Chris@16: // Copyright Benjamin Sobotta 2012 Chris@16: Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_OWENS_T_HPP Chris@16: #define BOOST_OWENS_T_HPP Chris@16: Chris@16: // Reference: Chris@16: // Mike Patefield, David Tandy Chris@16: // FAST AND ACCURATE CALCULATION OF OWEN'S T-FUNCTION Chris@16: // Journal of Statistical Software, 5 (5), 1-25 Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: # pragma once Chris@16: #endif Chris@16: Chris@101: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include Chris@16: Chris@101: #ifdef BOOST_MSVC Chris@101: #pragma warning(push) Chris@101: #pragma warning(disable:4127) Chris@101: #endif Chris@101: Chris@16: namespace boost Chris@16: { Chris@16: namespace math Chris@16: { Chris@16: namespace detail Chris@16: { Chris@16: // owens_t_znorm1(x) = P(-oo Chris@16: inline RealType owens_t_znorm1(const RealType x) Chris@16: { Chris@16: using namespace boost::math::constants; Chris@16: return erf(x*one_div_root_two())*half(); Chris@16: } // RealType owens_t_znorm1(const RealType x) Chris@16: Chris@16: // owens_t_znorm2(x) = P(x<=Z Chris@16: inline RealType owens_t_znorm2(const RealType x) Chris@16: { Chris@16: using namespace boost::math::constants; Chris@16: return erfc(x*one_div_root_two())*half(); Chris@16: } // RealType owens_t_znorm2(const RealType x) Chris@16: Chris@16: // Auxiliary function, it computes an array key that is used to determine Chris@16: // the specific computation method for Owen's T and the order thereof Chris@16: // used in owens_t_dispatch. Chris@16: template Chris@16: inline unsigned short owens_t_compute_code(const RealType h, const RealType a) Chris@16: { Chris@16: static const RealType hrange[] = Chris@16: {0.02, 0.06, 0.09, 0.125, 0.26, 0.4, 0.6, 1.6, 1.7, 2.33, 2.4, 3.36, 3.4, 4.8}; Chris@16: Chris@16: static const RealType arange[] = {0.025, 0.09, 0.15, 0.36, 0.5, 0.9, 0.99999}; Chris@16: /* Chris@16: original select array from paper: Chris@16: 1, 1, 2,13,13,13,13,13,13,13,13,16,16,16, 9 Chris@16: 1, 2, 2, 3, 3, 5, 5,14,14,15,15,16,16,16, 9 Chris@16: 2, 2, 3, 3, 3, 5, 5,15,15,15,15,16,16,16,10 Chris@16: 2, 2, 3, 5, 5, 5, 5, 7, 7,16,16,16,16,16,10 Chris@16: 2, 3, 3, 5, 5, 6, 6, 8, 8,17,17,17,12,12,11 Chris@16: 2, 3, 5, 5, 5, 6, 6, 8, 8,17,17,17,12,12,12 Chris@16: 2, 3, 4, 4, 6, 6, 8, 8,17,17,17,17,17,12,12 Chris@16: 2, 3, 4, 4, 6, 6,18,18,18,18,17,17,17,12,12 Chris@16: */ Chris@16: // subtract one because the array is written in FORTRAN in mind - in C arrays start @ zero Chris@16: static const unsigned short select[] = Chris@16: { Chris@16: 0, 0 , 1 , 12 ,12 , 12 , 12 , 12 , 12 , 12 , 12 , 15 , 15 , 15 , 8, Chris@16: 0 , 1 , 1 , 2 , 2 , 4 , 4 , 13 , 13 , 14 , 14 , 15 , 15 , 15 , 8, Chris@16: 1 , 1 , 2 , 2 , 2 , 4 , 4 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 9, Chris@16: 1 , 1 , 2 , 4 , 4 , 4 , 4 , 6 , 6 , 15 , 15 , 15 , 15 , 15 , 9, Chris@16: 1 , 2 , 2 , 4 , 4 , 5 , 5 , 7 , 7 , 16 ,16 , 16 , 11 , 11 , 10, Chris@16: 1 , 2 , 4 , 4 , 4 , 5 , 5 , 7 , 7 , 16 , 16 , 16 , 11 , 11 , 11, Chris@16: 1 , 2 , 3 , 3 , 5 , 5 , 7 , 7 , 16 , 16 , 16 , 16 , 16 , 11 , 11, Chris@16: 1 , 2 , 3 , 3 , 5 , 5 , 17 , 17 , 17 , 17 , 16 , 16 , 16 , 11 , 11 Chris@16: }; Chris@16: Chris@16: unsigned short ihint = 14, iaint = 7; Chris@16: for(unsigned short i = 0; i != 14; i++) Chris@16: { Chris@16: if( h <= hrange[i] ) Chris@16: { Chris@16: ihint = i; Chris@16: break; Chris@16: } Chris@16: } // for(unsigned short i = 0; i != 14; i++) Chris@16: Chris@16: for(unsigned short i = 0; i != 7; i++) Chris@16: { Chris@16: if( a <= arange[i] ) Chris@16: { Chris@16: iaint = i; Chris@16: break; Chris@16: } Chris@16: } // for(unsigned short i = 0; i != 7; i++) Chris@16: Chris@16: // interprete select array as 8x15 matrix Chris@16: return select[iaint*15 + ihint]; Chris@16: Chris@16: } // unsigned short owens_t_compute_code(const RealType h, const RealType a) Chris@16: Chris@16: template Chris@16: inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const mpl::int_<53>&) Chris@16: { Chris@16: static const unsigned short ord[] = {2, 3, 4, 5, 7, 10, 12, 18, 10, 20, 30, 0, 4, 7, 8, 20, 0, 0}; // 18 entries Chris@16: Chris@16: BOOST_ASSERT(icode<18); Chris@16: Chris@16: return ord[icode]; Chris@16: } // unsigned short owens_t_get_order(const unsigned short icode, RealType, mpl::int<53> const&) Chris@16: Chris@16: template Chris@16: inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const mpl::int_<64>&) Chris@16: { Chris@16: // method ================>>> {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6} Chris@16: static const unsigned short ord[] = {3, 4, 5, 6, 8, 11, 13, 19, 10, 20, 30, 0, 7, 10, 11, 23, 0, 0}; // 18 entries Chris@16: Chris@16: BOOST_ASSERT(icode<18); Chris@16: Chris@16: return ord[icode]; Chris@16: } // unsigned short owens_t_get_order(const unsigned short icode, RealType, mpl::int<64> const&) Chris@16: Chris@16: template Chris@16: inline unsigned short owens_t_get_order(const unsigned short icode, RealType r, const Policy&) Chris@16: { Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: mpl::int_<64>, Chris@16: mpl::int_<53> Chris@16: >::type tag_type; Chris@16: Chris@16: return owens_t_get_order_imp(icode, r, tag_type()); Chris@16: } Chris@16: Chris@16: // compute the value of Owen's T function with method T1 from the reference paper Chris@101: template Chris@101: inline RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m, const Policy& pol) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const RealType hs = -h*h*half(); Chris@16: const RealType dhs = exp( hs ); Chris@16: const RealType as = a*a; Chris@16: Chris@16: unsigned short j=1; Chris@16: RealType jj = 1; Chris@16: RealType aj = a * one_div_two_pi(); Chris@101: RealType dj = boost::math::expm1( hs, pol); Chris@16: RealType gj = hs*dhs; Chris@16: Chris@16: RealType val = atan( a ) * one_div_two_pi(); Chris@16: Chris@16: while( true ) Chris@16: { Chris@16: val += dj*aj/jj; Chris@16: Chris@16: if( m <= j ) Chris@16: break; Chris@16: Chris@16: j++; Chris@16: jj += static_cast(2); Chris@16: aj *= as; Chris@16: dj = gj - dj; Chris@16: gj *= hs / static_cast(j); Chris@16: } // while( true ) Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m) Chris@16: Chris@16: // compute the value of Owen's T function with method T2 from the reference paper Chris@16: template Chris@16: inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy&, const mpl::false_&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const unsigned short maxii = m+m+1; Chris@16: const RealType hs = h*h; Chris@16: const RealType as = -a*a; Chris@16: const RealType y = static_cast(1) / hs; Chris@16: Chris@16: unsigned short ii = 1; Chris@16: RealType val = 0; Chris@16: RealType vi = a * exp( -ah*ah*half() ) * one_div_root_two_pi(); Chris@16: RealType z = owens_t_znorm1(ah)/h; Chris@16: Chris@16: while( true ) Chris@16: { Chris@16: val += z; Chris@16: if( maxii <= ii ) Chris@16: { Chris@16: val *= exp( -hs*half() ) * one_div_root_two_pi(); Chris@16: break; Chris@16: } // if( maxii <= ii ) Chris@16: z = y * ( vi - static_cast(ii) * z ); Chris@16: vi *= as; Chris@16: ii += 2; Chris@16: } // while( true ) Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah) Chris@16: Chris@16: // compute the value of Owen's T function with method T3 from the reference paper Chris@16: template Chris@16: inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const mpl::int_<53>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const unsigned short m = 20; Chris@16: Chris@16: static const RealType c2[] = Chris@16: { Chris@16: 0.99999999999999987510, Chris@16: -0.99999999999988796462, 0.99999999998290743652, Chris@16: -0.99999999896282500134, 0.99999996660459362918, Chris@16: -0.99999933986272476760, 0.99999125611136965852, Chris@16: -0.99991777624463387686, 0.99942835555870132569, Chris@16: -0.99697311720723000295, 0.98751448037275303682, Chris@16: -0.95915857980572882813, 0.89246305511006708555, Chris@16: -0.76893425990463999675, 0.58893528468484693250, Chris@16: -0.38380345160440256652, 0.20317601701045299653, Chris@16: -0.82813631607004984866E-01, 0.24167984735759576523E-01, Chris@16: -0.44676566663971825242E-02, 0.39141169402373836468E-03 Chris@16: }; Chris@16: Chris@16: const RealType as = a*a; Chris@16: const RealType hs = h*h; Chris@16: const RealType y = static_cast(1)/hs; Chris@16: Chris@16: RealType ii = 1; Chris@16: unsigned short i = 0; Chris@16: RealType vi = a * exp( -ah*ah*half() ) * one_div_root_two_pi(); Chris@16: RealType zi = owens_t_znorm1(ah)/h; Chris@16: RealType val = 0; Chris@16: Chris@16: while( true ) Chris@16: { Chris@16: BOOST_ASSERT(i < 21); Chris@16: val += zi*c2[i]; Chris@16: if( m <= i ) // if( m < i+1 ) Chris@16: { Chris@16: val *= exp( -hs*half() ) * one_div_root_two_pi(); Chris@16: break; Chris@16: } // if( m < i ) Chris@16: zi = y * (ii*zi - vi); Chris@16: vi *= as; Chris@16: ii += 2; Chris@16: i++; Chris@16: } // while( true ) Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah) Chris@16: Chris@16: // compute the value of Owen's T function with method T3 from the reference paper Chris@16: template Chris@16: inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const mpl::int_<64>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const unsigned short m = 30; Chris@16: Chris@16: static const RealType c2[] = Chris@16: { Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999999999729978162447266851932041876728736094298092917625009873), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99999999999999999999467056379678391810626533251885323416799874878563998732905968), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999824849349313270659391127814689133077036298754586814091034842536), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999999997703859616213643405880166422891953033591551179153879839440241685), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999998394883415238173334565554173013941245103172035286759201504179038147), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999993063616095509371081203145247992197457263066869044528823599399470977), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999999797336340409464429599229870590160411238245275855903767652432017766116267), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999999999574958412069046680119051639753412378037565521359444170241346845522403274), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999933226234193375324943920160947158239076786103108097456617750134812033362048), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999188923242461073033481053037468263536806742737922476636768006622772762168467), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999992195143483674402853783549420883055129680082932629160081128947764415749728967), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999993935137206712830997921913316971472227199741857386575097250553105958772041501), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99996135597690552745362392866517133091672395614263398912807169603795088421057688716), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99979556366513946026406788969630293820987757758641211293079784585126692672425362469), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.999092789629617100153486251423850590051366661947344315423226082520411961968929483), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.996593837411918202119308620432614600338157335862888580671450938858935084316004769854), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.98910017138386127038463510314625339359073956513420458166238478926511821146316469589567), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.970078558040693314521331982203762771512160168582494513347846407314584943870399016019), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.92911438683263187495758525500033707204091967947532160289872782771388170647150321633673), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.8542058695956156057286980736842905011429254735181323743367879525470479126968822863), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.73796526033030091233118357742803709382964420335559408722681794195743240930748630755), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.58523469882837394570128599003785154144164680587615878645171632791404210655891158), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.415997776145676306165661663581868460503874205343014196580122174949645271353372263), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.2588210875241943574388730510317252236407805082485246378222935376279663808416534365), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.1375535825163892648504646951500265585055789019410617565727090346559210218472356689), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.0607952766325955730493900985022020434830339794955745989150270485056436844239206648), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0216337683299871528059836483840390514275488679530797294557060229266785853764115), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.00593405693455186729876995814181203900550014220428843483927218267309209471516256), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0011743414818332946510474576182739210553333860106811865963485870668929503649964142), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, -1.489155613350368934073453260689881330166342484405529981510694514036264969925132e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 260, 9.072354320794357587710929507988814669454281514268844884841547607134260303118208e-6) Chris@16: }; Chris@16: Chris@16: const RealType as = a*a; Chris@16: const RealType hs = h*h; Chris@16: const RealType y = 1 / hs; Chris@16: Chris@16: RealType ii = 1; Chris@16: unsigned short i = 0; Chris@16: RealType vi = a * exp( -ah*ah*half() ) * one_div_root_two_pi(); Chris@16: RealType zi = owens_t_znorm1(ah)/h; Chris@16: RealType val = 0; Chris@16: Chris@16: while( true ) Chris@16: { Chris@16: BOOST_ASSERT(i < 31); Chris@16: val += zi*c2[i]; Chris@16: if( m <= i ) // if( m < i+1 ) Chris@16: { Chris@16: val *= exp( -hs*half() ) * one_div_root_two_pi(); Chris@16: break; Chris@16: } // if( m < i ) Chris@16: zi = y * (ii*zi - vi); Chris@16: vi *= as; Chris@16: ii += 2; Chris@16: i++; Chris@16: } // while( true ) Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah) Chris@16: Chris@16: template Chris@16: inline RealType owens_t_T3(const RealType h, const RealType a, const RealType ah, const Policy&) Chris@16: { Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: mpl::int_<64>, Chris@16: mpl::int_<53> Chris@16: >::type tag_type; Chris@16: Chris@16: return owens_t_T3_imp(h, a, ah, tag_type()); Chris@16: } Chris@16: Chris@16: // compute the value of Owen's T function with method T4 from the reference paper Chris@16: template Chris@16: inline RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const unsigned short maxii = m+m+1; Chris@16: const RealType hs = h*h; Chris@16: const RealType as = -a*a; Chris@16: Chris@16: unsigned short ii = 1; Chris@16: RealType ai = a * exp( -hs*(static_cast(1)-as)*half() ) * one_div_two_pi(); Chris@16: RealType yi = 1; Chris@16: RealType val = 0; Chris@16: Chris@16: while( true ) Chris@16: { Chris@16: val += ai*yi; Chris@16: if( maxii <= ii ) Chris@16: break; Chris@16: ii += 2; Chris@16: yi = (static_cast(1)-hs*yi) / static_cast(ii); Chris@16: ai *= as; Chris@16: } // while( true ) Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m) Chris@16: Chris@16: // compute the value of Owen's T function with method T5 from the reference paper Chris@16: template Chris@16: inline RealType owens_t_T5_imp(const RealType h, const RealType a, const mpl::int_<53>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: /* Chris@16: NOTICE: Chris@16: - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre Chris@16: polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre Chris@16: quadrature, because T5(h,a,m) contains only x^2 terms. Chris@16: - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor Chris@16: of 1/(2*pi) according to T5(h,a,m). Chris@16: */ Chris@16: Chris@16: const unsigned short m = 13; Chris@16: static const RealType pts[] = {0.35082039676451715489E-02, Chris@16: 0.31279042338030753740E-01, 0.85266826283219451090E-01, Chris@16: 0.16245071730812277011, 0.25851196049125434828, Chris@16: 0.36807553840697533536, 0.48501092905604697475, Chris@16: 0.60277514152618576821, 0.71477884217753226516, Chris@16: 0.81475510988760098605, 0.89711029755948965867, Chris@16: 0.95723808085944261843, 0.99178832974629703586}; Chris@16: static const RealType wts[] = { 0.18831438115323502887E-01, Chris@16: 0.18567086243977649478E-01, 0.18042093461223385584E-01, Chris@16: 0.17263829606398753364E-01, 0.16243219975989856730E-01, Chris@16: 0.14994592034116704829E-01, 0.13535474469662088392E-01, Chris@16: 0.11886351605820165233E-01, 0.10070377242777431897E-01, Chris@16: 0.81130545742299586629E-02, 0.60419009528470238773E-02, Chris@16: 0.38862217010742057883E-02, 0.16793031084546090448E-02}; Chris@16: Chris@16: const RealType as = a*a; Chris@16: const RealType hs = -h*h*boost::math::constants::half(); Chris@16: Chris@16: RealType val = 0; Chris@16: for(unsigned short i = 0; i < m; ++i) Chris@16: { Chris@16: BOOST_ASSERT(i < 13); Chris@16: const RealType r = static_cast(1) + as*pts[i]; Chris@16: val += wts[i] * exp( hs*r ) / r; Chris@16: } // for(unsigned short i = 0; i < m; ++i) Chris@16: Chris@16: return val*a; Chris@16: } // RealType owens_t_T5(const RealType h, const RealType a) Chris@16: Chris@16: // compute the value of Owen's T function with method T5 from the reference paper Chris@16: template Chris@16: inline RealType owens_t_T5_imp(const RealType h, const RealType a, const mpl::int_<64>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: /* Chris@16: NOTICE: Chris@16: - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre Chris@16: polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre Chris@16: quadrature, because T5(h,a,m) contains only x^2 terms. Chris@16: - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor Chris@16: of 1/(2*pi) according to T5(h,a,m). Chris@16: */ Chris@16: Chris@16: const unsigned short m = 19; Chris@16: static const RealType pts[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0016634282895983227941), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.014904509242697054183), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.04103478879005817919), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.079359853513391511008), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.1288612130237615133), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.18822336642448518856), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.25586876186122962384), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.32999972011807857222), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.40864620815774761438), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.48971819306044782365), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.57106118513245543894), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.6505134942981533829), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.72596367859928091618), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.79540665919549865924), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.85699701386308739244), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.90909804422384697594), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.95032536436570154409), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.97958418733152273717), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.99610366384229088321) Chris@16: }; Chris@16: static const RealType wts[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012975111395684900835), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012888764187499150078), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012716644398857307844), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012459897461364705691), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012120231988292330388), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011699908404856841158), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011201723906897224448), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.010628993848522759853), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0099855296835573320047), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0092756136096132857933), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0085039700881139589055), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0076757344408814561254), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0067964187616556459109), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.005871875456524750363), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0049082589542498110071), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0039119870792519721409), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0028897090921170700834), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0018483371329504443947), Chris@16: BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.00079623320100438873578) Chris@16: }; Chris@16: Chris@16: const RealType as = a*a; Chris@16: const RealType hs = -h*h*boost::math::constants::half(); Chris@16: Chris@16: RealType val = 0; Chris@16: for(unsigned short i = 0; i < m; ++i) Chris@16: { Chris@16: BOOST_ASSERT(i < 19); Chris@16: const RealType r = 1 + as*pts[i]; Chris@16: val += wts[i] * exp( hs*r ) / r; Chris@16: } // for(unsigned short i = 0; i < m; ++i) Chris@16: Chris@16: return val*a; Chris@16: } // RealType owens_t_T5(const RealType h, const RealType a) Chris@16: Chris@16: template Chris@16: inline RealType owens_t_T5(const RealType h, const RealType a, const Policy&) Chris@16: { Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: mpl::int_<64>, Chris@16: mpl::int_<53> Chris@16: >::type tag_type; Chris@16: Chris@16: return owens_t_T5_imp(h, a, tag_type()); Chris@16: } Chris@16: Chris@16: Chris@16: // compute the value of Owen's T function with method T6 from the reference paper Chris@16: template Chris@16: inline RealType owens_t_T6(const RealType h, const RealType a) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const RealType normh = owens_t_znorm2( h ); Chris@16: const RealType y = static_cast(1) - a; Chris@16: const RealType r = atan2(y, static_cast(1 + a) ); Chris@16: Chris@16: RealType val = normh * ( static_cast(1) - normh ) * half(); Chris@16: Chris@16: if( r != 0 ) Chris@16: val -= r * exp( -y*h*h*half()/r ) * one_div_two_pi(); Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t_T6(const RealType h, const RealType a, const unsigned short m) Chris@16: Chris@16: template Chris@16: std::pair owens_t_T1_accelerated(T h, T a, const Policy& pol) Chris@16: { Chris@16: // Chris@16: // This is the same series as T1, but: Chris@16: // * The Taylor series for atan has been combined with that for T1, Chris@16: // reducing but not eliminating cancellation error. Chris@16: // * The resulting alternating series is then accelerated using method 1 Chris@16: // from H. Cohen, F. Rodriguez Villegas, D. Zagier, Chris@16: // "Convergence acceleration of alternating series", Bonn, (1991). Chris@16: // Chris@16: BOOST_MATH_STD_USING Chris@16: static const char* function = "boost::math::owens_t<%1%>(%1%, %1%)"; Chris@16: T half_h_h = h * h / 2; Chris@16: T a_pow = a; Chris@16: T aa = a * a; Chris@16: T exp_term = exp(-h * h / 2); Chris@16: T one_minus_dj_sum = exp_term; Chris@16: T sum = a_pow * exp_term; Chris@16: T dj_pow = exp_term; Chris@16: T term = sum; Chris@16: T abs_err; Chris@16: int j = 1; Chris@16: Chris@16: // Chris@16: // Normally with this form of series acceleration we can calculate Chris@16: // up front how many terms will be required - based on the assumption Chris@16: // that each term decreases in size by a factor of 3. However, Chris@16: // that assumption does not apply here, as the underlying T1 series can Chris@16: // go quite strongly divergent in the early terms, before strongly Chris@16: // converging later. Various "guestimates" have been tried to take account Chris@16: // of this, but they don't always work.... so instead set "n" to the Chris@16: // largest value that won't cause overflow later, and abort iteration Chris@16: // when the last accelerated term was small enough... Chris@16: // Chris@16: int n; Chris@16: try Chris@16: { Chris@16: n = itrunc(T(tools::log_max_value() / 6)); Chris@16: } Chris@16: catch(...) Chris@16: { Chris@16: n = (std::numeric_limits::max)(); Chris@16: } Chris@16: n = (std::min)(n, 1500); Chris@16: T d = pow(3 + sqrt(T(8)), n); Chris@16: d = (d + 1 / d) / 2; Chris@16: T b = -1; Chris@16: T c = -d; Chris@16: c = b - c; Chris@16: sum *= c; Chris@16: b = -n * n * b * 2; Chris@16: abs_err = ldexp(fabs(sum), -tools::digits()); Chris@16: Chris@16: while(j < n) Chris@16: { Chris@16: a_pow *= aa; Chris@16: dj_pow *= half_h_h / j; Chris@16: one_minus_dj_sum += dj_pow; Chris@16: term = one_minus_dj_sum * a_pow / (2 * j + 1); Chris@16: c = b - c; Chris@16: sum += c * term; Chris@16: abs_err += ldexp((std::max)(T(fabs(sum)), T(fabs(c*term))), -tools::digits()); Chris@16: b = (j + n) * (j - n) * b / ((j + T(0.5)) * (j + 1)); Chris@16: ++j; Chris@16: // Chris@16: // Include an escape route to prevent calculating too many terms: Chris@16: // Chris@16: if((j > 10) && (fabs(sum * tools::epsilon()) > fabs(c * term))) Chris@16: break; Chris@16: } Chris@16: abs_err += fabs(c * term); Chris@16: if(sum < 0) // sum must always be positive, if it's negative something really bad has happend: Chris@16: policies::raise_evaluation_error(function, 0, T(0), pol); Chris@16: return std::pair((sum / d) / boost::math::constants::two_pi(), abs_err / sum); Chris@16: } Chris@16: Chris@16: template Chris@16: inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy&, const mpl::true_&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const unsigned short maxii = m+m+1; Chris@16: const RealType hs = h*h; Chris@16: const RealType as = -a*a; Chris@16: const RealType y = static_cast(1) / hs; Chris@16: Chris@16: unsigned short ii = 1; Chris@16: RealType val = 0; Chris@16: RealType vi = a * exp( -ah*ah*half() ) / root_two_pi(); Chris@16: RealType z = owens_t_znorm1(ah)/h; Chris@16: RealType last_z = fabs(z); Chris@16: RealType lim = policies::get_epsilon(); Chris@16: Chris@16: while( true ) Chris@16: { Chris@16: val += z; Chris@16: // Chris@16: // This series stops converging after a while, so put a limit Chris@16: // on how far we go before returning our best guess: Chris@16: // Chris@16: if((fabs(lim * val) > fabs(z)) || ((ii > maxii) && (fabs(z) > last_z)) || (z == 0)) Chris@16: { Chris@16: val *= exp( -hs*half() ) / root_two_pi(); Chris@16: break; Chris@16: } // if( maxii <= ii ) Chris@16: last_z = fabs(z); Chris@16: z = y * ( vi - static_cast(ii) * z ); Chris@16: vi *= as; Chris@16: ii += 2; Chris@16: } // while( true ) Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah) Chris@16: Chris@16: template Chris@16: inline std::pair owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy&) Chris@16: { Chris@16: // Chris@16: // This is the same series as T2, but with acceleration applied. Chris@16: // Note that we have to be *very* careful to check that nothing bad Chris@16: // has happened during evaluation - this series will go divergent Chris@16: // and/or fail to alternate at a drop of a hat! :-( Chris@16: // Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: const RealType hs = h*h; Chris@16: const RealType as = -a*a; Chris@16: const RealType y = static_cast(1) / hs; Chris@16: Chris@16: unsigned short ii = 1; Chris@16: RealType val = 0; Chris@16: RealType vi = a * exp( -ah*ah*half() ) / root_two_pi(); Chris@16: RealType z = boost::math::detail::owens_t_znorm1(ah)/h; Chris@16: RealType last_z = fabs(z); Chris@16: Chris@16: // Chris@16: // Normally with this form of series acceleration we can calculate Chris@16: // up front how many terms will be required - based on the assumption Chris@16: // that each term decreases in size by a factor of 3. However, Chris@16: // that assumption does not apply here, as the underlying T1 series can Chris@16: // go quite strongly divergent in the early terms, before strongly Chris@16: // converging later. Various "guestimates" have been tried to take account Chris@16: // of this, but they don't always work.... so instead set "n" to the Chris@16: // largest value that won't cause overflow later, and abort iteration Chris@16: // when the last accelerated term was small enough... Chris@16: // Chris@16: int n; Chris@16: try Chris@16: { Chris@16: n = itrunc(RealType(tools::log_max_value() / 6)); Chris@16: } Chris@16: catch(...) Chris@16: { Chris@16: n = (std::numeric_limits::max)(); Chris@16: } Chris@16: n = (std::min)(n, 1500); Chris@16: RealType d = pow(3 + sqrt(RealType(8)), n); Chris@16: d = (d + 1 / d) / 2; Chris@16: RealType b = -1; Chris@16: RealType c = -d; Chris@16: int s = 1; Chris@16: Chris@16: for(int k = 0; k < n; ++k) Chris@16: { Chris@16: // Chris@16: // Check for both convergence and whether the series has gone bad: Chris@16: // Chris@16: if( Chris@16: (fabs(z) > last_z) // Series has gone divergent, abort Chris@16: || (fabs(val) * tools::epsilon() > fabs(c * s * z)) // Convergence! Chris@16: || (z * s < 0) // Series has stopped alternating - all bets are off - abort. Chris@16: ) Chris@16: { Chris@16: break; Chris@16: } Chris@16: c = b - c; Chris@16: val += c * s * z; Chris@16: b = (k + n) * (k - n) * b / ((k + RealType(0.5)) * (k + 1)); Chris@16: last_z = fabs(z); Chris@16: s = -s; Chris@16: z = y * ( vi - static_cast(ii) * z ); Chris@16: vi *= as; Chris@16: ii += 2; Chris@16: } // while( true ) Chris@16: RealType err = fabs(c * z) / val; Chris@16: return std::pair(val * exp( -hs*half() ) / (d * root_two_pi()), err); Chris@16: } // RealType owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy&) Chris@16: Chris@16: template Chris@16: inline RealType T4_mp(const RealType h, const RealType a, const Policy& pol) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: const RealType hs = h*h; Chris@16: const RealType as = -a*a; Chris@16: Chris@16: unsigned short ii = 1; Chris@16: RealType ai = constants::one_div_two_pi() * a * exp( -0.5*hs*(1.0-as) ); Chris@16: RealType yi = 1.0; Chris@16: RealType val = 0.0; Chris@16: Chris@16: RealType lim = boost::math::policies::get_epsilon(); Chris@16: Chris@16: while( true ) Chris@16: { Chris@16: RealType term = ai*yi; Chris@16: val += term; Chris@16: if((yi != 0) && (fabs(val * lim) > fabs(term))) Chris@16: break; Chris@16: ii += 2; Chris@16: yi = (1.0-hs*yi) / static_cast(ii); Chris@16: ai *= as; Chris@16: if(ii > (std::min)(1500, (int)policies::get_max_series_iterations())) Chris@16: policies::raise_evaluation_error("boost::math::owens_t<%1%>", 0, val, pol); Chris@16: } // while( true ) Chris@16: Chris@16: return val; Chris@16: } // arg_type owens_t_T4(const arg_type h, const arg_type a, const unsigned short m) Chris@16: Chris@16: Chris@16: // This routine dispatches the call to one of six subroutines, depending on the values Chris@16: // of h and a. Chris@16: // preconditions: h >= 0, 0<=a<=1, ah=a*h Chris@16: // Chris@16: // Note there are different versions for different precisions.... Chris@16: template Chris@16: inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, mpl::int_<64> const&) Chris@16: { Chris@16: // Simple main case for 64-bit precision or less, this is as per the Patefield-Tandy paper: Chris@16: BOOST_MATH_STD_USING Chris@16: // Chris@16: // Handle some special cases first, these are from Chris@16: // page 1077 of Owen's original paper: Chris@16: // Chris@16: if(h == 0) Chris@16: { Chris@16: return atan(a) * constants::one_div_two_pi(); Chris@16: } Chris@16: if(a == 0) Chris@16: { Chris@16: return 0; Chris@16: } Chris@16: if(a == 1) Chris@16: { Chris@16: return owens_t_znorm2(RealType(-h)) * owens_t_znorm2(h) / 2; Chris@16: } Chris@16: if(a >= tools::max_value()) Chris@16: { Chris@16: return owens_t_znorm2(RealType(fabs(h))); Chris@16: } Chris@16: RealType val = 0; // avoid compiler warnings, 0 will be overwritten in any case Chris@16: const unsigned short icode = owens_t_compute_code(h, a); Chris@16: const unsigned short m = owens_t_get_order(icode, val /* just a dummy for the type */, pol); Chris@16: static const unsigned short meth[] = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6}; // 18 entries Chris@16: Chris@16: // determine the appropriate method, T1 ... T6 Chris@16: switch( meth[icode] ) Chris@16: { Chris@16: case 1: // T1 Chris@101: val = owens_t_T1(h,a,m,pol); Chris@16: break; Chris@16: case 2: // T2 Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef mpl::bool_<(precision_type::value == 0) || (precision_type::value > 64)> tag_type; Chris@16: val = owens_t_T2(h, a, m, ah, pol, tag_type()); Chris@16: break; Chris@16: case 3: // T3 Chris@16: val = owens_t_T3(h,a,ah, pol); Chris@16: break; Chris@16: case 4: // T4 Chris@16: val = owens_t_T4(h,a,m); Chris@16: break; Chris@16: case 5: // T5 Chris@16: val = owens_t_T5(h,a, pol); Chris@16: break; Chris@16: case 6: // T6 Chris@16: val = owens_t_T6(h,a); Chris@16: break; Chris@16: default: Chris@16: BOOST_THROW_EXCEPTION(std::logic_error("selection routine in Owen's T function failed")); Chris@16: } Chris@16: return val; Chris@16: } Chris@16: Chris@16: template Chris@16: inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const mpl::int_<65>&) Chris@16: { Chris@16: // Arbitrary precision version: Chris@16: BOOST_MATH_STD_USING Chris@16: // Chris@16: // Handle some special cases first, these are from Chris@16: // page 1077 of Owen's original paper: Chris@16: // Chris@16: if(h == 0) Chris@16: { Chris@16: return atan(a) * constants::one_div_two_pi(); Chris@16: } Chris@16: if(a == 0) Chris@16: { Chris@16: return 0; Chris@16: } Chris@16: if(a == 1) Chris@16: { Chris@16: return owens_t_znorm2(RealType(-h)) * owens_t_znorm2(h) / 2; Chris@16: } Chris@16: if(a >= tools::max_value()) Chris@16: { Chris@16: return owens_t_znorm2(RealType(fabs(h))); Chris@16: } Chris@16: // Attempt arbitrary precision code, this will throw if it goes wrong: Chris@16: typedef typename boost::math::policies::normalise >::type forwarding_policy; Chris@16: std::pair p1(0, tools::max_value()), p2(0, tools::max_value()); Chris@16: RealType target_precision = policies::get_epsilon() * 1000; Chris@16: bool have_t1(false), have_t2(false); Chris@16: if(ah < 3) Chris@16: { Chris@16: try Chris@16: { Chris@16: have_t1 = true; Chris@16: p1 = owens_t_T1_accelerated(h, a, forwarding_policy()); Chris@16: if(p1.second < target_precision) Chris@16: return p1.first; Chris@16: } Chris@16: catch(const boost::math::evaluation_error&){} // T1 may fail and throw, that's OK Chris@16: } Chris@16: if(ah > 1) Chris@16: { Chris@16: try Chris@16: { Chris@16: have_t2 = true; Chris@16: p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy()); Chris@16: if(p2.second < target_precision) Chris@16: return p2.first; Chris@16: } Chris@16: catch(const boost::math::evaluation_error&){} // T2 may fail and throw, that's OK Chris@16: } Chris@16: // Chris@16: // If we haven't tried T1 yet, do it now - sometimes it succeeds and the number of iterations Chris@16: // is fairly low compared to T4. Chris@16: // Chris@16: if(!have_t1) Chris@16: { Chris@16: try Chris@16: { Chris@16: have_t1 = true; Chris@16: p1 = owens_t_T1_accelerated(h, a, forwarding_policy()); Chris@16: if(p1.second < target_precision) Chris@16: return p1.first; Chris@16: } Chris@16: catch(const boost::math::evaluation_error&){} // T1 may fail and throw, that's OK Chris@16: } Chris@16: // Chris@16: // If we haven't tried T2 yet, do it now - sometimes it succeeds and the number of iterations Chris@16: // is fairly low compared to T4. Chris@16: // Chris@16: if(!have_t2) Chris@16: { Chris@16: try Chris@16: { Chris@16: have_t2 = true; Chris@16: p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy()); Chris@16: if(p2.second < target_precision) Chris@16: return p2.first; Chris@16: } Chris@16: catch(const boost::math::evaluation_error&){} // T2 may fail and throw, that's OK Chris@16: } Chris@16: // Chris@16: // OK, nothing left to do but try the most expensive option which is T4, Chris@16: // this is often slow to converge, but when it does converge it tends to Chris@16: // be accurate: Chris@16: try Chris@16: { Chris@16: return T4_mp(h, a, pol); Chris@16: } Chris@16: catch(const boost::math::evaluation_error&){} // T4 may fail and throw, that's OK Chris@16: // Chris@16: // Now look back at the results from T1 and T2 and see if either gave better Chris@16: // results than we could get from the 64-bit precision versions. Chris@16: // Chris@16: if((std::min)(p1.second, p2.second) < 1e-20) Chris@16: { Chris@16: return p1.second < p2.second ? p1.first : p2.first; Chris@16: } Chris@16: // Chris@16: // We give up - no arbitrary precision versions succeeded! Chris@16: // Chris@16: return owens_t_dispatch(h, a, ah, pol, mpl::int_<64>()); Chris@16: } // RealType owens_t_dispatch(RealType h, RealType a, RealType ah) Chris@16: template Chris@16: inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const mpl::int_<0>&) Chris@16: { Chris@16: // We don't know what the precision is until runtime: Chris@16: if(tools::digits() <= 64) Chris@16: return owens_t_dispatch(h, a, ah, pol, mpl::int_<64>()); Chris@16: return owens_t_dispatch(h, a, ah, pol, mpl::int_<65>()); Chris@16: } Chris@16: template Chris@16: inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol) Chris@16: { Chris@16: // Figure out the precision and forward to the correct version: Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_c< Chris@16: precision_type::value == 0, Chris@16: mpl::int_<0>, Chris@16: typename mpl::if_c< Chris@16: precision_type::value <= 64, Chris@16: mpl::int_<64>, Chris@16: mpl::int_<65> Chris@16: >::type Chris@16: >::type tag_type; Chris@16: return owens_t_dispatch(h, a, ah, pol, tag_type()); Chris@16: } Chris@16: // compute Owen's T function, T(h,a), for arbitrary values of h and a Chris@16: template Chris@16: inline RealType owens_t(RealType h, RealType a, const Policy& pol) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: // exploit that T(-h,a) == T(h,a) Chris@16: h = fabs(h); Chris@16: Chris@16: // Use equation (2) in the paper to remap the arguments Chris@16: // such that h>=0 and 0<=a<=1 for the call of the actual Chris@16: // computation routine. Chris@16: Chris@16: const RealType fabs_a = fabs(a); Chris@16: const RealType fabs_ah = fabs_a*h; Chris@16: Chris@16: RealType val = 0.0; // avoid compiler warnings, 0.0 will be overwritten in any case Chris@16: Chris@16: if(fabs_a <= 1) Chris@16: { Chris@16: val = owens_t_dispatch(h, fabs_a, fabs_ah, pol); Chris@16: } // if(fabs_a <= 1.0) Chris@16: else Chris@16: { Chris@16: if( h <= 0.67 ) Chris@16: { Chris@16: const RealType normh = owens_t_znorm1(h); Chris@16: const RealType normah = owens_t_znorm1(fabs_ah); Chris@16: val = static_cast(1)/static_cast(4) - normh*normah - Chris@16: owens_t_dispatch(fabs_ah, static_cast(1 / fabs_a), h, pol); Chris@16: } // if( h <= 0.67 ) Chris@16: else Chris@16: { Chris@16: const RealType normh = detail::owens_t_znorm2(h); Chris@16: const RealType normah = detail::owens_t_znorm2(fabs_ah); Chris@16: val = constants::half()*(normh+normah) - normh*normah - Chris@16: owens_t_dispatch(fabs_ah, static_cast(1 / fabs_a), h, pol); Chris@16: } // else [if( h <= 0.67 )] Chris@16: } // else [if(fabs_a <= 1)] Chris@16: Chris@16: // exploit that T(h,-a) == -T(h,a) Chris@16: if(a < 0) Chris@16: { Chris@16: return -val; Chris@16: } // if(a < 0) Chris@16: Chris@16: return val; Chris@16: } // RealType owens_t(RealType h, RealType a) Chris@16: Chris@16: template Chris@16: struct owens_t_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: do_init(tag()); Chris@16: } Chris@16: template Chris@16: static void do_init(const mpl::int_&){} Chris@16: static void do_init(const mpl::int_<64>&) Chris@16: { Chris@16: boost::math::owens_t(static_cast(7), static_cast(0.96875), Policy()); Chris@16: boost::math::owens_t(static_cast(2), static_cast(0.5), Policy()); Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename owens_t_initializer::init owens_t_initializer::initializer; Chris@16: Chris@16: } // namespace detail Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type owens_t(T1 h, T2 a, const Policy& pol) Chris@16: { Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_c< Chris@16: precision_type::value == 0, Chris@16: mpl::int_<0>, Chris@16: typename mpl::if_c< Chris@16: precision_type::value <= 64, Chris@16: mpl::int_<64>, Chris@16: mpl::int_<65> Chris@16: >::type Chris@16: >::type tag_type; Chris@16: Chris@16: detail::owens_t_initializer::force_instantiate(); Chris@16: Chris@16: return policies::checked_narrowing_cast(detail::owens_t(static_cast(h), static_cast(a), pol), "boost::math::owens_t<%1%>(%1%,%1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type owens_t(T1 h, T2 a) Chris@16: { Chris@16: return owens_t(h, a, policies::policy<>()); Chris@16: } Chris@16: Chris@16: Chris@16: } // namespace math Chris@16: } // namespace boost Chris@16: Chris@101: #ifdef BOOST_MSVC Chris@101: #pragma warning(pop) Chris@101: #endif Chris@101: Chris@16: #endif Chris@16: // EOF