam@0 462 }
cannam@0 463
cannam@0 464 XTractPlugin::OutputList
cannam@0 465 XTractPlugin::getOutputDescriptors() const
cannam@0 466 {
cannam@13 467 if (m_outputDescriptors.empty()) {
cannam@13 468 setupOutputDescriptors();
cannam@13 469 }
cannam@0 470 return m_outputDescriptors;
cannam@0 471 }
cannam@0 472
cannam@0 473 void
cannam@0 474 XTractPlugin::setupOutputDescriptors() const
cannam@0 475 {
cannam@0 476 OutputDescriptor d;
cannam@1 477 const xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@2 478 d.identifier = getIdentifier();
cannam@2 479 d.name = getName();
cannam@2 480 d.description = getDescription();
cannam@0 481 d.unit = "";
cannam@0 482 d.hasFixedBinCount = true;
cannam@0 483 d.binCount = m_outputBinCount;
cannam@0 484 d.hasKnownExtents = false;
cannam@0 485 d.isQuantized = false;
cannam@0 486 d.sampleType = OutputDescriptor::OneSamplePerStep;
cannam@0 487
cannam@9 488 if (xtFd->is_scalar){
cannam@1 489 switch(xtFd->result.scalar.unit){
cannam@1 490 case XTRACT_HERTZ: d.unit = "Hz"; break;
cannam@1 491 case XTRACT_DBFS: d.unit = "dB"; break;
cannam@1 492 default: d.unit = ""; break;
cannam@1 493 }
cannam@1 494 }
cannam@1 495 else {
cannam@1 496 if (xtFd->result.vector.format == XTRACT_SPECTRAL){
cannam@0 497
cannam@1 498 d.binCount /= 2;
cannam@2 499 d.identifier = "amplitudes";
cannam@2 500 d.name = "Peak Amplitudes";
cannam@2 501 d.description = "";
cannam@1 502 }
cannam@1 503 }
cannam@0 504
cannam@0 505 m_outputDescriptors.push_back(d);
cannam@0 506 }
cannam@0 507
cannam@0 508 bool
cannam@0 509 XTractPlugin::needPeakThreshold() const
cannam@0 510 {
cannam@1 511 const xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@0 512
cannam@1 513 if(m_xtFeature == XTRACT_PEAK_SPECTRUM ||
cannam@1 514 xtFd->data.format == XTRACT_SPECTRAL_PEAKS ||
cannam@1 515 xtFd->data.format == XTRACT_SPECTRAL_PEAKS_MAGNITUDES ||
cannam@1 516 needHarmonicThreshold())
cannam@1 517 return true;
cannam@1 518 else return false;
cannam@1 519 }
cannam@1 520
cannam@1 521 bool
cannam@1 522 XTractPlugin::needHarmonicThreshold() const
cannam@1 523 {
cannam@1 524 const xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@1 525
cannam@1 526 if(m_xtFeature == XTRACT_HARMONIC_SPECTRUM ||
cannam@1 527 xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_FREQUENCIES ||
cannam@1 528 m_xtFeature == XTRACT_NOISINESS ||
cannam@1 529 xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_MAGNITUDES)
cannam@1 530 return true;
cannam@1 531 else return false;
cannam@1 532 }
cannam@1 533
cannam@1 534 bool
cannam@1 535 XTractPlugin::needRolloffThreshold() const
cannam@1 536 {
cannam@1 537 if(m_xtFeature == XTRACT_ROLLOFF)
cannam@1 538 return true;
cannam@1 539 else
cannam@1 540 return false;
cannam@0 541 }
cannam@0 542
cannam@0 543 XTractPlugin::FeatureSet
cannam@0 544 XTractPlugin::process(const float *const *inputBuffers,
cannam@0 545 Vamp::RealTime timestamp)
cannam@0 546 {
cannam@13 547 if (m_outputDescriptors.empty()) {
cannam@13 548 setupOutputDescriptors();
cannam@13 549 }
cannam@0 550
cannam@14 551 int rbs =
cannam@14 552 // Add 2 here to accommodate extra data for spectrum with DC
cannam@14 553 2 + (m_outputBinCount > m_blockSize ? m_outputBinCount : m_blockSize);
cannam@0 554 if (!m_resultBuffer) {
cannam@0 555 m_resultBuffer = new float[rbs];
cannam@0 556 }
cannam@0 557
cannam@1 558 int i;
cannam@1 559
cannam@1 560 for (i = 0; i < rbs; ++i) m_resultBuffer[i] = 0.f;
cannam@1 561
cannam@1 562 const float *data = 0;
cannam@1 563 float *fft_temp = 0, *data_temp = 0;
cannam@1 564 int N = m_blockSize, M = N >> 1;
cannam@0 565 void *argv = 0;
cannam@1 566 bool isSpectral = false;
cannam@1 567 xtract_function_descriptor_t *xtFd = xtDescriptor();
cannam@0 568
cannam@0 569 FeatureSet fs;
cannam@0 570
cannam@1 571 switch (xtFd->data.format) {
cannam@1 572 case XTRACT_AUDIO_SAMPLES:
cannam@1 573 data = &inputBuffers[0][0];
cannam@1 574 break;
cannam@1 575 case XTRACT_SPECTRAL:
cannam@1 576 default:
cannam@1 577 // All the rest are derived from the spectrum
cannam@1 578 // Need same format as would be output by xtract_spectrum
cannam@1 579 float q = m_inputSampleRate / N;
cannam@1 580 fft_temp = new float[N];
cannam@1 581 for (int n = 1; n < N/2; ++n) {
cannam@1 582 fft_temp[n] = sqrt(inputBuffers[0][n*2] *
cannam@1 583 inputBuffers[0][n*2] + inputBuffers[0][n*2+1] *
cannam@1 584 inputBuffers[0][n*2+1]) / N;
cannam@1 585 fft_temp[N-n] = (N/2 - n) * q;
cannam@1 586 }
cannam@1 587 fft_temp[0] = fabs(inputBuffers[0][0]) / N;
cannam@1 588 fft_temp[N/2] = fabs(inputBuffers[0][N]) / N;
cannam@1 589 data = &fft_temp[0];
cannam@1 590 isSpectral = true;
cannam@1 591 break;
cannam@0 592 }
cannam@0 593
cannam@0 594 assert(m_outputBinCount > 0);
cannam@0 595
cannam@0 596 float *result = m_resultBuffer;
cannam@0 597
cannam@1 598 float argf[XTRACT_MAXARGS];
cannam@0 599 argv = &argf[0];
cannam@14 600 argf[0] = 0.f; // handy for some, e.g. lowest_value which has a threshold
cannam@0 601
cannam@1 602 float mean, variance, sd, npartials, nharmonics;
cannam@0 603
cannam@1 604 bool needSD, needVariance, needMean, needPeaks,
cannam@1 605 needBarkCoefficients, needHarmonics, needF0, needSFM, needMax,
cannam@1 606 needNumPartials, needNumHarmonics;
cannam@0 607
cannam@1 608 int donor;
cannam@0 609
cannam@1 610 needSD = needVariance = needMean = needPeaks =
cannam@1 611 needBarkCoefficients = needF0 = needHarmonics = needSFM = needMax =
cannam@1 612 needNumPartials = needNumHarmonics = 0;
cannam@0 613
cannam@1 614 mean = variance = sd = npartials = nharmonics = 0.f;
cannam@0 615
cannam@1 616 i = xtFd->argc;
cannam@0 617
cannam@1 618 while(i--){
cannam@14 619 if (m_xtFeature == XTRACT_BARK_COEFFICIENTS) {
cannam@14 620 /* "BARK_COEFFICIENTS is special because argc = BARK_BANDS" */
cannam@14 621 break;
cannam@14 622 }
cannam@1 623 donor = xtFd->argv.donor[i];
cannam@1 624 switch(donor){
cannam@1 625 case XTRACT_STANDARD_DEVIATION:
cannam@1 626 case XTRACT_SPECTRAL_STANDARD_DEVIATION:
cannam@1 627 needSD = 1;
cannam@1 628 break;
cannam@1 629 case XTRACT_VARIANCE:
cannam@1 630 case XTRACT_SPECTRAL_VARIANCE:
cannam@1 631 needVariance = 1;
cannam@1 632 break;
cannam@1 633 case XTRACT_MEAN:
cannam@1 634 case XTRACT_SPECTRAL_MEAN:
cannam@1 635 needMean = 1;
cannam@1 636 break;
cannam@1 637 case XTRACT_F0:
cannam@1 638 case XTRACT_FAILSAFE_F0:
cannam@1 639 needF0 = 1;
cannam@1 640 break;
cannam@1 641 case XTRACT_FLATNESS:
cannam@1 642 needSFM = 1;
cannam@1 643 case XTRACT_HIGHEST_VALUE:
cannam@1 644 needMax = 1;
cannam@1 645 break;
cannam@1 646 }
cannam@1 647 }
cannam@1 648
cannam@1 649 if(needHarmonicThreshold() && m_xtFeature != XTRACT_HARMONIC_SPECTRUM)
cannam@1 650 needHarmonics = needF0 = 1;
cannam@1 651
cannam@1 652 if(needPeakThreshold() && m_xtFeature != XTRACT_PEAK_SPECTRUM)
cannam@1 653 needPeaks = 1;
cannam@1 654
cannam@1 655 if(xtFd->data.format == XTRACT_BARK_COEFFS &&
cannam@1 656 m_xtFeature != XTRACT_BARK_COEFFICIENTS){
cannam@1 657 needBarkCoefficients = 1;
cannam@0 658 }
cannam@0 659
cannam@0 660 if (needMean) {
cannam@1 661 if(isSpectral)
cannam@1 662 xtract_spectral_mean(data, N, 0, result);
cannam@1 663 else
cannam@1 664 xtract_mean(data, M, 0, result);
cannam@0 665 mean = *result;
cannam@0 666 *result = 0.f;
cannam@0 667 }
cannam@0 668
cannam@1 669 if (needVariance || needSD) {
cannam@0 670 argf[0] = mean;
cannam@1 671 if(isSpectral)
cannam@1 672 xtract_spectral_variance(data, N, argv, result);
cannam@1 673 else
cannam@1 674 xtract_variance(data, M, argv, result);
cannam@0 675 variance = *result;
cannam@0 676 *result = 0.f;
cannam@0 677 }
cannam@0 678
cannam@0 679 if (needSD) {
cannam@0 680 argf[0] = variance;
cannam@1 681 if(isSpectral)
cannam@1 682 xtract_spectral_standard_deviation(data, N, argv, result);
cannam@1 683 else
cannam@1 684 xtract_standard_deviation(data, M, argv, result);
cannam@0 685 sd = *result;
cannam@0 686 *result = 0.f;
cannam@0 687 }
cannam@0 688
cannam@1 689 if (needMax) {
cannam@1 690 xtract_highest_value(data, M, argv, result);
cannam@1 691 argf[1] = *result;
cannam@1 692 *result = 0.f;
cannam@1 693 }
cannam@1 694
cannam@0 695 if (needSD) {
cannam@0 696 argf[0] = mean;
cannam@0 697 argf[1] = sd;
cannam@0 698 } else if (needVariance) {
cannam@0 699 argf[0] = variance;
cannam@0 700 } else if (needMean) {
cannam@0 701 argf[0] = mean;
cannam@0 702 }
cannam@0 703
cannam@0 704 // data should be now correct for all except:
cannam@1 705 // XTRACT_SPECTRAL_CENTROID -- N/2 magnitude peaks and N/2 frequencies
cannam@1 706 // TONALITY -- SFM
cannam@0 707 // TRISTIMULUS_1/2/3 -- harmonic spectrum
cannam@0 708 // ODD_EVEN_RATIO -- harmonic spectrum
cannam@0 709 // LOUDNESS -- Bark coefficients
cannam@1 710 // XTRACT_HARMONIC_SPECTRUM -- peak spectrum
cannam@0 711
cannam@0 712 // argv should be now correct for all except:
cannam@0 713 //
cannam@1 714 // XTRACT_ROLLOFF -- (sr/N), threshold (%)
cannam@1 715 // XTRACT_PEAK_SPECTRUM -- (sr / N), peak threshold (%)
cannam@1 716 // XTRACT_HARMONIC_SPECTRUM -- f0, harmonic threshold
cannam@1 717 // XTRACT_F0 -- samplerate
cannam@1 718 // XTRACT_MFCC -- Mel filter coefficients
cannam@1 719 // XTRACT_BARK_COEFFICIENTS -- Bark band limits
cannam@1 720 // XTRACT_NOISINESS -- npartials, nharmonics.
cannam@14 721 // XTRACT_SPECTRUM -- q, spectrum type, dc, normalise
cannam@0 722
cannam@1 723 data_temp = new float[N];
cannam@1 724
cannam@1 725 if (m_xtFeature == XTRACT_ROLLOFF ||
cannam@9 726 m_xtFeature == XTRACT_PEAK_SPECTRUM || needPeaks) {
cannam@1 727 argf[0] = m_inputSampleRate / N;
cannam@1 728 if(m_xtFeature == XTRACT_ROLLOFF)
cannam@1 729 argf[1] = m_rolloffThreshold;
cannam@1 730 else
cannam@1 731 argf[1] = m_peakThreshold;
cannam@0 732 argv = &argf[0];
cannam@0 733 }
cannam@0 734
cannam@14 735 if (m_xtFeature == XTRACT_SPECTRUM) {
cannam@14 736 argf[0] = 0; // xtract_spectrum will calculate this for us
cannam@14 737 argf[1] = m_spectrumType;
cannam@14 738 argf[2] = m_dc;
cannam@14 739 argf[3] = m_normalise;
cannam@14 740 argv = &argf[0];
cannam@14 741 }
cannam@14 742
cannam@0 743 if (needPeaks) {
cannam@1 744 //We only read in the magnitudes (M)
cannam@1 745 /*int rv = */ xtract_peak_spectrum(data, M, argv, result);
cannam@0 746 for (int n = 0; n < N; ++n) {
cannam@1 747 data_temp[n] = result[n];
cannam@0 748 result[n] = 0.f;
cannam@0 749 }
cannam@0 750 // rv not trustworthy
cannam@0 751 // if (rv != SUCCESS) {
cannam@0 752 // cerr << "ERROR: XTractPlugin::process: xtract_peaks failed (error code = " << rv << ")" << endl;
cannam@0 753 // goto done;
cannam@0 754 // }
cannam@0 755 }
cannam@0 756
cannam@1 757 if (needNumPartials) {
cannam@1 758 xtract_nonzero_count(data_temp, M, NULL, &npartials);
cannam@1 759 }
cannam@1 760
cannam@1 761 if (needF0 || m_xtFeature == XTRACT_FAILSAFE_F0 ||
cannam@1 762 m_xtFeature == XTRACT_F0) {
cannam@1 763 argf[0] = m_inputSampleRate;
cannam@1 764 argv = &argf[0];
cannam@1 765 }
cannam@1 766
cannam@1 767 if (needF0) {
cannam@1 768 xtract_failsafe_f0(&inputBuffers[0][0], N,
cannam@1 769 (void *)&m_inputSampleRate, result);
cannam@1 770 argf[0] = *result;
cannam@1 771 argv = &argf[0];
cannam@1 772 }
cannam@1 773
cannam@1 774 if (needSFM) {
cannam@1 775 xtract_flatness(data, N >> 1, 0, &argf[0]);
cannam@1 776 argv = &argf[0];
cannam@1 777 }
cannam@1 778
cannam@1 779 if (needHarmonics || m_xtFeature == XTRACT_HARMONIC_SPECTRUM){
cannam@1 780 argf[1] = m_harmonicThreshold;
cannam@1 781 }
cannam@1 782
cannam@1 783 if (needHarmonics){
cannam@1 784 xtract_harmonic_spectrum(data_temp, N, argv, result);
cannam@1 785 for (int n = 0; n < N; ++n) {
cannam@1 786 data_temp[n] = result[n];
cannam@1 787 result[n] = 0.f;
cannam@1 788 }
cannam@1 789 }
cannam@1 790
cannam@1 791 if (needNumHarmonics) {
cannam@1 792 xtract_nonzero_count(data_temp, M, NULL, &nharmonics);
cannam@1 793 }
cannam@1 794
cannam@1 795 if (m_xtFeature == XTRACT_NOISINESS) {
cannam@1 796
cannam@1 797 argf[0] = nharmonics;
cannam@1 798 argf[1] = npartials;
cannam@1 799 argv = &argf[0];
cannam@1 800
cannam@1 801 }
cannam@1 802
cannam@1 803 if (needBarkCoefficients || m_xtFeature == XTRACT_BARK_COEFFICIENTS) {
cannam@1 804 argv = &m_barkBandLimits[0];
cannam@1 805 }
cannam@1 806
cannam@1 807 xtract_mel_filter mfccFilterBank;
cannam@1 808 if (m_xtFeature == XTRACT_MFCC) {
cannam@1 809 mfccFilterBank.n_filters = m_coeffCount;
cannam@1 810 mfccFilterBank.filters = m_mfccFilters;
cannam@1 811 argv = &mfccFilterBank;
cannam@1 812 }
cannam@1 813
cannam@0 814 if (needBarkCoefficients) {
cannam@1 815
cannam@1 816 /*int rv = */ xtract_bark_coefficients(data, 0, argv, data_temp);
cannam@0 817 // if (rv != SUCCESS) {
cannam@0 818 // cerr << "ERROR: XTractPlugin::process: xtract_bark_coefficients failed (error code = " << rv << ")" << endl;
cannam@0 819 // goto done;
cannam@0 820 // }
cannam@1 821 data = &data_temp[0];
cannam@0 822 argv = 0;
cannam@0 823 }
cannam@1 824
cannam@1 825 if (xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_FREQUENCIES) {
cannam@0 826
cannam@1 827 N = M;
cannam@1 828 data = &data_temp[N];
cannam@0 829
cannam@1 830 } else if (xtFd->data.format == XTRACT_SPECTRAL_HARMONICS_MAGNITUDES) {
cannam@0 831
cannam@1 832 N = M;
cannam@1 833 data = &data_temp[0];
cannam@1 834
cannam@1 835 }
cannam@0 836
cannam@1 837 // If we only want spectral magnitudes, use first half of the input array
cannam@1 838 else if(xtFd->data.format == XTRACT_SPECTRAL_MAGNITUDES ||
cannam@1 839 xtFd->data.format == XTRACT_SPECTRAL_PEAKS_MAGNITUDES ||
cannam@1 840 xtFd->data.format == XTRACT_ARBITRARY_SERIES) {
cannam@1 841 N = M;
cannam@1 842 }
cannam@1 843
cannam@1 844 else if(xtFd->data.format == XTRACT_BARK_COEFFS) {
cannam@1 845
cannam@1 846 N = XTRACT_BARK_BANDS - 1; /* Because our SR is 44100 (< 54000)*/
cannam@1 847 }
cannam@1 848
cannam@1 849 if (needPeaks && !needHarmonics) {
cannam@1 850
cannam@1 851 data = &data_temp[0];
cannam@1 852
cannam@0 853 }
cannam@0 854
cannam@0 855 // now the main result
cannam@0 856 xtract[m_xtFeature](data, N, argv, result);
cannam@0 857
cannam@1 858 //haveResult:
cannam@1 859 // {
cannam@0 860 int index = 0;
cannam@0 861
cannam@0 862 for (size_t output = 0; output < m_outputDescriptors.size(); ++output) {
cannam@0 863
cannam@0 864 Feature feature;
cannam@0 865 feature.hasTimestamp = false;
cannam@0 866 bool good = true;
cannam@0 867
cannam@0 868 for (size_t n = 0; n < m_outputDescriptors[output].binCount; ++n) {
cannam@9 869 float value = m_resultBuffer[index + m_lowestCoef];
cannam@0 870 if (isnan(value) || isinf(value)) {
cannam@0 871 good = false;
cannam@0 872 index += (m_outputDescriptors[output].binCount - n);
cannam@0 873 break;
cannam@0 874 }
cannam@0 875 feature.values.push_back(value);
cannam@0 876 ++index;
cannam@0 877 }
cannam@13 878
cannam@0 879 if (good) fs[output].push_back(feature);
cannam@0 880 }
cannam@1 881 // }
cannam@0 882
cannam@1 883 //done:
cannam@1 884 delete[] fft_temp;
cannam@1 885 delete[] data_temp;
cannam@0 886
cannam@3 887 // cerr << "XTractPlugin::process returning" << endl;
cannam@0 888
cannam@0 889 return fs;
cannam@0 890 }
cannam@0 891
cannam@0 892 XTractPlugin::FeatureSet
cannam@0 893 XTractPlugin::getRemainingFeatures()
cannam@0 894 {
cannam@0 895 return FeatureSet();
cannam@0 896 }
cannam@0 897