Chris@0: /* Chris@0: copyright (C) 2011 I. Irigaray, M. Rocamora Chris@0: Chris@0: This program is free software: you can redistribute it and/or modify Chris@0: it under the terms of the GNU General Public License as published by Chris@0: the Free Software Foundation, either version 3 of the License, or Chris@0: (at your option) any later version. Chris@0: Chris@0: This program is distributed in the hope that it will be useful, Chris@0: but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@0: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@0: GNU General Public License for more details. Chris@0: Chris@0: You should have received a copy of the GNU General Public License Chris@0: along with this program. If not, see . Chris@7: */ Chris@0: Chris@0: #include "FChTransformF0gram.h" Chris@0: #include "FChTransformUtils.h" Chris@0: #include Chris@0: #include Chris@14: Chris@19: #include Chris@19: Chris@14: #include "bqvec/Allocators.h" Chris@14: Chris@14: using namespace breakfastquay; Chris@14: Chris@27: //#define DEBUG Chris@7: Chris@0: #define MAX(x, y) (((x) > (y)) ? (x) : (y)) Chris@0: Chris@15: FChTransformF0gram::FChTransformF0gram(ProcessingMode mode, Chris@15: float inputSampleRate) : Chris@7: Plugin(inputSampleRate), Chris@15: m_processingMode(mode), Chris@20: m_initialised(false), Chris@20: m_stepSize(256), Chris@20: m_blockSize(8192) { Chris@0: Chris@24: nsamp_options.push_back(256); Chris@24: nsamp_options.push_back(512); Chris@24: nsamp_options.push_back(1024); Chris@24: nsamp_options.push_back(2048); Chris@24: nsamp_options.push_back(4096); Chris@24: nsamp_options.push_back(8192); Chris@24: Chris@0: m_fs = inputSampleRate; Chris@0: // max frequency of interest (Hz) Chris@0: m_fmax = 10000.f; Chris@0: // warping parameters Chris@12: m_warp_params.nsamps_twarp = 2048; Chris@0: m_warp_params.alpha_max = 4; Chris@0: m_warp_params.num_warps = 21; Chris@0: m_warp_params.fact_over_samp = 2; Chris@0: m_warp_params.alpha_dist = 0; Chris@0: // f0 parameters Chris@0: m_f0_params.f0min = 80.0; Chris@0: m_f0_params.num_octs = 4; Chris@0: m_f0_params.num_f0s_per_oct = 192; Chris@0: m_f0_params.prefer = true; Chris@0: m_f0_params.prefer_mean = 60; Chris@0: m_f0_params.prefer_stdev = 18; Chris@0: // glogs parameters Chris@0: m_glogs_params.HP_logS = true; Chris@0: m_glogs_params.att_subharms = 1; Chris@7: // display parameters Chris@15: m_f0gram_mode = BestBinOfAllDirections; Chris@0: Chris@0: m_glogs_params.median_poly_coefs[0] = -0.000000058551680; Chris@0: m_glogs_params.median_poly_coefs[1] = -0.000006945207775; Chris@0: m_glogs_params.median_poly_coefs[2] = 0.002357223226588; Chris@0: Chris@0: m_glogs_params.sigma_poly_coefs[0] = 0.000000092782308; Chris@0: m_glogs_params.sigma_poly_coefs[1] = 0.000057283574898; Chris@0: m_glogs_params.sigma_poly_coefs[2] = 0.022199903714288; Chris@0: Chris@0: m_num_f0s = 0; Chris@16: m_f0s = 0; Chris@0: } Chris@0: Chris@14: FChTransformF0gram::~FChTransformF0gram() Chris@14: { Chris@20: if (!m_initialised) { Chris@14: return; // nothing was allocated Chris@14: } Chris@14: Chris@20: deallocate(m_inputBuffer); Chris@20: Chris@14: deallocate(m_warpings.pos_int); Chris@14: deallocate(m_warpings.pos_frac); Chris@14: deallocate(m_warpings.chirp_rates); Chris@14: Chris@14: clean_LPF(); Chris@14: Chris@14: deallocate(m_timeWindow); Chris@14: Chris@14: deallocate(mp_HanningWindow); Chris@14: Chris@14: // Warping Chris@14: deallocate(x_warping); Chris@14: delete fft_xwarping; Chris@14: deallocate(m_absFanChirpTransform); Chris@14: deallocate(m_auxFanChirpTransform); Chris@14: Chris@14: // design_GLogS Chris@14: deallocate(m_glogs_f0); Chris@14: deallocate(m_glogs); Chris@14: deallocate(m_glogs_n); Chris@14: deallocate(m_glogs_index); Chris@14: deallocate(m_glogs_posint); Chris@14: deallocate(m_glogs_posfrac); Chris@14: deallocate(m_glogs_interp); Chris@14: deallocate(m_glogs_third_harmonic_posint); Chris@14: deallocate(m_glogs_third_harmonic_posfrac); Chris@14: deallocate(m_glogs_third_harmonic); Chris@14: deallocate(m_glogs_fifth_harmonic_posint); Chris@14: deallocate(m_glogs_fifth_harmonic_posfrac); Chris@14: deallocate(m_glogs_fifth_harmonic); Chris@14: deallocate(m_glogs_f0_preference_weights); Chris@14: deallocate(m_glogs_median_correction); Chris@14: deallocate(m_glogs_sigma_correction); Chris@16: Chris@16: deallocate(m_f0s); Chris@0: } Chris@0: Chris@0: string Chris@0: FChTransformF0gram::getIdentifier() const { Chris@15: switch (m_processingMode) { Chris@15: case ModeF0Gram: return "fchtransformf0gram"; Chris@15: case ModeSpectrogram: return "fchtransformspectrogram"; Chris@15: case ModeRoughSpectrogram: return "fchtransformrough"; Chris@15: } Chris@17: throw std::logic_error("unknown mode"); Chris@0: } Chris@0: Chris@0: string Chris@0: FChTransformF0gram::getName() const { Chris@15: switch (m_processingMode) { Chris@15: case ModeF0Gram: return "Fan Chirp Transform F0gram"; Chris@15: case ModeSpectrogram: return "Fan Chirp Transform Spectrogram"; Chris@15: case ModeRoughSpectrogram: return "Fan Chirp Transform Rough Spectrogram"; Chris@15: } Chris@17: throw std::logic_error("unknown mode"); Chris@0: } Chris@0: Chris@0: string Chris@0: FChTransformF0gram::getDescription() const { Chris@15: switch (m_processingMode) { Chris@15: case ModeF0Gram: Chris@15: return "This plug-in produces a representation, called F0gram, which exhibits the salience of the fundamental frequency of the sound sources in the audio file. The computation of the F0gram makes use of the Fan Chirp Transform analysis. It is based on the article \"Fan chirp transform for music representation\" P. Cancela, E. Lopez, M. Rocamora, International Conference on Digital Audio Effects, 13th. DAFx-10. Graz, Austria - 6-10 Sep 2010."; Chris@15: case ModeSpectrogram: Chris@15: return "This plug-in produces a spectral representation of the audio using Fan Chirp Transform analysis."; Chris@15: case ModeRoughSpectrogram: Chris@15: return "This plug-in produces a more approximate spectral representation of the audio using Fan Chirp Transform analysis."; Chris@15: } Chris@17: throw std::logic_error("unknown mode"); Chris@0: } Chris@0: Chris@0: string Chris@0: FChTransformF0gram::getMaker() const { Chris@0: // Your name here Chris@0: return "Audio Processing Group \n Universidad de la Republica"; Chris@0: } Chris@0: Chris@0: int Chris@0: FChTransformF0gram::getPluginVersion() const { Chris@0: // Increment this each time you release a version that behaves Chris@0: // differently from the previous one Chris@0: // Chris@0: // 0 - initial version from scratch Chris@15: return 1; Chris@0: } Chris@0: Chris@0: string Chris@0: FChTransformF0gram::getCopyright() const { Chris@0: // This function is not ideally named. It does not necessarily Chris@0: // need to say who made the plugin -- getMaker does that -- but it Chris@0: // should indicate the terms under which it is distributed. For Chris@0: // example, "Copyright (year). All Rights Reserved", or "GPL" Chris@0: return "copyright (C) 2011 GPL - Audio Processing Group, UdelaR"; Chris@0: } Chris@0: Chris@0: FChTransformF0gram::InputDomain Chris@0: FChTransformF0gram::getInputDomain() const { Chris@0: return TimeDomain; Chris@0: } Chris@0: Chris@0: size_t FChTransformF0gram::getPreferredBlockSize() const { Chris@20: // We do our own accumulating into blocks within process() Chris@20: return m_blockSize/2; Chris@0: } Chris@0: Chris@0: size_t Chris@0: FChTransformF0gram::getPreferredStepSize() const { Chris@20: return m_stepSize; Chris@0: } Chris@0: Chris@0: size_t Chris@0: FChTransformF0gram::getMinChannelCount() const { Chris@0: return 1; Chris@0: } Chris@0: Chris@0: size_t Chris@0: FChTransformF0gram::getMaxChannelCount() const { Chris@0: return 1; Chris@0: } Chris@0: Chris@0: FChTransformF0gram::ParameterList Chris@0: FChTransformF0gram::getParameterDescriptors() const { Chris@0: ParameterList list; Chris@0: Chris@0: // If the plugin has no adjustable parameters, return an empty Chris@0: // list here (and there's no need to provide implementations of Chris@0: // getParameter and setParameter in that case either). Chris@0: Chris@0: // Note that it is your responsibility to make sure the parameters Chris@0: // start off having their default values (e.g. in the constructor Chris@0: // above). The host needs to know the default value so it can do Chris@0: // things like provide a "reset to default" function, but it will Chris@0: // not explicitly set your parameters to their defaults for you if Chris@0: // they have not changed in the mean time. Chris@0: Chris@0: // ============= WARPING PARAMETERS ============= Chris@0: Chris@0: ParameterDescriptor fmax; Chris@0: fmax.identifier = "fmax"; Chris@0: fmax.name = "Maximum frequency"; Chris@0: fmax.description = "Maximum frequency of interest for the analysis."; Chris@0: fmax.unit = "Hz"; Chris@0: fmax.minValue = 2000; Chris@0: fmax.maxValue = 22050; Chris@0: fmax.defaultValue = 10000; Chris@0: fmax.isQuantized = true; Chris@0: fmax.quantizeStep = 1.0; Chris@0: list.push_back(fmax); Chris@0: Chris@0: ParameterDescriptor nsamp; Chris@24: nsamp.identifier = "nsamp_ix"; Chris@0: nsamp.name = "Number of samples"; Chris@0: nsamp.description = "Number of samples of the time warped frame"; Chris@24: nsamp.minValue = 0; Chris@24: nsamp.maxValue = nsamp_options.size()-1; Chris@24: nsamp.defaultValue = 3; Chris@24: nsamp.isQuantized = true; Chris@24: nsamp.quantizeStep = 1.0; Chris@24: char label[100]; Chris@24: for (int i = 0; i < int(nsamp_options.size()); ++i) { Chris@24: sprintf(label, "%d", nsamp_options[i]); Chris@24: nsamp.valueNames.push_back(label); Chris@24: } Chris@0: nsamp.isQuantized = true; Chris@0: nsamp.quantizeStep = 1.0; Chris@0: list.push_back(nsamp); Chris@0: Chris@0: ParameterDescriptor alpha_max; Chris@0: alpha_max.identifier = "alpha_max"; Chris@0: alpha_max.name = "Maximum alpha value"; Chris@0: alpha_max.description = "Maximum value for the alpha parameter of the transform."; Chris@0: alpha_max.unit = "Hz/s"; Chris@0: alpha_max.minValue = -10; Chris@0: alpha_max.maxValue = 10; Chris@33: alpha_max.defaultValue = 4; Chris@0: alpha_max.isQuantized = true; Chris@0: alpha_max.quantizeStep = 1.0; Chris@0: list.push_back(alpha_max); Chris@0: Chris@0: ParameterDescriptor num_warps; Chris@0: num_warps.identifier = "num_warps"; Chris@0: num_warps.name = "Number of warpings"; Chris@0: num_warps.description = "Number of different warpings in the specified range (must be odd)."; Chris@0: num_warps.unit = ""; Chris@0: num_warps.minValue = 1; Chris@0: num_warps.maxValue = 101; Chris@0: num_warps.defaultValue = 21; Chris@0: num_warps.isQuantized = true; Chris@0: num_warps.quantizeStep = 2.0; Chris@0: list.push_back(num_warps); Chris@0: Chris@0: ParameterDescriptor alpha_dist; Chris@0: alpha_dist.identifier = "alpha_dist"; Chris@0: alpha_dist.name = "alpha distribution"; Chris@0: alpha_dist.description = "Type of distribution of alpha values (linear or log)."; Chris@0: alpha_dist.unit = ""; Chris@0: alpha_dist.minValue = 0; Chris@0: alpha_dist.maxValue = 1; Chris@33: alpha_dist.defaultValue = 0; Chris@0: alpha_dist.isQuantized = true; Chris@0: alpha_dist.quantizeStep = 1.0; Chris@0: // lin (0), log (1) Chris@0: alpha_dist.valueNames.push_back("lin"); Chris@0: alpha_dist.valueNames.push_back("log"); Chris@0: list.push_back(alpha_dist); Chris@0: Chris@0: // ============= F0-GRAM PARAMETERS ============= Chris@0: Chris@0: ParameterDescriptor f0min; Chris@0: f0min.identifier = "f0min"; Chris@0: f0min.name = "min f0"; Chris@0: f0min.description = "Minimum fundamental frequency (f0) value."; Chris@0: f0min.unit = "Hz"; Chris@0: f0min.minValue = 1; Chris@0: f0min.maxValue = 500; Chris@0: f0min.defaultValue = 80; Chris@0: f0min.isQuantized = true; Chris@0: f0min.quantizeStep = 1.0; Chris@0: list.push_back(f0min); Chris@0: Chris@0: ParameterDescriptor num_octs; Chris@0: num_octs.identifier = "num_octs"; Chris@0: num_octs.name = "number of octaves"; Chris@0: num_octs.description = "Number of octaves for F0gram computation."; Chris@0: num_octs.unit = ""; Chris@0: num_octs.minValue = 1; Chris@0: num_octs.maxValue = 10; Chris@0: num_octs.defaultValue = 4; Chris@0: num_octs.isQuantized = true; Chris@0: num_octs.quantizeStep = 1.0; Chris@0: list.push_back(num_octs); Chris@0: Chris@0: ParameterDescriptor f0s_per_oct; Chris@0: f0s_per_oct.identifier = "f0s_per_oct"; Chris@0: f0s_per_oct.name = "f0 values per octave"; Chris@0: f0s_per_oct.description = "Number of f0 values per octave."; Chris@0: f0s_per_oct.unit = ""; Chris@0: f0s_per_oct.minValue = 12; Chris@0: f0s_per_oct.maxValue = 768; Chris@0: f0s_per_oct.defaultValue = 192; Chris@0: f0s_per_oct.isQuantized = true; Chris@0: f0s_per_oct.quantizeStep = 1.0; Chris@0: list.push_back(f0s_per_oct); Chris@0: Chris@0: ParameterDescriptor f0_prefer_fun; Chris@0: f0_prefer_fun.identifier = "f0_prefer_fun"; Chris@22: f0_prefer_fun.name = "Use f0 weighting"; Chris@22: f0_prefer_fun.description = "Whether to use a f0 weighting function to prefer frequencies nearer a mean value."; Chris@0: f0_prefer_fun.unit = ""; Chris@0: f0_prefer_fun.minValue = 0; Chris@0: f0_prefer_fun.maxValue = 1; Chris@0: f0_prefer_fun.defaultValue = 1; Chris@0: f0_prefer_fun.isQuantized = true; Chris@0: f0_prefer_fun.quantizeStep = 1.0; Chris@0: list.push_back(f0_prefer_fun); Chris@0: Chris@0: ParameterDescriptor f0_prefer_mean; Chris@0: f0_prefer_mean.identifier = "f0_prefer_mean"; Chris@22: f0_prefer_mean.name = "Mean pitch for f0 weighting"; Chris@0: f0_prefer_mean.description = "Mean value for f0 weighting function (MIDI number)."; Chris@0: f0_prefer_mean.unit = ""; Chris@0: f0_prefer_mean.minValue = 1; Chris@0: f0_prefer_mean.maxValue = 127; Chris@0: f0_prefer_mean.defaultValue = 60; Chris@0: f0_prefer_mean.isQuantized = true; Chris@0: f0_prefer_mean.quantizeStep = 1.0; Chris@0: list.push_back(f0_prefer_mean); Chris@0: Chris@0: ParameterDescriptor f0_prefer_stdev; Chris@0: f0_prefer_stdev.identifier = "f0_prefer_stdev"; Chris@22: f0_prefer_stdev.name = "Stdev for f0 weighting"; Chris@22: f0_prefer_stdev.description = "Standard deviation for f0 weighting function (MIDI number)."; Chris@0: f0_prefer_stdev.unit = ""; Chris@0: f0_prefer_stdev.minValue = 1; Chris@0: f0_prefer_stdev.maxValue = 127; Chris@0: f0_prefer_stdev.defaultValue = 18; Chris@0: f0_prefer_stdev.isQuantized = true; Chris@0: f0_prefer_stdev.quantizeStep = 1.0; Chris@0: list.push_back(f0_prefer_stdev); Chris@0: Chris@0: ParameterDescriptor f0gram_mode; Chris@0: f0gram_mode.identifier = "f0gram_mode"; Chris@0: f0gram_mode.name = "display mode of f0gram"; Chris@0: f0gram_mode.description = "Display all bins of the best direction, or the best bin for each direction."; Chris@0: f0gram_mode.unit = ""; Chris@0: f0gram_mode.minValue = 0; Chris@0: f0gram_mode.maxValue = 1; Chris@0: f0gram_mode.defaultValue = 1; Chris@0: f0gram_mode.isQuantized = true; Chris@0: f0gram_mode.quantizeStep = 1.0; Chris@0: list.push_back(f0gram_mode); Chris@0: Chris@0: return list; Chris@0: } Chris@0: Chris@0: float Chris@0: FChTransformF0gram::getParameter(string identifier) const { Chris@0: Chris@0: if (identifier == "fmax") { Chris@0: return m_fmax; Chris@24: } else if (identifier == "nsamp_ix") { Chris@24: for (int i = 0; i < int(nsamp_options.size()); ++i) { Chris@24: if (m_warp_params.nsamps_twarp == nsamp_options[i]) { Chris@24: return i; Chris@24: } Chris@24: } Chris@24: throw std::logic_error("internal error: nsamps_twarp not in nsamp_options"); Chris@0: } else if (identifier == "alpha_max") { Chris@0: return m_warp_params.alpha_max; Chris@0: } else if (identifier == "num_warps") { Chris@0: return m_warp_params.num_warps; Chris@0: } else if (identifier == "alpha_dist") { Chris@0: return m_warp_params.alpha_dist; Chris@0: } else if (identifier == "f0min") { Chris@0: return m_f0_params.f0min; Chris@0: } else if (identifier == "num_octs") { Chris@0: return m_f0_params.num_octs; Chris@0: } else if (identifier == "f0s_per_oct") { Chris@0: return m_f0_params.num_f0s_per_oct; Chris@0: } else if (identifier == "f0_prefer_fun") { Chris@22: return m_f0_params.prefer ? 1.0 : 0.0; Chris@0: } else if (identifier == "f0_prefer_mean") { Chris@0: return m_f0_params.prefer_mean; Chris@0: } else if (identifier == "f0_prefer_stdev") { Chris@0: return m_f0_params.prefer_stdev; Chris@7: } else if (identifier == "f0gram_mode") { Chris@15: return m_f0gram_mode == BestBinOfAllDirections ? 1.0 : 0.0; Chris@0: } else { Chris@0: return 0.f; Chris@0: } Chris@0: Chris@0: } Chris@0: Chris@15: void FChTransformF0gram::setParameter(string identifier, float value) Chris@15: { Chris@0: if (identifier == "fmax") { Chris@0: m_fmax = value; Chris@24: } else if (identifier == "nsamp_ix") { Chris@24: int n = int(roundf(value)); Chris@24: for (int i = 0; i < int(nsamp_options.size()); ++i) { Chris@24: if (i == n) { Chris@24: m_warp_params.nsamps_twarp = nsamp_options[i]; Chris@24: m_blockSize = m_warp_params.nsamps_twarp * 4; Chris@24: } Chris@24: } Chris@0: } else if (identifier == "alpha_max") { Chris@0: m_warp_params.alpha_max = value; Chris@0: } else if (identifier == "num_warps") { Chris@0: m_warp_params.num_warps = value; Chris@0: } else if (identifier == "alpha_dist") { Chris@0: m_warp_params.alpha_dist = value; Chris@0: } else if (identifier == "f0min") { Chris@0: m_f0_params.f0min = value; Chris@0: } else if (identifier == "num_octs") { Chris@0: m_f0_params.num_octs = value; Chris@0: } else if (identifier == "f0s_per_oct") { Chris@0: m_f0_params.num_f0s_per_oct = value; Chris@0: } else if (identifier == "f0_prefer_fun") { Chris@22: m_f0_params.prefer = (value > 0.5); Chris@0: } else if (identifier == "f0_prefer_mean") { Chris@0: m_f0_params.prefer_mean = value; Chris@0: } else if (identifier == "f0_prefer_stdev") { Chris@0: m_f0_params.prefer_stdev = value; Chris@0: } else if (identifier == "f0gram_mode") { Chris@15: m_f0gram_mode = (value > 0.5 ? Chris@15: BestBinOfAllDirections : Chris@15: AllBinsOfBestDirection); Chris@15: } else { Chris@15: cerr << "WARNING: Unknown parameter id \"" Chris@15: << identifier << "\"" << endl; Chris@0: } Chris@0: } Chris@0: Chris@0: FChTransformF0gram::ProgramList Chris@0: FChTransformF0gram::getPrograms() const { Chris@0: ProgramList list; Chris@0: return list; Chris@0: } Chris@0: Chris@0: FChTransformF0gram::OutputList Chris@0: FChTransformF0gram::getOutputDescriptors() const { Chris@0: Chris@0: OutputList list; Chris@0: Chris@16: vector labels; Chris@16: char label[100]; Chris@0: Chris@16: if (m_processingMode == ModeF0Gram) { Chris@16: Chris@16: /* f0 values of F0gram grid as string values */ Chris@16: for (int i = 0; i < m_num_f0s; ++i) { Chris@16: sprintf(label, "%4.2f Hz", m_f0s[i]); Chris@16: labels.push_back(label); Chris@16: } Chris@16: Chris@16: /* The F0gram */ Chris@16: OutputDescriptor d; Chris@16: d.identifier = "f0gram"; Chris@19: d.name = "F0gram"; Chris@19: d.description = "The salience of the different f0s in the signal."; Chris@16: d.hasFixedBinCount = true; Chris@16: d.binCount = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct; Chris@16: d.binNames = labels; Chris@16: d.hasKnownExtents = false; Chris@16: d.isQuantized = false; Chris@16: d.sampleType = OutputDescriptor::OneSamplePerStep; Chris@16: d.hasDuration = false; Chris@16: list.push_back(d); Chris@16: Chris@19: d.identifier = "pitch"; Chris@19: d.name = "Most salient pitch"; Chris@19: d.description = "The most salient f0 in the signal for each time step."; Chris@19: d.unit = "Hz"; Chris@19: d.hasFixedBinCount = true; Chris@19: d.binCount = 1; Chris@19: d.binNames.clear(); Chris@19: d.hasKnownExtents = false; Chris@19: d.isQuantized = false; Chris@19: d.sampleType = OutputDescriptor::OneSamplePerStep; Chris@19: d.hasDuration = false; Chris@19: list.push_back(d); Chris@19: Chris@16: } else { Chris@16: Chris@16: for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; ++i) { Chris@24: double freq = i * (m_warpings.fs_warp / m_warp_params.nsamps_twarp); Chris@16: sprintf(label, "%4.2f Hz", freq); Chris@16: labels.push_back(label); Chris@16: } Chris@16: Chris@16: OutputDescriptor d; Chris@16: d.identifier = "spectrogram"; Chris@16: d.name = "Spectrogram"; Chris@16: d.description = "Time/frequency spectrogram derived from the Fan Chirp Transform output"; Chris@16: d.hasFixedBinCount = true; Chris@16: d.binCount = m_warp_params.nsamps_twarp/2+1; Chris@16: d.binNames = labels; Chris@16: d.hasKnownExtents = false; Chris@16: d.isQuantized = false; Chris@16: d.sampleType = OutputDescriptor::OneSamplePerStep; Chris@16: d.hasDuration = false; Chris@16: list.push_back(d); Chris@0: } Chris@16: Chris@0: return list; Chris@0: } Chris@0: Chris@0: bool Chris@0: FChTransformF0gram::initialise(size_t channels, size_t stepSize, size_t blockSize) { Chris@0: if (channels < getMinChannelCount() || Chris@20: channels > getMaxChannelCount() || Chris@27: int(blockSize) != m_blockSize/2 || Chris@27: int(stepSize) != m_stepSize) { Chris@14: return false; Chris@14: } Chris@0: Chris@20: m_inputBuffer = allocate_and_zero(m_blockSize); Chris@20: Chris@0: // WARNING !!! Chris@0: // these values in fact are determined by the sampling frequency m_fs Chris@0: // the parameters used below correspond to default values i.e. m_fs = 44.100 Hz Chris@0: //m_blockSize = 4 * m_warp_params.nsamps_twarp; Chris@16: // m_stepSize = floor(m_hop / m_warp_params.fact_over_samp); Chris@16: Chris@16: /* design of FChT */ Chris@16: design_FChT(); Chris@0: Chris@0: /* initialise m_glogs_params */ Chris@7: design_GLogS(); Chris@0: Chris@7: design_LPF(); Chris@0: Chris@7: design_time_window(); Chris@0: Chris@7: // Create Hanning window for warped signals Chris@14: mp_HanningWindow = allocate(m_warp_params.nsamps_twarp); Chris@7: bool normalize = false; Chris@14: Utils::hanning_window(mp_HanningWindow, m_warp_params.nsamps_twarp, normalize); Chris@0: Chris@16: m_num_f0s = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct; Chris@16: m_f0s = allocate(m_num_f0s); Chris@16: for (int i = 0; i < m_num_f0s; ++i) { Chris@16: m_f0s[i] = m_glogs_f0[m_glogs_init_f0s + i]; Chris@16: } Chris@20: Chris@20: m_initialised = true; Chris@0: return true; Chris@0: } Chris@0: Chris@0: void Chris@0: FChTransformF0gram::design_GLogS() { Chris@0: Chris@7: // total number & initial quantity of f0s Chris@16: Chris@10: m_glogs_init_f0s = (int)(((double)m_f0_params.num_f0s_per_oct)*log2(5.0))+1; Chris@7: m_glogs_num_f0s = (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct + m_glogs_init_f0s; Chris@0: Chris@7: // Initialize arrays Chris@14: m_glogs_f0 = allocate(m_glogs_num_f0s); Chris@14: m_glogs = allocate(m_glogs_num_f0s*m_warp_params.num_warps); Chris@14: m_glogs_n = allocate(m_glogs_num_f0s); Chris@14: m_glogs_index = allocate(m_glogs_num_f0s); Chris@0: Chris@7: // Compute f0 values Chris@7: m_glogs_harmonic_count = 0; Chris@7: double factor = (double)(m_warp_params.nsamps_twarp/2)/(double)(m_warp_params.nsamps_twarp/2+1); Chris@10: for (int i = 0; i < m_glogs_num_f0s; i++) { Chris@7: m_glogs_f0[i] = (m_f0_params.f0min/5.0)*pow(2.0,(double)i/(double)m_f0_params.num_f0s_per_oct); Chris@7: // for every f0 compute number of partials less or equal than m_fmax. Chris@7: m_glogs_n[i] = m_fmax*factor/m_glogs_f0[i]; Chris@7: m_glogs_index[i] = m_glogs_harmonic_count; Chris@7: m_glogs_harmonic_count += m_glogs_n[i]; Chris@7: } Chris@0: Chris@7: // Initialize arrays for interpolation Chris@14: m_glogs_posint = allocate(m_glogs_harmonic_count); Chris@14: m_glogs_posfrac = allocate(m_glogs_harmonic_count); Chris@14: m_glogs_interp = allocate(m_glogs_harmonic_count); Chris@0: Chris@7: // Compute int & frac of interpolation positions Chris@10: int aux_index = 0; Chris@7: double aux_pos; Chris@10: for (int i = 0; i < m_glogs_num_f0s; i++) { Chris@10: for (int j = 1; j <= m_glogs_n[i]; j++) { Chris@18: aux_pos = ((double)j * m_glogs_f0[i]) * ((double)(m_warp_params.nsamps_twarp))/m_warpings.fs_warp; Chris@10: m_glogs_posint[aux_index] = (int)aux_pos; Chris@7: m_glogs_posfrac[aux_index] = aux_pos - (double)m_glogs_posint[aux_index]; Chris@7: aux_index++; Chris@7: } Chris@7: } Chris@0: Chris@7: // Third harmonic attenuation Chris@7: double aux_third_harmonic; Chris@14: m_glogs_third_harmonic_posint = allocate((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@14: m_glogs_third_harmonic_posfrac = allocate((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@10: for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) { Chris@7: aux_third_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(3.0); Chris@10: m_glogs_third_harmonic_posint[i] = (int)aux_third_harmonic; Chris@7: m_glogs_third_harmonic_posfrac[i] = aux_third_harmonic - (double)(m_glogs_third_harmonic_posint[i]); Chris@7: } Chris@14: m_glogs_third_harmonic = allocate((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@0: Chris@7: // Fifth harmonic attenuation Chris@7: double aux_fifth_harmonic; Chris@14: m_glogs_fifth_harmonic_posint = allocate((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@14: m_glogs_fifth_harmonic_posfrac = allocate((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@10: for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) { Chris@7: aux_fifth_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(5.0); Chris@10: m_glogs_fifth_harmonic_posint[i] = (int)aux_fifth_harmonic; Chris@7: m_glogs_fifth_harmonic_posfrac[i] = aux_fifth_harmonic - (double)(m_glogs_fifth_harmonic_posint[i]); Chris@7: } Chris@14: m_glogs_fifth_harmonic = allocate((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@0: Chris@7: // Normalization & attenuation windows Chris@14: m_glogs_f0_preference_weights = allocate(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct); Chris@14: m_glogs_median_correction = allocate(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct); Chris@14: m_glogs_sigma_correction = allocate(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct); Chris@7: double MIDI_value; Chris@10: for (int i = 0; i < m_f0_params.num_octs*m_f0_params.num_f0s_per_oct; i++) { Chris@22: if (m_f0_params.prefer) { Chris@22: MIDI_value = 69.0 + 12.0 * log2(m_glogs_f0[i + m_glogs_init_f0s]/440.0); Chris@22: m_glogs_f0_preference_weights[i] = 1.0/sqrt(2.0*M_PI*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev)*exp(-(MIDI_value-m_f0_params.prefer_mean)*(MIDI_value-m_f0_params.prefer_mean)/(2.0*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev)); Chris@22: m_glogs_f0_preference_weights[i] = (0.01 + m_glogs_f0_preference_weights[i]) / (1.01); Chris@22: } else { Chris@22: m_glogs_f0_preference_weights[i] = 1.0; Chris@22: } Chris@0: Chris@7: m_glogs_median_correction[i] = m_glogs_params.median_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.median_poly_coefs[1]*(i+1.0) + m_glogs_params.median_poly_coefs[2]; Chris@7: m_glogs_sigma_correction[i] = 1.0 / (m_glogs_params.sigma_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.sigma_poly_coefs[1]*(i+1.0) + m_glogs_params.sigma_poly_coefs[2]); Chris@7: } Chris@0: } Chris@0: Chris@0: void Chris@0: FChTransformF0gram::design_FChT() { Chris@0: Chris@0: /* ============= WARPING DESIGN ============= */ Chris@0: Chris@0: // sampling frequency after oversampling Chris@0: m_warpings.fs_orig = m_warp_params.fact_over_samp * m_fs; Chris@0: Chris@0: // number of samples of the original signal frame Chris@0: m_warpings.nsamps_torig = 4 * m_warp_params.fact_over_samp * m_warp_params.nsamps_twarp; Chris@0: // equivalent to: m_warpings.nsamps_torig = m_warp_params.fact_over_samp * m_blockSize; Chris@0: Chris@0: // time instants of the original signal frame Chris@14: double *t_orig = allocate(m_warpings.nsamps_torig); Chris@10: for (int ind = 0; ind < m_warpings.nsamps_torig; ind++) { Chris@0: t_orig[ind] = ((double)(ind + 1) - (double)m_warpings.nsamps_torig / 2.0) / m_warpings.fs_orig; Chris@0: } Chris@0: Chris@0: // linear chirps warping definition as relative frequency deviation Chris@7: //TODO Chris@14: double *freq_relative = allocate(m_warpings.nsamps_torig * m_warp_params.num_warps); Chris@0: define_warps_linear_chirps(freq_relative, t_orig); Chris@0: Chris@0: // maximum relative frequency deviation Chris@0: double freq_relative_max = 0; Chris@14: for (int i = 0; i < m_warpings.nsamps_torig; i++) { Chris@14: for (int j = 0; j < m_warp_params.num_warps; j++) { Chris@14: if (freq_relative_max < freq_relative[j * m_warpings.nsamps_torig + i]) { Chris@0: freq_relative_max = freq_relative[j * m_warpings.nsamps_torig + i]; Chris@14: } Chris@14: } Chris@14: } Chris@0: Chris@0: // sampling frequency of warped signal to be free of aliasing up to fmax Chris@0: m_warpings.fs_warp = 2 * m_fmax * freq_relative_max; Chris@0: Chris@0: // time instants of the warped signal frame Chris@14: double *t_warp = allocate(m_warp_params.nsamps_twarp); Chris@10: for (int ind = 0; ind < m_warp_params.nsamps_twarp; ind++) { Chris@0: t_warp[ind] = ((double)((int)(ind + 1)- (int)m_warp_params.nsamps_twarp / 2)) / (double)m_warpings.fs_warp; Chris@0: } Chris@0: Chris@0: // design of warpings for efficient interpolation Chris@0: design_warps(freq_relative, t_orig, t_warp); Chris@0: Chris@14: deallocate(freq_relative); Chris@14: deallocate(t_orig); Chris@14: deallocate(t_warp); Chris@14: Chris@14: x_warping = allocate(m_warp_params.nsamps_twarp); Chris@14: m_absFanChirpTransform = allocate(m_warp_params.num_warps * (m_warp_params.nsamps_twarp/2 + 1)); Chris@14: m_auxFanChirpTransform = allocate(2 * (m_warp_params.nsamps_twarp/2 + 1)); Chris@14: fft_xwarping = new FFTReal(m_warp_params.nsamps_twarp); Chris@0: } Chris@0: Chris@0: void Chris@0: FChTransformF0gram::design_warps(double * freq_relative, double * t_orig, double * t_warp) { Chris@0: /* the warping is done by interpolating the original signal in time instants Chris@0: given by the desired frequency deviation, to do this, the interpolation Chris@0: instants are stored in a structure as an integer index and a fractional value Chris@0: hypothesis: sampling frequency at the central point equals the original Chris@7: */ Chris@0: Chris@14: m_warpings.pos_int = allocate(m_warp_params.num_warps * m_warp_params.nsamps_twarp); Chris@14: m_warpings.pos_frac = allocate(m_warp_params.num_warps * m_warp_params.nsamps_twarp); Chris@0: Chris@7: // vector of phase values Chris@14: double *phi = allocate(m_warpings.nsamps_torig); Chris@7: double aux; Chris@0: Chris@7: // warped positions Chris@14: double *pos1 = allocate(m_warp_params.nsamps_twarp*m_warp_params.num_warps); Chris@0: Chris@10: for (int i = 0; i < m_warp_params.num_warps; i++) { Chris@0: Chris@7: // integration of relative frequency to obtain phase values Chris@14: Utils::cumtrapz(t_orig, freq_relative + i*(m_warpings.nsamps_torig), m_warpings.nsamps_torig, phi); Chris@0: Chris@7: // centering of phase values to force original frequency in the middle Chris@7: aux = phi[m_warpings.nsamps_torig/2]; Chris@10: for (int j = 0; j < m_warpings.nsamps_torig; j++) { Chris@7: phi[j] -= aux; Chris@7: } //for Chris@0: Chris@7: // interpolation of phase values to obtain warped positions Chris@14: Utils::interp1(phi, t_orig, m_warpings.nsamps_torig, t_warp, pos1 + i*m_warp_params.nsamps_twarp, m_warp_params.nsamps_twarp); Chris@0: } Chris@0: Chris@0: // % previous sample index Chris@0: // pos1_int = uint32(floor(pos1))'; Chris@0: // % integer corresponding to previous sample index in "c" Chris@0: // warps.pos1_int = (pos1_int - uint32(1)); Chris@0: // % fractional value that defines the warped position Chris@0: // warps.pos1_frac = (double(pos1)' - double(pos1_int)); Chris@0: Chris@10: for (int j = 0; j < m_warp_params.nsamps_twarp*m_warp_params.num_warps; j++) { Chris@7: // previous sample index Chris@7: pos1[j] = pos1[j]*m_warpings.fs_orig + m_warpings.nsamps_torig/2 + 1; Chris@10: m_warpings.pos_int[j] = (int) pos1[j]; Chris@7: m_warpings.pos_frac[j] = pos1[j] - (double)(m_warpings.pos_int[j]); Chris@7: } //for Chris@0: Chris@14: deallocate(phi); Chris@14: deallocate(pos1); Chris@0: } Chris@0: Chris@0: void Chris@0: FChTransformF0gram::define_warps_linear_chirps(double * freq_relative, double * t_orig) { Chris@0: /** define warps as relative frequency deviation from original frequency Chris@7: t_orig : time vector Chris@7: freq_relative : relative frequency deviations Chris@7: */ Chris@0: if (m_warp_params.alpha_dist == 0) { Chris@0: Chris@0: // linear alpha values spacing Chris@14: m_warpings.chirp_rates = allocate(m_warp_params.num_warps); Chris@0: // WARNING m_warp_params.num_warps must be odd Chris@0: m_warpings.chirp_rates[0] = -m_warp_params.alpha_max; Chris@0: double increment = (double) m_warp_params.alpha_max / ((m_warp_params.num_warps - 1) / 2); Chris@0: Chris@10: for (int ind = 1; ind < m_warp_params.num_warps; ind++) { Chris@0: m_warpings.chirp_rates[ind] = m_warpings.chirp_rates[ind - 1] + increment; Chris@0: } Chris@0: // force zero value Chris@0: m_warpings.chirp_rates[(int) ((m_warp_params.num_warps - 1) / 2)] = 0; Chris@0: Chris@0: } else { Chris@0: // log alpha values spacing Chris@14: m_warpings.chirp_rates = allocate(m_warp_params.num_warps); Chris@0: Chris@0: // force zero value Chris@0: int middle_point = (int) ((m_warp_params.num_warps - 1) / 2); Chris@0: m_warpings.chirp_rates[middle_point] = 0; Chris@0: Chris@0: double logMax = log10(m_warp_params.alpha_max + 1); Chris@0: double increment = logMax / ((m_warp_params.num_warps - 1) / 2.0f); Chris@0: double exponent = 0; Chris@0: Chris@0: // fill positive values Chris@0: int ind_log = middle_point; Chris@10: for (int ind = 0; ind < (m_warp_params.num_warps + 1) / 2; ind++) { Chris@0: m_warpings.chirp_rates[ind_log] = pow(10, exponent) - 1; Chris@0: exponent += increment; Chris@0: ind_log++; Chris@0: } Chris@0: // fill negative values Chris@10: for (int ind = 0; ind < (m_warp_params.num_warps - 1) / 2; ind++) { Chris@0: m_warpings.chirp_rates[ind] = -m_warpings.chirp_rates[m_warp_params.num_warps - 1 - ind]; Chris@0: } Chris@0: } Chris@0: Chris@0: // compute relative frequency deviation Chris@14: for (int i = 0; i < m_warpings.nsamps_torig; i++) { Chris@14: for (int j = 0; j < m_warp_params.num_warps; j++) { Chris@0: freq_relative[j * m_warpings.nsamps_torig + i] = 1.0 + t_orig[i] * m_warpings.chirp_rates[j]; Chris@14: } Chris@14: } Chris@0: } Chris@0: Chris@0: void Chris@14: FChTransformF0gram::design_LPF() Chris@14: { Chris@14: double *lp_LPFWindow_aux = allocate(m_blockSize/2+1); Chris@14: mp_LPFWindow = allocate(m_blockSize/2+1); Chris@0: Chris@10: int i_max = (int) ((2.0*m_fmax/m_fs) * ( (double)m_blockSize / 2.0 + 1.0 )); Chris@10: for (int i = 0; i < m_blockSize/2+1; i++) { Chris@0: if (i >= i_max) { Chris@0: lp_LPFWindow_aux[i] = 0.0; Chris@0: } else { Chris@0: lp_LPFWindow_aux[i] = 1.0; Chris@0: } Chris@0: } Chris@14: Chris@14: LPF_time = allocate_and_zero(m_warpings.nsamps_torig); Chris@14: LPF_frequency = allocate_and_zero(2 * (m_warpings.nsamps_torig/2 + 1)); Chris@14: Chris@14: fft_forward_LPF = new FFTReal(m_blockSize); Chris@14: fft_inverse_LPF = new FFTReal(m_warpings.nsamps_torig); Chris@0: Chris@10: int winWidth = 11; Chris@14: double *lp_hanningWindow = allocate(winWidth); Chris@0: double accum=0; Chris@10: for (int i = 0; i < winWidth; i++) { Chris@0: lp_hanningWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)winWidth+1.0))); Chris@0: accum+=lp_hanningWindow[i]; Chris@0: Chris@0: } Chris@10: for (int i = 0; i < winWidth; i++) { //window normalization Chris@0: lp_hanningWindow[i]=lp_hanningWindow[i]/accum; Chris@0: } Chris@10: for (int i = 0; i < m_blockSize/2+1; i++) { Chris@0: //if (((i-(winWidth-1)/2)<0)||(i+(winWidth-1))/2>m_blockSize/2-1) {//consideramos winWidth impar, si la ventana sale del arreglo se rellena con el valor origianl Chris@7: if ( (i > (i_max + (winWidth-1)/2)) || (i <= (i_max - (winWidth-1)/2)) ) { Chris@0: mp_LPFWindow[i]=lp_LPFWindow_aux[i]; Chris@0: } else { Chris@0: accum=0; Chris@10: for (int j = -((winWidth-1)/2); j <= (winWidth-1)/2; j++) { Chris@0: accum+=lp_LPFWindow_aux[i-j]*lp_hanningWindow[j+(winWidth-1)/2]; Chris@7: } Chris@0: mp_LPFWindow[i]=accum; Chris@0: } Chris@0: } Chris@0: Chris@14: deallocate(lp_LPFWindow_aux); Chris@14: deallocate(lp_hanningWindow); Chris@0: } Chris@0: Chris@14: void FChTransformF0gram::apply_LPF() Chris@14: { Chris@14: fft_forward_LPF->forward(LPF_time, LPF_frequency); Chris@14: Chris@10: for (int i = 0; i < m_blockSize/2+1; i++) { Chris@16: LPF_frequency[i*2] *= mp_LPFWindow[i]; Chris@16: LPF_frequency[i*2 + 1] *= mp_LPFWindow[i]; Chris@0: } Chris@14: Chris@14: fft_inverse_LPF->inverse(LPF_frequency, LPF_time); Chris@20: Chris@7: // TODO ver si hay que hacer fftshift para corregir la fase respecto al centro del frame. Chris@7: // nota: además de aplicar el LPF, esta función resamplea la señal original. Chris@0: } Chris@0: Chris@14: void FChTransformF0gram::clean_LPF() Chris@14: { Chris@14: delete fft_forward_LPF; Chris@14: delete fft_inverse_LPF; Chris@14: deallocate(LPF_time); Chris@14: deallocate(LPF_frequency); Chris@14: deallocate(mp_LPFWindow); Chris@0: } Chris@0: Chris@14: void FChTransformF0gram::reset() Chris@14: { Chris@0: } Chris@0: Chris@0: FChTransformF0gram::FeatureSet Chris@5: FChTransformF0gram::process(const float *const *inputBuffers, Vamp::RealTime) { Chris@0: Chris@20: if (!m_initialised) return FeatureSet(); Chris@20: Chris@7: /* PSEUDOCÓDIGO: Chris@7: - Aplicar FFT al frame entero. Chris@7: - Filtro pasabajos en frecuencia. Chris@7: - FFT inversa al frame entero. Chris@7: ----------------------------------------------------------------------------- Chris@7: - Para cada warp: *Si es un espectrograma direccional (un solo warp Chris@7: => no es para cada warp sino para el elegido) Chris@7: - Hacer la interpolación con interp1q. Chris@7: - Aplicar la FFT al frame warpeado. Chris@7: - (Opcional) GLogS. Chris@7: - ... Chris@7: */ Chris@0: Chris@0: //--------------------------------------------------------------------------- Chris@7: FeatureSet fs; Chris@0: Chris@7: #ifdef DEBUG Chris@16: fprintf(stderr, "\n ----- DEBUG INFORMATION ----- \n"); Chris@16: fprintf(stderr, " m_fs = %f Hz.\n",m_fs); Chris@16: fprintf(stderr, " fs_orig = %f Hz.\n",m_warpings.fs_orig); Chris@16: fprintf(stderr, " fs_warp = %f Hz.\n",m_warpings.fs_warp); Chris@16: fprintf(stderr, " m_blockSize = %d.\n",m_blockSize); Chris@16: fprintf(stderr, " m_warpings.nsamps_torig = %d.\n",m_warpings.nsamps_torig); Chris@24: fprintf(stderr, " m_warp_params.nsamps_twarp = %d.\n",m_warp_params.nsamps_twarp); Chris@16: fprintf(stderr, " m_warp_params.num_warps = %d.\n",m_warp_params.num_warps); Chris@16: fprintf(stderr, " m_glogs_harmonic_count = %d.\n",m_glogs_harmonic_count); Chris@7: #endif Chris@0: Chris@20: for (int i = 0; i < m_blockSize - m_stepSize; ++i) { Chris@20: m_inputBuffer[i] = m_inputBuffer[i + m_stepSize]; Chris@0: } Chris@20: for (int i = 0; i < m_blockSize/2; ++i) { Chris@20: m_inputBuffer[m_blockSize/2 + i] = inputBuffers[0][i]; Chris@20: } Chris@20: for (int i = 0; i < m_blockSize; ++i) { Chris@20: LPF_time[i] = m_inputBuffer[i] * m_timeWindow[i]; Chris@20: } Chris@20: for (int i = 0; i < m_blockSize; ++i) { Chris@20: LPF_time[m_blockSize + i] = 0.0; Chris@20: } Chris@20: Chris@7: apply_LPF(); Chris@7: // Señal filtrada queda en LPF_time Chris@0: Chris@7: Feature feature; Chris@0: feature.hasTimestamp = false; Chris@0: Chris@15: if (m_processingMode == ModeRoughSpectrogram) { Chris@15: feature.values = vector(m_warp_params.nsamps_twarp/2+1, 0.f); Chris@15: } Chris@15: Chris@0: // ---------------------------------------------------------------------------------------------- Chris@0: // Hanning window & FFT for all warp directions Chris@0: Chris@7: double max_glogs = -DBL_MAX; Chris@10: int ind_max_glogs = 0; Chris@0: Chris@10: for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) { Chris@16: Chris@7: // Interpolate Chris@14: Utils::interp1q(LPF_time, (m_warpings.pos_int) + i_warp*m_warp_params.nsamps_twarp, m_warpings.pos_frac + i_warp*m_warp_params.nsamps_twarp, x_warping, m_warp_params.nsamps_twarp); Chris@0: Chris@7: // Apply window Chris@10: for (int i = 0; i < m_warp_params.nsamps_twarp; i++) { Chris@7: x_warping[i] *= mp_HanningWindow[i]; Chris@7: } Chris@0: Chris@7: // Transform Chris@14: fft_xwarping->forward(x_warping, m_auxFanChirpTransform); Chris@0: Chris@15: if (m_processingMode == ModeRoughSpectrogram) { Chris@15: for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) { Chris@15: double abs = sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1]); Chris@15: if (abs > feature.values[i]) { Chris@15: feature.values[i] = abs; Chris@15: } Chris@15: } Chris@15: continue; Chris@15: } Chris@15: Chris@7: // Copy result Chris@7: double *aux_abs_fcht = m_absFanChirpTransform + i_warp*(m_warp_params.nsamps_twarp/2+1); Chris@10: for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) { Chris@14: aux_abs_fcht[i] = log10(1.0 + 10.0*sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1])); Chris@7: } Chris@0: Chris@0: // ----------------------------------------------------------------------------------------- Chris@0: // GLogS Chris@14: Utils::interp1q(aux_abs_fcht, m_glogs_posint, m_glogs_posfrac, m_glogs_interp, m_glogs_harmonic_count); Chris@10: int glogs_ind = 0; Chris@10: for (int i = 0; i < m_glogs_num_f0s; i++) { Chris@7: double glogs_accum = 0; Chris@10: for (int j = 1; j <= m_glogs_n[i]; j++) { Chris@7: glogs_accum += m_glogs_interp[glogs_ind++]; Chris@7: } Chris@7: m_glogs[i + i_warp*m_glogs_num_f0s] = glogs_accum/(double)m_glogs_n[i]; Chris@7: } Chris@0: Chris@0: // Sub/super harmonic correction Chris@14: Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_third_harmonic_posint, m_glogs_third_harmonic_posfrac, m_glogs_third_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@14: Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_fifth_harmonic_posint, m_glogs_fifth_harmonic_posfrac, m_glogs_fifth_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct); Chris@10: for (int i = m_glogs_num_f0s-1; i >= m_glogs_init_f0s; i--) { Chris@7: m_glogs[i + i_warp*m_glogs_num_f0s] -= MAX(MAX(m_glogs[i-m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s],m_glogs_third_harmonic[i-m_glogs_init_f0s]),m_glogs_fifth_harmonic[i-m_glogs_init_f0s]); Chris@7: } Chris@10: for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) { Chris@7: m_glogs[i + i_warp*m_glogs_num_f0s] -= 0.3*m_glogs[i+m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s]; Chris@7: // Median, sigma $ weights correction Chris@7: m_glogs[i + i_warp*m_glogs_num_f0s] = (m_glogs[i + i_warp*m_glogs_num_f0s]-m_glogs_median_correction[i-m_glogs_init_f0s])*m_glogs_sigma_correction[i-m_glogs_init_f0s]*m_glogs_f0_preference_weights[i-m_glogs_init_f0s]; Chris@7: } Chris@0: Chris@7: // Look for maximum value to determine best direction Chris@10: for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) { Chris@7: if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) { Chris@7: max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s]; Chris@7: ind_max_glogs = i_warp; Chris@7: } Chris@7: } Chris@7: } Chris@0: Chris@15: if (m_processingMode == ModeRoughSpectrogram) { Chris@15: Chris@15: // already accumulated our return values in feature Chris@19: fs[0].push_back(feature); Chris@15: Chris@15: } else if (m_processingMode == ModeSpectrogram) { Chris@15: Chris@15: for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; i++) { Chris@15: feature.values.push_back(pow(10.0, m_absFanChirpTransform[ind_max_glogs * (m_warp_params.nsamps_twarp/2+1) + i]) - 1.0); Chris@15: } Chris@19: fs[0].push_back(feature); Chris@15: Chris@15: } else { // f0gram Chris@15: Chris@19: int bestIndex = -1; Chris@19: Chris@15: for (int i=m_glogs_init_f0s; i< m_glogs_num_f0s - m_f0_params.num_f0s_per_oct; i++) { Chris@19: double value = 0.0; Chris@15: switch (m_f0gram_mode) { Chris@15: case AllBinsOfBestDirection: Chris@19: value = m_glogs[i+(int)ind_max_glogs*(int)m_glogs_num_f0s]; Chris@15: break; Chris@15: case BestBinOfAllDirections: Chris@15: max_glogs = -DBL_MAX; Chris@15: for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) { Chris@15: if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) { Chris@15: max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s]; Chris@15: ind_max_glogs = i_warp; Chris@15: } Chris@7: } Chris@19: value = max_glogs; Chris@15: break; Chris@7: } Chris@19: if (bestIndex < 0 || float(value) > feature.values[bestIndex]) { Chris@19: bestIndex = int(feature.values.size()); Chris@19: } Chris@19: feature.values.push_back(float(value)); Chris@19: } Chris@19: Chris@19: fs[0].push_back(feature); Chris@19: Chris@19: if (bestIndex >= 0) { Chris@19: Chris@19: double bestValue = feature.values[bestIndex]; Chris@19: set ordered(feature.values.begin(), feature.values.end()); Chris@19: vector flattened(ordered.begin(), ordered.end()); Chris@19: double median = flattened[flattened.size()/2]; Chris@19: if (bestValue > median * 8.0) { Chris@19: Feature pfeature; Chris@19: pfeature.hasTimestamp = false; Chris@19: pfeature.values.push_back(m_f0s[bestIndex]); Chris@19: fs[1].push_back(pfeature); Chris@19: } Chris@7: } Chris@7: } Chris@0: Chris@7: return fs; Chris@0: } Chris@0: Chris@0: FChTransformF0gram::FeatureSet Chris@0: FChTransformF0gram::getRemainingFeatures() { Chris@0: return FeatureSet(); Chris@0: } Chris@0: Chris@0: void Chris@0: FChTransformF0gram::design_time_window() { Chris@0: Chris@20: int transitionWidth = (int)m_blockSize/128 + 128; Chris@14: m_timeWindow = allocate(m_blockSize); Chris@14: double *lp_transitionWindow = allocate(transitionWidth); Chris@0: Chris@10: for (int i = 0; i < m_blockSize; i++) { Chris@7: m_timeWindow[i] = 1.0; Chris@7: } Chris@0: Chris@10: for (int i = 0; i < transitionWidth; i++) { Chris@0: lp_transitionWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)transitionWidth+1.0))); Chris@0: } Chris@0: Chris@10: for (int i = 0; i < transitionWidth/2; i++) { Chris@7: m_timeWindow[i] = lp_transitionWindow[i]; Chris@7: m_timeWindow[m_blockSize-1-i] = lp_transitionWindow[transitionWidth-1-i]; Chris@7: } Chris@0: Chris@7: #ifdef DEBUG Chris@7: for (int i = 0; i < m_blockSize; i++) { Chris@7: if ((i