Chris@16: Chris@101: // Copyright John Maddock 2006-7, 2013-14. Chris@101: // Copyright Paul A. Bristow 2007, 2013-14. Chris@101: // Copyright Nikhar Agrawal 2013-14 Chris@101: // Copyright Christopher Kormanyos 2013-14 Chris@16: Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_SF_GAMMA_HPP Chris@16: #define BOOST_MATH_SF_GAMMA_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@101: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include Chris@16: #include Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: # pragma warning(push) Chris@16: # pragma warning(disable: 4702) // unreachable code (return after domain_error throw). Chris@16: # pragma warning(disable: 4127) // conditional expression is constant. Chris@16: # pragma warning(disable: 4100) // unreferenced formal parameter. Chris@16: // Several variables made comments, Chris@16: // but some difficulty as whether referenced on not may depend on macro values. Chris@16: // So to be safe, 4100 warnings suppressed. Chris@16: // TODO - revisit this? Chris@16: #endif Chris@16: Chris@16: namespace boost{ namespace math{ Chris@16: Chris@16: namespace detail{ Chris@16: Chris@16: template Chris@16: inline bool is_odd(T v, const boost::true_type&) Chris@16: { Chris@16: int i = static_cast(v); Chris@16: return i&1; Chris@16: } Chris@16: template Chris@16: inline bool is_odd(T v, const boost::false_type&) Chris@16: { Chris@16: // Oh dear can't cast T to int! Chris@16: BOOST_MATH_STD_USING Chris@16: T modulus = v - 2 * floor(v/2); Chris@16: return static_cast(modulus != 0); Chris@16: } Chris@16: template Chris@16: inline bool is_odd(T v) Chris@16: { Chris@16: return is_odd(v, ::boost::is_convertible()); Chris@16: } Chris@16: Chris@16: template Chris@16: T sinpx(T z) Chris@16: { Chris@16: // Ad hoc function calculates x * sin(pi * x), Chris@16: // taking extra care near when x is near a whole number. Chris@16: BOOST_MATH_STD_USING Chris@16: int sign = 1; Chris@16: if(z < 0) Chris@16: { Chris@16: z = -z; Chris@16: } Chris@16: T fl = floor(z); Chris@16: T dist; Chris@16: if(is_odd(fl)) Chris@16: { Chris@16: fl += 1; Chris@16: dist = fl - z; Chris@16: sign = -sign; Chris@16: } Chris@16: else Chris@16: { Chris@16: dist = z - fl; Chris@16: } Chris@16: BOOST_ASSERT(fl >= 0); Chris@16: if(dist > 0.5) Chris@16: dist = 1 - dist; Chris@16: T result = sin(dist*boost::math::constants::pi()); Chris@16: return sign*z*result; Chris@16: } // template T sinpx(T z) Chris@16: // Chris@16: // tgamma(z), with Lanczos support: Chris@16: // Chris@16: template Chris@16: T gamma_imp(T z, const Policy& pol, const Lanczos& l) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: T result = 1; Chris@16: Chris@16: #ifdef BOOST_MATH_INSTRUMENT Chris@16: static bool b = false; Chris@16: if(!b) Chris@16: { Chris@16: std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl; Chris@16: b = true; Chris@16: } Chris@16: #endif Chris@16: static const char* function = "boost::math::tgamma<%1%>(%1%)"; Chris@16: Chris@16: if(z <= 0) Chris@16: { Chris@16: if(floor(z) == z) Chris@16: return policies::raise_pole_error(function, "Evaluation of tgamma at a negative integer %1%.", z, pol); Chris@16: if(z <= -20) Chris@16: { Chris@16: result = gamma_imp(T(-z), pol, l) * sinpx(z); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: if((fabs(result) < 1) && (tools::max_value() * fabs(result) < boost::math::constants::pi())) Chris@101: return -boost::math::sign(result) * policies::raise_overflow_error(function, "Result of tgamma is too large to represent.", pol); Chris@16: result = -boost::math::constants::pi() / result; Chris@16: if(result == 0) Chris@16: return policies::raise_underflow_error(function, "Result of tgamma is too small to represent.", pol); Chris@16: if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL) Chris@16: return policies::raise_denorm_error(function, "Result of tgamma is denormalized.", result, pol); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: return result; Chris@16: } Chris@16: Chris@16: // shift z to > 1: Chris@16: while(z < 0) Chris@16: { Chris@16: result /= z; Chris@16: z += 1; Chris@16: } Chris@16: } Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: if((floor(z) == z) && (z < max_factorial::value)) Chris@16: { Chris@16: result *= unchecked_factorial(itrunc(z, pol) - 1); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: } Chris@101: else if (z < tools::root_epsilon()) Chris@101: { Chris@101: if (z < 1 / tools::max_value()) Chris@101: result = policies::raise_overflow_error(function, 0, pol); Chris@101: result *= 1 / z - constants::euler(); Chris@101: } Chris@16: else Chris@16: { Chris@16: result *= Lanczos::lanczos_sum(z); Chris@16: T zgh = (z + static_cast(Lanczos::g()) - boost::math::constants::half()); Chris@16: T lzgh = log(zgh); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value()); Chris@16: if(z * lzgh > tools::log_max_value()) Chris@16: { Chris@16: // we're going to overflow unless this is done with care: Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(zgh); Chris@16: if(lzgh * z / 2 > tools::log_max_value()) Chris@101: return boost::math::sign(result) * policies::raise_overflow_error(function, "Result of tgamma is too large to represent.", pol); Chris@16: T hp = pow(zgh, (z / 2) - T(0.25)); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(hp); Chris@16: result *= hp / exp(zgh); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: if(tools::max_value() / hp < result) Chris@101: return boost::math::sign(result) * policies::raise_overflow_error(function, "Result of tgamma is too large to represent.", pol); Chris@16: result *= hp; Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: } Chris@16: else Chris@16: { Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(zgh); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, z - boost::math::constants::half())); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh)); Chris@16: result *= pow(zgh, z - boost::math::constants::half()) / exp(zgh); Chris@16: BOOST_MATH_INSTRUMENT_VARIABLE(result); Chris@16: } Chris@16: } Chris@16: return result; Chris@16: } Chris@16: // Chris@16: // lgamma(z) with Lanczos support: Chris@16: // Chris@16: template Chris@16: T lgamma_imp(T z, const Policy& pol, const Lanczos& l, int* sign = 0) Chris@16: { Chris@16: #ifdef BOOST_MATH_INSTRUMENT Chris@16: static bool b = false; Chris@16: if(!b) Chris@16: { Chris@16: std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl; Chris@16: b = true; Chris@16: } Chris@16: #endif Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: static const char* function = "boost::math::lgamma<%1%>(%1%)"; Chris@16: Chris@16: T result = 0; Chris@16: int sresult = 1; Chris@101: if(z <= -tools::root_epsilon()) Chris@16: { Chris@16: // reflection formula: Chris@16: if(floor(z) == z) Chris@16: return policies::raise_pole_error(function, "Evaluation of lgamma at a negative integer %1%.", z, pol); Chris@16: Chris@16: T t = sinpx(z); Chris@16: z = -z; Chris@16: if(t < 0) Chris@16: { Chris@16: t = -t; Chris@16: } Chris@16: else Chris@16: { Chris@16: sresult = -sresult; Chris@16: } Chris@16: result = log(boost::math::constants::pi()) - lgamma_imp(z, pol, l) - log(t); Chris@16: } Chris@101: else if (z < tools::root_epsilon()) Chris@101: { Chris@101: if (0 == z) Chris@101: return policies::raise_pole_error(function, "Evaluation of lgamma at %1%.", z, pol); Chris@101: if (fabs(z) < 1 / tools::max_value()) Chris@101: result = -log(fabs(z)); Chris@101: else Chris@101: result = log(fabs(1 / z - constants::euler())); Chris@101: if (z < 0) Chris@101: sresult = -1; Chris@101: } Chris@16: else if(z < 15) Chris@16: { Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::and_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: mpl::int_<64>, Chris@16: typename mpl::if_< Chris@16: mpl::and_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: mpl::int_<113>, mpl::int_<0> >::type Chris@16: >::type tag_type; Chris@16: result = lgamma_small_imp(z, T(z - 1), T(z - 2), tag_type(), pol, l); Chris@16: } Chris@16: else if((z >= 3) && (z < 100) && (std::numeric_limits::max_exponent >= 1024)) Chris@16: { Chris@16: // taking the log of tgamma reduces the error, no danger of overflow here: Chris@16: result = log(gamma_imp(z, pol, l)); Chris@16: } Chris@16: else Chris@16: { Chris@16: // regular evaluation: Chris@16: T zgh = static_cast(z + Lanczos::g() - boost::math::constants::half()); Chris@16: result = log(zgh) - 1; Chris@16: result *= z - 0.5f; Chris@16: result += log(Lanczos::lanczos_sum_expG_scaled(z)); Chris@16: } Chris@16: Chris@16: if(sign) Chris@16: *sign = sresult; Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Chris@16: // Incomplete gamma functions follow: Chris@16: // Chris@16: template Chris@16: struct upper_incomplete_gamma_fract Chris@16: { Chris@16: private: Chris@16: T z, a; Chris@16: int k; Chris@16: public: Chris@16: typedef std::pair result_type; Chris@16: Chris@16: upper_incomplete_gamma_fract(T a1, T z1) Chris@16: : z(z1-a1+1), a(a1), k(0) Chris@16: { Chris@16: } Chris@16: Chris@16: result_type operator()() Chris@16: { Chris@16: ++k; Chris@16: z += 2; Chris@16: return result_type(k * (a - k), z); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: inline T upper_gamma_fraction(T a, T z, T eps) Chris@16: { Chris@16: // Multiply result by z^a * e^-z to get the full Chris@16: // upper incomplete integral. Divide by tgamma(z) Chris@16: // to normalise. Chris@16: upper_incomplete_gamma_fract f(a, z); Chris@16: return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps)); Chris@16: } Chris@16: Chris@16: template Chris@16: struct lower_incomplete_gamma_series Chris@16: { Chris@16: private: Chris@16: T a, z, result; Chris@16: public: Chris@16: typedef T result_type; Chris@16: lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){} Chris@16: Chris@16: T operator()() Chris@16: { Chris@16: T r = result; Chris@16: a += 1; Chris@16: result *= z/a; Chris@16: return r; Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0) Chris@16: { Chris@16: // Multiply result by ((z^a) * (e^-z) / a) to get the full Chris@16: // lower incomplete integral. Then divide by tgamma(a) Chris@16: // to get the normalised value. Chris@16: lower_incomplete_gamma_series s(a, z); Chris@16: boost::uintmax_t max_iter = policies::get_max_series_iterations(); Chris@16: T factor = policies::get_epsilon(); Chris@16: T result = boost::math::tools::sum_series(s, factor, max_iter, init_value); Chris@16: policies::check_series_iterations("boost::math::detail::lower_gamma_series<%1%>(%1%)", max_iter, pol); Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Chris@101: // Fully generic tgamma and lgamma use Stirling's approximation Chris@101: // with Bernoulli numbers. Chris@16: // Chris@101: template Chris@101: std::size_t highest_bernoulli_index() Chris@101: { Chris@101: const float digits10_of_type = (std::numeric_limits::is_specialized Chris@101: ? static_cast(std::numeric_limits::digits10) Chris@101: : static_cast(boost::math::tools::digits() * 0.301F)); Chris@101: Chris@101: // Find the high index n for Bn to produce the desired precision in Stirling's calculation. Chris@101: return static_cast(18.0F + (0.6F * digits10_of_type)); Chris@101: } Chris@101: Chris@101: template Chris@101: T minimum_argument_for_bernoulli_recursion() Chris@101: { Chris@101: const float digits10_of_type = (std::numeric_limits::is_specialized Chris@101: ? static_cast(std::numeric_limits::digits10) Chris@101: : static_cast(boost::math::tools::digits() * 0.301F)); Chris@101: Chris@101: return T(digits10_of_type * 1.7F); Chris@101: } Chris@101: Chris@101: // Forward declaration of the lgamma_imp template specialization. Chris@16: template Chris@101: T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign = 0); Chris@101: Chris@101: template Chris@101: T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&) Chris@16: { Chris@101: BOOST_MATH_STD_USING Chris@101: Chris@16: static const char* function = "boost::math::tgamma<%1%>(%1%)"; Chris@101: Chris@101: // Check if the argument of tgamma is identically zero. Chris@101: const bool is_at_zero = (z == 0); Chris@101: Chris@101: if(is_at_zero) Chris@101: return policies::raise_domain_error(function, "Evaluation of tgamma at zero %1%.", z, pol); Chris@101: Chris@101: const bool b_neg = (z < 0); Chris@101: Chris@101: const bool floor_of_z_is_equal_to_z = (floor(z) == z); Chris@101: Chris@101: // Special case handling of small factorials: Chris@101: if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial::value)) Chris@16: { Chris@101: return boost::math::unchecked_factorial(itrunc(z) - 1); Chris@16: } Chris@101: Chris@101: // Make a local, unsigned copy of the input argument. Chris@101: T zz((!b_neg) ? z : -z); Chris@101: Chris@101: // Special case for ultra-small z: Chris@101: if(zz < tools::cbrt_epsilon()) Chris@16: { Chris@101: const T a0(1); Chris@101: const T a1(boost::math::constants::euler()); Chris@101: const T six_euler_squared((boost::math::constants::euler() * boost::math::constants::euler()) * 6); Chris@101: const T a2((six_euler_squared - boost::math::constants::pi_sqr()) / 12); Chris@101: Chris@101: const T inverse_tgamma_series = z * ((a2 * z + a1) * z + a0); Chris@101: Chris@101: return 1 / inverse_tgamma_series; Chris@16: } Chris@101: Chris@101: // Scale the argument up for the calculation of lgamma, Chris@101: // and use downward recursion later for the final result. Chris@101: const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion(); Chris@101: Chris@101: int n_recur; Chris@101: Chris@101: if(zz < min_arg_for_recursion) Chris@16: { Chris@101: n_recur = boost::math::itrunc(min_arg_for_recursion - zz) + 1; Chris@101: Chris@101: zz += n_recur; Chris@16: } Chris@16: else Chris@16: { Chris@101: n_recur = 0; Chris@101: } Chris@101: Chris@101: const T log_gamma_value = lgamma_imp(zz, pol, lanczos::undefined_lanczos()); Chris@101: Chris@101: if(log_gamma_value > tools::log_max_value()) Chris@101: return policies::raise_overflow_error(function, 0, pol); Chris@101: Chris@101: T gamma_value = exp(log_gamma_value); Chris@101: Chris@101: // Rescale the result using downward recursion if necessary. Chris@101: if(n_recur) Chris@101: { Chris@101: // The order of divides is important, if we keep subtracting 1 from zz Chris@101: // we DO NOT get back to z (cancellation error). Further if z < epsilon Chris@101: // we would end up dividing by zero. Also in order to prevent spurious Chris@101: // overflow with the first division, we must save dividing by |z| till last, Chris@101: // so the optimal order of divides is z+1, z+2, z+3...z+n_recur-1,z. Chris@101: zz = fabs(z) + 1; Chris@101: for(int k = 1; k < n_recur; ++k) Chris@101: { Chris@101: gamma_value /= zz; Chris@101: zz += 1; Chris@101: } Chris@101: gamma_value /= fabs(z); Chris@101: } Chris@101: Chris@101: // Return the result, accounting for possible negative arguments. Chris@101: if(b_neg) Chris@101: { Chris@101: // Provide special error analysis for: Chris@101: // * arguments in the neighborhood of a negative integer Chris@101: // * arguments exactly equal to a negative integer. Chris@101: Chris@101: // Check if the argument of tgamma is exactly equal to a negative integer. Chris@101: if(floor_of_z_is_equal_to_z) Chris@101: return policies::raise_pole_error(function, "Evaluation of tgamma at a negative integer %1%.", z, pol); Chris@101: Chris@101: gamma_value *= sinpx(z); Chris@101: Chris@101: BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value); Chris@101: Chris@101: const bool result_is_too_large_to_represent = ( (abs(gamma_value) < 1) Chris@101: && ((tools::max_value() * abs(gamma_value)) < boost::math::constants::pi())); Chris@101: Chris@101: if(result_is_too_large_to_represent) Chris@16: return policies::raise_overflow_error(function, "Result of tgamma is too large to represent.", pol); Chris@101: Chris@101: gamma_value = -boost::math::constants::pi() / gamma_value; Chris@101: BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value); Chris@101: Chris@101: if(gamma_value == 0) Chris@101: return policies::raise_underflow_error(function, "Result of tgamma is too small to represent.", pol); Chris@101: Chris@101: if((boost::math::fpclassify)(gamma_value) == static_cast(FP_SUBNORMAL)) Chris@101: return policies::raise_denorm_error(function, "Result of tgamma is denormalized.", gamma_value, pol); Chris@16: } Chris@101: Chris@101: return gamma_value; Chris@16: } Chris@16: Chris@16: template Chris@101: T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: static const char* function = "boost::math::lgamma<%1%>(%1%)"; Chris@101: Chris@101: // Check if the argument of lgamma is identically zero. Chris@101: const bool is_at_zero = (z == 0); Chris@101: Chris@101: if(is_at_zero) Chris@101: return policies::raise_domain_error(function, "Evaluation of lgamma at zero %1%.", z, pol); Chris@101: Chris@101: const bool b_neg = (z < 0); Chris@101: Chris@101: const bool floor_of_z_is_equal_to_z = (floor(z) == z); Chris@101: Chris@101: // Special case handling of small factorials: Chris@101: if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial::value)) Chris@16: { Chris@101: return log(boost::math::unchecked_factorial(itrunc(z) - 1)); Chris@101: } Chris@101: Chris@101: // Make a local, unsigned copy of the input argument. Chris@101: T zz((!b_neg) ? z : -z); Chris@101: Chris@101: const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion(); Chris@101: Chris@101: T log_gamma_value; Chris@101: Chris@101: if (zz < min_arg_for_recursion) Chris@101: { Chris@101: // Here we simply take the logarithm of tgamma(). This is somewhat Chris@101: // inefficient, but simple. The rationale is that the argument here Chris@101: // is relatively small and overflow is not expected to be likely. Chris@101: if (z > -tools::root_epsilon()) Chris@101: { Chris@101: // Reflection formula may fail if z is very close to zero, let the series Chris@101: // expansion for tgamma close to zero do the work: Chris@101: log_gamma_value = log(abs(gamma_imp(z, pol, lanczos::undefined_lanczos()))); Chris@101: if (sign) Chris@101: { Chris@101: *sign = z < 0 ? -1 : 1; Chris@101: } Chris@101: return log_gamma_value; Chris@101: } Chris@101: else Chris@101: { Chris@101: // No issue with spurious overflow in reflection formula, Chris@101: // just fall through to regular code: Chris@101: log_gamma_value = log(abs(gamma_imp(zz, pol, lanczos::undefined_lanczos()))); Chris@101: } Chris@101: } Chris@101: else Chris@101: { Chris@101: // Perform the Bernoulli series expansion of Stirling's approximation. Chris@101: Chris@101: const std::size_t number_of_bernoullis_b2n = highest_bernoulli_index(); Chris@101: Chris@101: T one_over_x_pow_two_n_minus_one = 1 / zz; Chris@101: const T one_over_x2 = one_over_x_pow_two_n_minus_one * one_over_x_pow_two_n_minus_one; Chris@101: T sum = (boost::math::bernoulli_b2n(1) / 2) * one_over_x_pow_two_n_minus_one; Chris@101: const T target_epsilon_to_break_loop = (sum * boost::math::tools::epsilon()) * T(1.0E-10F); Chris@101: Chris@101: for(std::size_t n = 2U; n < number_of_bernoullis_b2n; ++n) Chris@101: { Chris@101: one_over_x_pow_two_n_minus_one *= one_over_x2; Chris@101: Chris@101: const std::size_t n2 = static_cast(n * 2U); Chris@101: Chris@101: const T term = (boost::math::bernoulli_b2n(static_cast(n)) * one_over_x_pow_two_n_minus_one) / (n2 * (n2 - 1U)); Chris@101: Chris@101: if((n >= 8U) && (abs(term) < target_epsilon_to_break_loop)) Chris@101: { Chris@101: // We have reached the desired precision in Stirling's expansion. Chris@101: // Adding additional terms to the sum of this divergent asymptotic Chris@101: // expansion will not improve the result. Chris@101: Chris@101: // Break from the loop. Chris@101: break; Chris@101: } Chris@101: Chris@101: sum += term; Chris@101: } Chris@101: Chris@101: // Complete Stirling's approximation. Chris@101: const T half_ln_two_pi = log(boost::math::constants::two_pi()) / 2; Chris@101: Chris@101: log_gamma_value = ((((zz - boost::math::constants::half()) * log(zz)) - zz) + half_ln_two_pi) + sum; Chris@101: } Chris@101: Chris@101: int sign_of_result = 1; Chris@101: Chris@101: if(b_neg) Chris@101: { Chris@101: // Provide special error analysis if the argument is exactly Chris@101: // equal to a negative integer. Chris@101: Chris@101: // Check if the argument of lgamma is exactly equal to a negative integer. Chris@101: if(floor_of_z_is_equal_to_z) Chris@101: return policies::raise_pole_error(function, "Evaluation of lgamma at a negative integer %1%.", z, pol); Chris@101: Chris@101: T t = sinpx(z); Chris@101: Chris@16: if(t < 0) Chris@16: { Chris@16: t = -t; Chris@16: } Chris@16: else Chris@16: { Chris@101: sign_of_result = -sign_of_result; Chris@16: } Chris@101: Chris@101: log_gamma_value = - log_gamma_value Chris@101: + log(boost::math::constants::pi()) Chris@101: - log(t); Chris@16: } Chris@101: Chris@101: if(sign != static_cast(0U)) { *sign = sign_of_result; } Chris@101: Chris@101: return log_gamma_value; Chris@16: } Chris@101: Chris@16: // Chris@16: // This helper calculates tgamma(dz+1)-1 without cancellation errors, Chris@16: // used by the upper incomplete gamma with z < 1: Chris@16: // Chris@16: template Chris@16: T tgammap1m1_imp(T dz, Policy const& pol, const Lanczos& l) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: typedef typename policies::precision::type precision_type; Chris@16: Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: typename mpl::if_< Chris@16: is_same, Chris@16: mpl::int_<113>, Chris@16: mpl::int_<0> Chris@16: >::type, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<64>, mpl::int_<113> >::type Chris@16: >::type tag_type; Chris@16: Chris@16: T result; Chris@16: if(dz < 0) Chris@16: { Chris@16: if(dz < -0.5) Chris@16: { Chris@16: // Best method is simply to subtract 1 from tgamma: Chris@16: result = boost::math::tgamma(1+dz, pol) - 1; Chris@16: BOOST_MATH_INSTRUMENT_CODE(result); Chris@16: } Chris@16: else Chris@16: { Chris@16: // Use expm1 on lgamma: Chris@16: result = boost::math::expm1(-boost::math::log1p(dz, pol) Chris@16: + lgamma_small_imp(dz+2, dz + 1, dz, tag_type(), pol, l)); Chris@16: BOOST_MATH_INSTRUMENT_CODE(result); Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: if(dz < 2) Chris@16: { Chris@16: // Use expm1 on lgamma: Chris@16: result = boost::math::expm1(lgamma_small_imp(dz+1, dz, dz-1, tag_type(), pol, l), pol); Chris@16: BOOST_MATH_INSTRUMENT_CODE(result); Chris@16: } Chris@16: else Chris@16: { Chris@16: // Best method is simply to subtract 1 from tgamma: Chris@16: result = boost::math::tgamma(1+dz, pol) - 1; Chris@16: BOOST_MATH_INSTRUMENT_CODE(result); Chris@16: } Chris@16: } Chris@16: Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: inline T tgammap1m1_imp(T dz, Policy const& pol, Chris@16: const ::boost::math::lanczos::undefined_lanczos& l) Chris@16: { Chris@16: BOOST_MATH_STD_USING // ADL of std names Chris@16: // Chris@16: // There should be a better solution than this, but the Chris@16: // algebra isn't easy for the general case.... Chris@16: // Start by subracting 1 from tgamma: Chris@16: // Chris@16: T result = gamma_imp(T(1 + dz), pol, l) - 1; Chris@16: BOOST_MATH_INSTRUMENT_CODE(result); Chris@16: // Chris@16: // Test the level of cancellation error observed: we loose one bit Chris@16: // for each power of 2 the result is less than 1. If we would get Chris@16: // more bits from our most precise lgamma rational approximation, Chris@16: // then use that instead: Chris@16: // Chris@16: BOOST_MATH_INSTRUMENT_CODE((dz > -0.5)); Chris@16: BOOST_MATH_INSTRUMENT_CODE((dz < 2)); Chris@16: BOOST_MATH_INSTRUMENT_CODE((ldexp(1.0, boost::math::policies::digits()) * fabs(result) < 1e34)); Chris@16: if((dz > -0.5) && (dz < 2) && (ldexp(1.0, boost::math::policies::digits()) * fabs(result) < 1e34)) Chris@16: { Chris@16: result = tgammap1m1_imp(dz, pol, boost::math::lanczos::lanczos24m113()); Chris@16: BOOST_MATH_INSTRUMENT_CODE(result); Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Chris@16: // Series representation for upper fraction when z is small: Chris@16: // Chris@16: template Chris@16: struct small_gamma2_series Chris@16: { Chris@16: typedef T result_type; Chris@16: Chris@16: small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){} Chris@16: Chris@16: T operator()() Chris@16: { Chris@16: T r = result / (apn); Chris@16: result *= x; Chris@16: result /= ++n; Chris@16: apn += 1; Chris@16: return r; Chris@16: } Chris@16: Chris@16: private: Chris@16: T result, x, apn; Chris@16: int n; Chris@16: }; Chris@16: // Chris@16: // calculate power term prefix (z^a)(e^-z) used in the non-normalised Chris@16: // incomplete gammas: Chris@16: // Chris@16: template Chris@16: T full_igamma_prefix(T a, T z, const Policy& pol) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: T prefix; Chris@16: T alz = a * log(z); Chris@16: Chris@16: if(z >= 1) Chris@16: { Chris@16: if((alz < tools::log_max_value()) && (-z > tools::log_min_value())) Chris@16: { Chris@16: prefix = pow(z, a) * exp(-z); Chris@16: } Chris@16: else if(a >= 1) Chris@16: { Chris@16: prefix = pow(z / exp(z/a), a); Chris@16: } Chris@16: else Chris@16: { Chris@16: prefix = exp(alz - z); Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: if(alz > tools::log_min_value()) Chris@16: { Chris@16: prefix = pow(z, a) * exp(-z); Chris@16: } Chris@16: else if(z/a < tools::log_max_value()) Chris@16: { Chris@16: prefix = pow(z / exp(z/a), a); Chris@16: } Chris@16: else Chris@16: { Chris@16: prefix = exp(alz - z); Chris@16: } Chris@16: } Chris@16: // Chris@16: // This error handling isn't very good: it happens after the fact Chris@16: // rather than before it... Chris@16: // Chris@16: if((boost::math::fpclassify)(prefix) == (int)FP_INFINITE) Chris@101: return policies::raise_overflow_error("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)", "Result of incomplete gamma function is too large to represent.", pol); Chris@16: Chris@16: return prefix; Chris@16: } Chris@16: // Chris@16: // Compute (z^a)(e^-z)/tgamma(a) Chris@16: // most if the error occurs in this function: Chris@16: // Chris@16: template Chris@16: T regularised_gamma_prefix(T a, T z, const Policy& pol, const Lanczos& l) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: T agh = a + static_cast(Lanczos::g()) - T(0.5); Chris@16: T prefix; Chris@16: T d = ((z - a) - static_cast(Lanczos::g()) + T(0.5)) / agh; Chris@16: Chris@16: if(a < 1) Chris@16: { Chris@16: // Chris@16: // We have to treat a < 1 as a special case because our Lanczos Chris@16: // approximations are optimised against the factorials with a > 1, Chris@16: // and for high precision types especially (128-bit reals for example) Chris@16: // very small values of a can give rather eroneous results for gamma Chris@16: // unless we do this: Chris@16: // Chris@16: // TODO: is this still required? Lanczos approx should be better now? Chris@16: // Chris@16: if(z <= tools::log_min_value()) Chris@16: { Chris@16: // Oh dear, have to use logs, should be free of cancellation errors though: Chris@16: return exp(a * log(z) - z - lgamma_imp(a, pol, l)); Chris@16: } Chris@16: else Chris@16: { Chris@16: // direct calculation, no danger of overflow as gamma(a) < 1/a Chris@16: // for small a. Chris@16: return pow(z, a) * exp(-z) / gamma_imp(a, pol, l); Chris@16: } Chris@16: } Chris@16: else if((fabs(d*d*a) <= 100) && (a > 150)) Chris@16: { Chris@16: // special case for large a and a ~ z. Chris@16: prefix = a * boost::math::log1pmx(d, pol) + z * static_cast(0.5 - Lanczos::g()) / agh; Chris@16: prefix = exp(prefix); Chris@16: } Chris@16: else Chris@16: { Chris@16: // Chris@16: // general case. Chris@16: // direct computation is most accurate, but use various fallbacks Chris@16: // for different parts of the problem domain: Chris@16: // Chris@16: T alz = a * log(z / agh); Chris@16: T amz = a - z; Chris@16: if(((std::min)(alz, amz) <= tools::log_min_value()) || ((std::max)(alz, amz) >= tools::log_max_value())) Chris@16: { Chris@16: T amza = amz / a; Chris@16: if(((std::min)(alz, amz)/2 > tools::log_min_value()) && ((std::max)(alz, amz)/2 < tools::log_max_value())) Chris@16: { Chris@16: // compute square root of the result and then square it: Chris@16: T sq = pow(z / agh, a / 2) * exp(amz / 2); Chris@16: prefix = sq * sq; Chris@16: } Chris@16: else if(((std::min)(alz, amz)/4 > tools::log_min_value()) && ((std::max)(alz, amz)/4 < tools::log_max_value()) && (z > a)) Chris@16: { Chris@16: // compute the 4th root of the result then square it twice: Chris@16: T sq = pow(z / agh, a / 4) * exp(amz / 4); Chris@16: prefix = sq * sq; Chris@16: prefix *= prefix; Chris@16: } Chris@16: else if((amza > tools::log_min_value()) && (amza < tools::log_max_value())) Chris@16: { Chris@16: prefix = pow((z * exp(amza)) / agh, a); Chris@16: } Chris@16: else Chris@16: { Chris@16: prefix = exp(alz + amz); Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: prefix = pow(z / agh, a) * exp(amz); Chris@16: } Chris@16: } Chris@16: prefix *= sqrt(agh / boost::math::constants::e()) / Lanczos::lanczos_sum_expG_scaled(a); Chris@16: return prefix; Chris@16: } Chris@16: // Chris@16: // And again, without Lanczos support: Chris@16: // Chris@16: template Chris@16: T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: T limit = (std::max)(T(10), a); Chris@16: T sum = detail::lower_gamma_series(a, limit, pol) / a; Chris@16: sum += detail::upper_gamma_fraction(a, limit, ::boost::math::policies::get_epsilon()); Chris@16: Chris@16: if(a < 10) Chris@16: { Chris@16: // special case for small a: Chris@16: T prefix = pow(z / 10, a); Chris@16: prefix *= exp(10-z); Chris@16: if(0 == prefix) Chris@16: { Chris@16: prefix = pow((z * exp((10-z)/a)) / 10, a); Chris@16: } Chris@16: prefix /= sum; Chris@16: return prefix; Chris@16: } Chris@16: Chris@16: T zoa = z / a; Chris@16: T amz = a - z; Chris@16: T alzoa = a * log(zoa); Chris@16: T prefix; Chris@16: if(((std::min)(alzoa, amz) <= tools::log_min_value()) || ((std::max)(alzoa, amz) >= tools::log_max_value())) Chris@16: { Chris@16: T amza = amz / a; Chris@16: if((amza <= tools::log_min_value()) || (amza >= tools::log_max_value())) Chris@16: { Chris@16: prefix = exp(alzoa + amz); Chris@16: } Chris@16: else Chris@16: { Chris@16: prefix = pow(zoa * exp(amza), a); Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: prefix = pow(zoa, a) * exp(amz); Chris@16: } Chris@16: prefix /= sum; Chris@16: return prefix; Chris@16: } Chris@16: // Chris@16: // Upper gamma fraction for very small a: Chris@16: // Chris@16: template Chris@16: inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0) Chris@16: { Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: // Chris@16: // Compute the full upper fraction (Q) when a is very small: Chris@16: // Chris@16: T result; Chris@16: result = boost::math::tgamma1pm1(a, pol); Chris@16: if(pgam) Chris@16: *pgam = (result + 1) / a; Chris@16: T p = boost::math::powm1(x, a, pol); Chris@16: result -= p; Chris@16: result /= a; Chris@16: detail::small_gamma2_series s(a, x); Chris@16: boost::uintmax_t max_iter = policies::get_max_series_iterations() - 10; Chris@16: p += 1; Chris@16: if(pderivative) Chris@16: *pderivative = p / (*pgam * exp(x)); Chris@16: T init_value = invert ? *pgam : 0; Chris@16: result = -p * tools::sum_series(s, boost::math::policies::get_epsilon(), max_iter, (init_value - result) / p); Chris@16: policies::check_series_iterations("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)", max_iter, pol); Chris@16: if(invert) Chris@16: result = -result; Chris@16: return result; Chris@16: } Chris@16: // Chris@16: // Upper gamma fraction for integer a: Chris@16: // Chris@16: template Chris@16: inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0) Chris@16: { Chris@16: // Chris@16: // Calculates normalised Q when a is an integer: Chris@16: // Chris@16: BOOST_MATH_STD_USING Chris@16: T e = exp(-x); Chris@16: T sum = e; Chris@16: if(sum != 0) Chris@16: { Chris@16: T term = sum; Chris@16: for(unsigned n = 1; n < a; ++n) Chris@16: { Chris@16: term /= n; Chris@16: term *= x; Chris@16: sum += term; Chris@16: } Chris@16: } Chris@16: if(pderivative) Chris@16: { Chris@16: *pderivative = e * pow(x, a) / boost::math::unchecked_factorial(itrunc(T(a - 1), pol)); Chris@16: } Chris@16: return sum; Chris@16: } Chris@16: // Chris@16: // Upper gamma fraction for half integer a: Chris@16: // Chris@16: template Chris@16: T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol) Chris@16: { Chris@16: // Chris@16: // Calculates normalised Q when a is a half-integer: Chris@16: // Chris@16: BOOST_MATH_STD_USING Chris@16: T e = boost::math::erfc(sqrt(x), pol); Chris@16: if((e != 0) && (a > 1)) Chris@16: { Chris@16: T term = exp(-x) / sqrt(constants::pi() * x); Chris@16: term *= x; Chris@16: static const T half = T(1) / 2; Chris@16: term /= half; Chris@16: T sum = term; Chris@16: for(unsigned n = 2; n < a; ++n) Chris@16: { Chris@16: term /= n - half; Chris@16: term *= x; Chris@16: sum += term; Chris@16: } Chris@16: e += sum; Chris@16: if(p_derivative) Chris@16: { Chris@16: *p_derivative = 0; Chris@16: } Chris@16: } Chris@16: else if(p_derivative) Chris@16: { Chris@16: // We'll be dividing by x later, so calculate derivative * x: Chris@16: *p_derivative = sqrt(x) * exp(-x) / constants::root_pi(); Chris@16: } Chris@16: return e; Chris@16: } Chris@16: // Chris@16: // Main incomplete gamma entry point, handles all four incomplete gamma's: Chris@16: // Chris@16: template Chris@16: T gamma_incomplete_imp(T a, T x, bool normalised, bool invert, Chris@16: const Policy& pol, T* p_derivative) Chris@16: { Chris@16: static const char* function = "boost::math::gamma_p<%1%>(%1%, %1%)"; Chris@16: if(a <= 0) Chris@101: return policies::raise_domain_error(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol); Chris@16: if(x < 0) Chris@101: return policies::raise_domain_error(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol); Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: typedef typename lanczos::lanczos::type lanczos_type; Chris@16: Chris@16: T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used Chris@16: Chris@101: if(a >= max_factorial::value && !normalised) Chris@101: { Chris@101: // Chris@101: // When we're computing the non-normalized incomplete gamma Chris@101: // and a is large the result is rather hard to compute unless Chris@101: // we use logs. There are really two options - if x is a long Chris@101: // way from a in value then we can reliably use methods 2 and 4 Chris@101: // below in logarithmic form and go straight to the result. Chris@101: // Otherwise we let the regularized gamma take the strain Chris@101: // (the result is unlikely to unerflow in the central region anyway) Chris@101: // and combine with lgamma in the hopes that we get a finite result. Chris@101: // Chris@101: if(invert && (a * 4 < x)) Chris@101: { Chris@101: // This is method 4 below, done in logs: Chris@101: result = a * log(x) - x; Chris@101: if(p_derivative) Chris@101: *p_derivative = exp(result); Chris@101: result += log(upper_gamma_fraction(a, x, policies::get_epsilon())); Chris@101: } Chris@101: else if(!invert && (a > 4 * x)) Chris@101: { Chris@101: // This is method 2 below, done in logs: Chris@101: result = a * log(x) - x; Chris@101: if(p_derivative) Chris@101: *p_derivative = exp(result); Chris@101: T init_value = 0; Chris@101: result += log(detail::lower_gamma_series(a, x, pol, init_value) / a); Chris@101: } Chris@101: else Chris@101: { Chris@101: result = gamma_incomplete_imp(a, x, true, invert, pol, p_derivative); Chris@101: if(result == 0) Chris@101: { Chris@101: if(invert) Chris@101: { Chris@101: // Try http://functions.wolfram.com/06.06.06.0039.01 Chris@101: result = 1 + 1 / (12 * a) + 1 / (288 * a * a); Chris@101: result = log(result) - a + (a - 0.5f) * log(a) + log(boost::math::constants::root_two_pi()); Chris@101: if(p_derivative) Chris@101: *p_derivative = exp(a * log(x) - x); Chris@101: } Chris@101: else Chris@101: { Chris@101: // This is method 2 below, done in logs, we're really outside the Chris@101: // range of this method, but since the result is almost certainly Chris@101: // infinite, we should probably be OK: Chris@101: result = a * log(x) - x; Chris@101: if(p_derivative) Chris@101: *p_derivative = exp(result); Chris@101: T init_value = 0; Chris@101: result += log(detail::lower_gamma_series(a, x, pol, init_value) / a); Chris@101: } Chris@101: } Chris@101: else Chris@101: { Chris@101: result = log(result) + boost::math::lgamma(a, pol); Chris@101: } Chris@101: } Chris@101: if(result > tools::log_max_value()) Chris@101: return policies::raise_overflow_error(function, 0, pol); Chris@101: return exp(result); Chris@101: } Chris@101: Chris@16: BOOST_ASSERT((p_derivative == 0) || (normalised == true)); Chris@16: Chris@16: bool is_int, is_half_int; Chris@16: bool is_small_a = (a < 30) && (a <= x + 1) && (x < tools::log_max_value()); Chris@16: if(is_small_a) Chris@16: { Chris@16: T fa = floor(a); Chris@16: is_int = (fa == a); Chris@16: is_half_int = is_int ? false : (fabs(fa - a) == 0.5f); Chris@16: } Chris@16: else Chris@16: { Chris@16: is_int = is_half_int = false; Chris@16: } Chris@16: Chris@16: int eval_method; Chris@16: Chris@16: if(is_int && (x > 0.6)) Chris@16: { Chris@16: // calculate Q via finite sum: Chris@16: invert = !invert; Chris@16: eval_method = 0; Chris@16: } Chris@16: else if(is_half_int && (x > 0.2)) Chris@16: { Chris@16: // calculate Q via finite sum for half integer a: Chris@16: invert = !invert; Chris@16: eval_method = 1; Chris@16: } Chris@101: else if((x < tools::root_epsilon()) && (a > 1)) Chris@101: { Chris@101: eval_method = 6; Chris@101: } Chris@16: else if(x < 0.5) Chris@16: { Chris@16: // Chris@16: // Changeover criterion chosen to give a changeover at Q ~ 0.33 Chris@16: // Chris@16: if(-0.4 / log(x) < a) Chris@16: { Chris@16: eval_method = 2; Chris@16: } Chris@16: else Chris@16: { Chris@16: eval_method = 3; Chris@16: } Chris@16: } Chris@16: else if(x < 1.1) Chris@16: { Chris@16: // Chris@16: // Changover here occurs when P ~ 0.75 or Q ~ 0.25: Chris@16: // Chris@16: if(x * 0.75f < a) Chris@16: { Chris@16: eval_method = 2; Chris@16: } Chris@16: else Chris@16: { Chris@16: eval_method = 3; Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: // Chris@16: // Begin by testing whether we're in the "bad" zone Chris@16: // where the result will be near 0.5 and the usual Chris@16: // series and continued fractions are slow to converge: Chris@16: // Chris@16: bool use_temme = false; Chris@16: if(normalised && std::numeric_limits::is_specialized && (a > 20)) Chris@16: { Chris@16: T sigma = fabs((x-a)/a); Chris@16: if((a > 200) && (policies::digits() <= 113)) Chris@16: { Chris@16: // Chris@16: // This limit is chosen so that we use Temme's expansion Chris@16: // only if the result would be larger than about 10^-6. Chris@16: // Below that the regular series and continued fractions Chris@16: // converge OK, and if we use Temme's method we get increasing Chris@16: // errors from the dominant erfc term as it's (inexact) argument Chris@16: // increases in magnitude. Chris@16: // Chris@16: if(20 / a > sigma * sigma) Chris@16: use_temme = true; Chris@16: } Chris@16: else if(policies::digits() <= 64) Chris@16: { Chris@16: // Note in this zone we can't use Temme's expansion for Chris@16: // types longer than an 80-bit real: Chris@16: // it would require too many terms in the polynomials. Chris@16: if(sigma < 0.4) Chris@16: use_temme = true; Chris@16: } Chris@16: } Chris@16: if(use_temme) Chris@16: { Chris@16: eval_method = 5; Chris@16: } Chris@16: else Chris@16: { Chris@16: // Chris@16: // Regular case where the result will not be too close to 0.5. Chris@16: // Chris@16: // Changeover here occurs at P ~ Q ~ 0.5 Chris@16: // Note that series computation of P is about x2 faster than continued fraction Chris@16: // calculation of Q, so try and use the CF only when really necessary, especially Chris@16: // for small x. Chris@16: // Chris@16: if(x - (1 / (3 * x)) < a) Chris@16: { Chris@16: eval_method = 2; Chris@16: } Chris@16: else Chris@16: { Chris@16: eval_method = 4; Chris@16: invert = !invert; Chris@16: } Chris@16: } Chris@16: } Chris@16: Chris@16: switch(eval_method) Chris@16: { Chris@16: case 0: Chris@16: { Chris@16: result = finite_gamma_q(a, x, pol, p_derivative); Chris@16: if(normalised == false) Chris@16: result *= boost::math::tgamma(a, pol); Chris@16: break; Chris@16: } Chris@16: case 1: Chris@16: { Chris@16: result = finite_half_gamma_q(a, x, p_derivative, pol); Chris@16: if(normalised == false) Chris@16: result *= boost::math::tgamma(a, pol); Chris@16: if(p_derivative && (*p_derivative == 0)) Chris@16: *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type()); Chris@16: break; Chris@16: } Chris@16: case 2: Chris@16: { Chris@16: // Compute P: Chris@16: result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol); Chris@16: if(p_derivative) Chris@16: *p_derivative = result; Chris@16: if(result != 0) Chris@16: { Chris@101: // Chris@101: // If we're going to be inverting the result then we can Chris@101: // reduce the number of series evaluations by quite Chris@101: // a few iterations if we set an initial value for the Chris@101: // series sum based on what we'll end up subtracting it from Chris@101: // at the end. Chris@101: // Have to be careful though that this optimization doesn't Chris@101: // lead to spurious numberic overflow. Note that the Chris@101: // scary/expensive overflow checks below are more often Chris@101: // than not bypassed in practice for "sensible" input Chris@101: // values: Chris@101: // Chris@16: T init_value = 0; Chris@101: bool optimised_invert = false; Chris@16: if(invert) Chris@16: { Chris@101: init_value = (normalised ? 1 : boost::math::tgamma(a, pol)); Chris@101: if(normalised || (result >= 1) || (tools::max_value() * result > init_value)) Chris@101: { Chris@101: init_value /= result; Chris@101: if(normalised || (a < 1) || (tools::max_value() / a > init_value)) Chris@101: { Chris@101: init_value *= -a; Chris@101: optimised_invert = true; Chris@101: } Chris@101: else Chris@101: init_value = 0; Chris@101: } Chris@101: else Chris@101: init_value = 0; Chris@16: } Chris@16: result *= detail::lower_gamma_series(a, x, pol, init_value) / a; Chris@101: if(optimised_invert) Chris@16: { Chris@16: invert = false; Chris@16: result = -result; Chris@16: } Chris@16: } Chris@16: break; Chris@16: } Chris@16: case 3: Chris@16: { Chris@16: // Compute Q: Chris@16: invert = !invert; Chris@16: T g; Chris@16: result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative); Chris@16: invert = false; Chris@16: if(normalised) Chris@16: result /= g; Chris@16: break; Chris@16: } Chris@16: case 4: Chris@16: { Chris@16: // Compute Q: Chris@16: result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol); Chris@16: if(p_derivative) Chris@16: *p_derivative = result; Chris@16: if(result != 0) Chris@16: result *= upper_gamma_fraction(a, x, policies::get_epsilon()); Chris@16: break; Chris@16: } Chris@16: case 5: Chris@16: { Chris@16: // Chris@16: // Use compile time dispatch to the appropriate Chris@16: // Temme asymptotic expansion. This may be dead code Chris@16: // if T does not have numeric limits support, or has Chris@16: // too many digits for the most precise version of Chris@16: // these expansions, in that case we'll be calling Chris@16: // an empty function. Chris@16: // Chris@16: typedef typename policies::precision::type precision_type; Chris@16: Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_ >, Chris@16: mpl::greater > >, Chris@16: mpl::int_<0>, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<53>, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<64>, Chris@16: mpl::int_<113> Chris@16: >::type Chris@16: >::type Chris@16: >::type tag_type; Chris@16: Chris@16: result = igamma_temme_large(a, x, pol, static_cast(0)); Chris@16: if(x >= a) Chris@16: invert = !invert; Chris@16: if(p_derivative) Chris@16: *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type()); Chris@16: break; Chris@16: } Chris@101: case 6: Chris@101: { Chris@101: // x is so small that P is necessarily very small too, Chris@101: // use http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/ Chris@101: result = !normalised ? pow(x, a) / (a) : pow(x, a) / boost::math::tgamma(a + 1, pol); Chris@101: result *= 1 - a * x / (a + 1); Chris@101: } Chris@16: } Chris@16: Chris@16: if(normalised && (result > 1)) Chris@16: result = 1; Chris@16: if(invert) Chris@16: { Chris@16: T gam = normalised ? 1 : boost::math::tgamma(a, pol); Chris@16: result = gam - result; Chris@16: } Chris@16: if(p_derivative) Chris@16: { Chris@16: // Chris@16: // Need to convert prefix term to derivative: Chris@16: // Chris@16: if((x < 1) && (tools::max_value() * x < *p_derivative)) Chris@16: { Chris@16: // overflow, just return an arbitrarily large value: Chris@16: *p_derivative = tools::max_value() / 2; Chris@16: } Chris@16: Chris@16: *p_derivative /= x; Chris@16: } Chris@16: Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Chris@16: // Ratios of two gamma functions: Chris@16: // Chris@16: template Chris@101: T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const Lanczos& l) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@101: if(z < tools::epsilon()) Chris@101: { Chris@101: // Chris@101: // We get spurious numeric overflow unless we're very careful, this Chris@101: // can occur either inside Lanczos::lanczos_sum(z) or in the Chris@101: // final combination of terms, to avoid this, split the product up Chris@101: // into 2 (or 3) parts: Chris@101: // Chris@101: // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta Chris@101: // z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial Chris@101: // Chris@101: if(boost::math::max_factorial::value < delta) Chris@101: { Chris@101: T ratio = tgamma_delta_ratio_imp_lanczos(delta, T(boost::math::max_factorial::value - delta), pol, l); Chris@101: ratio *= z; Chris@101: ratio *= boost::math::unchecked_factorial(boost::math::max_factorial::value - 1); Chris@101: return 1 / ratio; Chris@101: } Chris@101: else Chris@101: { Chris@101: return 1 / (z * boost::math::tgamma(z + delta, pol)); Chris@101: } Chris@101: } Chris@16: T zgh = z + Lanczos::g() - constants::half(); Chris@16: T result; Chris@16: if(fabs(delta) < 10) Chris@16: { Chris@16: result = exp((constants::half() - z) * boost::math::log1p(delta / zgh, pol)); Chris@16: } Chris@16: else Chris@16: { Chris@16: result = pow(zgh / (zgh + delta), z - constants::half()); Chris@16: } Chris@101: // Split the calculation up to avoid spurious overflow: Chris@101: result *= Lanczos::lanczos_sum(z) / Lanczos::lanczos_sum(T(z + delta)); Chris@16: result *= pow(constants::e() / (zgh + delta), delta); Chris@16: return result; Chris@16: } Chris@16: // Chris@16: // And again without Lanczos support this time: Chris@16: // Chris@16: template Chris@16: T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: // Chris@16: // The upper gamma fraction is *very* slow for z < 6, actually it's very Chris@16: // slow to converge everywhere but recursing until z > 6 gets rid of the Chris@16: // worst of it's behaviour. Chris@16: // Chris@16: T prefix = 1; Chris@16: T zd = z + delta; Chris@16: while((zd < 6) && (z < 6)) Chris@16: { Chris@16: prefix /= z; Chris@16: prefix *= zd; Chris@16: z += 1; Chris@16: zd += 1; Chris@16: } Chris@16: if(delta < 10) Chris@16: { Chris@16: prefix *= exp(-z * boost::math::log1p(delta / z, pol)); Chris@16: } Chris@16: else Chris@16: { Chris@16: prefix *= pow(z / zd, z); Chris@16: } Chris@16: prefix *= pow(constants::e() / zd, delta); Chris@16: T sum = detail::lower_gamma_series(z, z, pol) / z; Chris@16: sum += detail::upper_gamma_fraction(z, z, ::boost::math::policies::get_epsilon()); Chris@16: T sumd = detail::lower_gamma_series(zd, zd, pol) / zd; Chris@16: sumd += detail::upper_gamma_fraction(zd, zd, ::boost::math::policies::get_epsilon()); Chris@16: sum /= sumd; Chris@16: if(fabs(tools::max_value() / prefix) < fabs(sum)) Chris@16: return policies::raise_overflow_error("boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)", "Result of tgamma is too large to represent.", pol); Chris@16: return sum * prefix; Chris@16: } Chris@16: Chris@16: template Chris@16: T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@101: if((z <= 0) || (z + delta <= 0)) Chris@101: { Chris@101: // This isn't very sofisticated, or accurate, but it does work: Chris@101: return boost::math::tgamma(z, pol) / boost::math::tgamma(z + delta, pol); Chris@101: } Chris@16: Chris@16: if(floor(delta) == delta) Chris@16: { Chris@16: if(floor(z) == z) Chris@16: { Chris@16: // Chris@16: // Both z and delta are integers, see if we can just use table lookup Chris@16: // of the factorials to get the result: Chris@16: // Chris@16: if((z <= max_factorial::value) && (z + delta <= max_factorial::value)) Chris@16: { Chris@16: return unchecked_factorial((unsigned)itrunc(z, pol) - 1) / unchecked_factorial((unsigned)itrunc(T(z + delta), pol) - 1); Chris@16: } Chris@16: } Chris@16: if(fabs(delta) < 20) Chris@16: { Chris@16: // Chris@16: // delta is a small integer, we can use a finite product: Chris@16: // Chris@16: if(delta == 0) Chris@16: return 1; Chris@16: if(delta < 0) Chris@16: { Chris@16: z -= 1; Chris@16: T result = z; Chris@16: while(0 != (delta += 1)) Chris@16: { Chris@16: z -= 1; Chris@16: result *= z; Chris@16: } Chris@16: return result; Chris@16: } Chris@16: else Chris@16: { Chris@16: T result = 1 / z; Chris@16: while(0 != (delta -= 1)) Chris@16: { Chris@16: z += 1; Chris@16: result /= z; Chris@16: } Chris@16: return result; Chris@16: } Chris@16: } Chris@16: } Chris@16: typedef typename lanczos::lanczos::type lanczos_type; Chris@16: return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type()); Chris@16: } Chris@16: Chris@16: template Chris@16: T tgamma_ratio_imp(T x, T y, const Policy& pol) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@101: if((x <= 0) || (boost::math::isinf)(x)) Chris@101: return policies::raise_domain_error("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got a=%1%).", x, pol); Chris@101: if((y <= 0) || (boost::math::isinf)(y)) Chris@101: return policies::raise_domain_error("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got b=%1%).", y, pol); Chris@101: Chris@101: if(x <= tools::min_value()) Chris@101: { Chris@101: // Special case for denorms...Ugh. Chris@101: T shift = ldexp(T(1), tools::digits()); Chris@101: return shift * tgamma_ratio_imp(T(x * shift), y, pol); Chris@101: } Chris@16: Chris@16: if((x < max_factorial::value) && (y < max_factorial::value)) Chris@16: { Chris@16: // Rather than subtracting values, lets just call the gamma functions directly: Chris@16: return boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol); Chris@16: } Chris@16: T prefix = 1; Chris@16: if(x < 1) Chris@16: { Chris@16: if(y < 2 * max_factorial::value) Chris@16: { Chris@16: // We need to sidestep on x as well, otherwise we'll underflow Chris@16: // before we get to factor in the prefix term: Chris@16: prefix /= x; Chris@16: x += 1; Chris@16: while(y >= max_factorial::value) Chris@16: { Chris@16: y -= 1; Chris@16: prefix /= y; Chris@16: } Chris@16: return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol); Chris@16: } Chris@16: // Chris@16: // result is almost certainly going to underflow to zero, try logs just in case: Chris@16: // Chris@16: return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol)); Chris@16: } Chris@16: if(y < 1) Chris@16: { Chris@16: if(x < 2 * max_factorial::value) Chris@16: { Chris@16: // We need to sidestep on y as well, otherwise we'll overflow Chris@16: // before we get to factor in the prefix term: Chris@16: prefix *= y; Chris@16: y += 1; Chris@16: while(x >= max_factorial::value) Chris@16: { Chris@16: x -= 1; Chris@16: prefix *= x; Chris@16: } Chris@16: return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol); Chris@16: } Chris@16: // Chris@16: // Result will almost certainly overflow, try logs just in case: Chris@16: // Chris@16: return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol)); Chris@16: } Chris@16: // Chris@16: // Regular case, x and y both large and similar in magnitude: Chris@16: // Chris@16: return boost::math::tgamma_delta_ratio(x, y - x, pol); Chris@16: } Chris@16: Chris@16: template Chris@16: T gamma_p_derivative_imp(T a, T x, const Policy& pol) Chris@16: { Chris@101: BOOST_MATH_STD_USING Chris@16: // Chris@16: // Usual error checks first: Chris@16: // Chris@16: if(a <= 0) Chris@101: return policies::raise_domain_error("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol); Chris@16: if(x < 0) Chris@101: return policies::raise_domain_error("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol); Chris@16: // Chris@16: // Now special cases: Chris@16: // Chris@16: if(x == 0) Chris@16: { Chris@16: return (a > 1) ? 0 : Chris@16: (a == 1) ? 1 : policies::raise_overflow_error("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol); Chris@16: } Chris@16: // Chris@16: // Normal case: Chris@16: // Chris@16: typedef typename lanczos::lanczos::type lanczos_type; Chris@16: T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type()); Chris@16: if((x < 1) && (tools::max_value() * x < f1)) Chris@16: { Chris@16: // overflow: Chris@16: return policies::raise_overflow_error("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol); Chris@16: } Chris@101: if(f1 == 0) Chris@101: { Chris@101: // Underflow in calculation, use logs instead: Chris@101: f1 = a * log(x) - x - lgamma(a, pol) - log(x); Chris@101: f1 = exp(f1); Chris@101: } Chris@101: else Chris@101: f1 /= x; Chris@16: Chris@16: return f1; Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma(T z, const Policy& /* pol */, const mpl::true_) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename lanczos::lanczos::type evaluation_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: return policies::checked_narrowing_cast(detail::gamma_imp(static_cast(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: struct igamma_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: typedef typename policies::precision::type precision_type; Chris@16: Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_ >, Chris@16: mpl::greater > >, Chris@16: mpl::int_<0>, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<53>, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<64>, Chris@16: mpl::int_<113> Chris@16: >::type Chris@16: >::type Chris@16: >::type tag_type; Chris@16: Chris@16: do_init(tag_type()); Chris@16: } Chris@16: template Chris@16: static void do_init(const mpl::int_&) Chris@16: { Chris@16: boost::math::gamma_p(static_cast(400), static_cast(400), Policy()); Chris@16: } Chris@16: static void do_init(const mpl::int_<53>&){} Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename igamma_initializer::init igamma_initializer::initializer; Chris@16: Chris@16: template Chris@16: struct lgamma_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::and_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: mpl::int_<64>, Chris@16: typename mpl::if_< Chris@16: mpl::and_< Chris@16: mpl::less_equal >, Chris@16: mpl::greater > Chris@16: >, Chris@16: mpl::int_<113>, mpl::int_<0> >::type Chris@16: >::type tag_type; Chris@16: do_init(tag_type()); Chris@16: } Chris@16: static void do_init(const mpl::int_<64>&) Chris@16: { Chris@16: boost::math::lgamma(static_cast(2.5), Policy()); Chris@16: boost::math::lgamma(static_cast(1.25), Policy()); Chris@16: boost::math::lgamma(static_cast(1.75), Policy()); Chris@16: } Chris@16: static void do_init(const mpl::int_<113>&) Chris@16: { Chris@16: boost::math::lgamma(static_cast(2.5), Policy()); Chris@16: boost::math::lgamma(static_cast(1.25), Policy()); Chris@16: boost::math::lgamma(static_cast(1.5), Policy()); Chris@16: boost::math::lgamma(static_cast(1.75), Policy()); Chris@16: } Chris@16: static void do_init(const mpl::int_<0>&) Chris@16: { Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename lgamma_initializer::init lgamma_initializer::initializer; Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma(T1 a, T2 z, const Policy&, const mpl::false_) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: // typedef typename lanczos::lanczos::type evaluation_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: igamma_initializer::force_instantiate(); Chris@16: Chris@16: return policies::checked_narrowing_cast( Chris@16: detail::gamma_incomplete_imp(static_cast(a), Chris@16: static_cast(z), false, true, Chris@16: forwarding_policy(), static_cast(0)), "boost::math::tgamma<%1%>(%1%, %1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma(T1 a, T2 z, const mpl::false_ tag) Chris@16: { Chris@16: return tgamma(a, z, policies::policy<>(), tag); Chris@16: } Chris@16: Chris@16: Chris@16: } // namespace detail Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma(T z) Chris@16: { Chris@16: return tgamma(z, policies::policy<>()); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: lgamma(T z, int* sign, const Policy&) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename lanczos::lanczos::type evaluation_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: detail::lgamma_initializer::force_instantiate(); Chris@16: Chris@16: return policies::checked_narrowing_cast(detail::lgamma_imp(static_cast(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: lgamma(T z, int* sign) Chris@16: { Chris@16: return lgamma(z, sign, policies::policy<>()); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: lgamma(T x, const Policy& pol) Chris@16: { Chris@16: return ::boost::math::lgamma(x, 0, pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: lgamma(T x) Chris@16: { Chris@16: return ::boost::math::lgamma(x, 0, policies::policy<>()); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma1pm1(T z, const Policy& /* pol */) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename lanczos::lanczos::type evaluation_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: return policies::checked_narrowing_cast::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma1pm1(T z) Chris@16: { Chris@16: return tgamma1pm1(z, policies::policy<>()); Chris@16: } Chris@16: Chris@16: // Chris@16: // Full upper incomplete gamma: Chris@16: // Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma(T1 a, T2 z) Chris@16: { Chris@16: // Chris@16: // Type T2 could be a policy object, or a value, select the Chris@16: // right overload based on T2: Chris@16: // Chris@16: typedef typename policies::is_policy::type maybe_policy; Chris@16: return detail::tgamma(a, z, maybe_policy()); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma(T1 a, T2 z, const Policy& pol) Chris@16: { Chris@16: return detail::tgamma(a, z, pol, mpl::false_()); Chris@16: } Chris@16: // Chris@16: // Full lower incomplete gamma: Chris@16: // Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma_lower(T1 a, T2 z, const Policy&) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: // typedef typename lanczos::lanczos::type evaluation_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: detail::igamma_initializer::force_instantiate(); Chris@16: Chris@16: return policies::checked_narrowing_cast( Chris@16: detail::gamma_incomplete_imp(static_cast(a), Chris@16: static_cast(z), false, false, Chris@16: forwarding_policy(), static_cast(0)), "tgamma_lower<%1%>(%1%, %1%)"); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma_lower(T1 a, T2 z) Chris@16: { Chris@16: return tgamma_lower(a, z, policies::policy<>()); Chris@16: } Chris@16: // Chris@16: // Regularised upper incomplete gamma: Chris@16: // Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: gamma_q(T1 a, T2 z, const Policy& /* pol */) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: // typedef typename lanczos::lanczos::type evaluation_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: detail::igamma_initializer::force_instantiate(); Chris@16: Chris@16: return policies::checked_narrowing_cast( Chris@16: detail::gamma_incomplete_imp(static_cast(a), Chris@16: static_cast(z), true, true, Chris@16: forwarding_policy(), static_cast(0)), "gamma_q<%1%>(%1%, %1%)"); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: gamma_q(T1 a, T2 z) Chris@16: { Chris@16: return gamma_q(a, z, policies::policy<>()); Chris@16: } Chris@16: // Chris@16: // Regularised lower incomplete gamma: Chris@16: // Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: gamma_p(T1 a, T2 z, const Policy&) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: // typedef typename lanczos::lanczos::type evaluation_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: detail::igamma_initializer::force_instantiate(); Chris@16: Chris@16: return policies::checked_narrowing_cast( Chris@16: detail::gamma_incomplete_imp(static_cast(a), Chris@16: static_cast(z), true, false, Chris@16: forwarding_policy(), static_cast(0)), "gamma_p<%1%>(%1%, %1%)"); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: gamma_p(T1 a, T2 z) Chris@16: { Chris@16: return gamma_p(a, z, policies::policy<>()); Chris@16: } Chris@16: Chris@16: // ratios of gamma functions: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: return policies::checked_narrowing_cast(detail::tgamma_delta_ratio_imp(static_cast(z), static_cast(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)"); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma_delta_ratio(T1 z, T2 delta) Chris@16: { Chris@16: return tgamma_delta_ratio(z, delta, policies::policy<>()); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma_ratio(T1 a, T2 b, const Policy&) Chris@16: { Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: return policies::checked_narrowing_cast(detail::tgamma_ratio_imp(static_cast(a), static_cast(b), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)"); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: tgamma_ratio(T1 a, T2 b) Chris@16: { Chris@16: return tgamma_ratio(a, b, policies::policy<>()); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: gamma_p_derivative(T1 a, T2 x, const Policy&) Chris@16: { Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: return policies::checked_narrowing_cast(detail::gamma_p_derivative_imp(static_cast(a), static_cast(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)"); Chris@16: } Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: gamma_p_derivative(T1 a, T2 x) Chris@16: { Chris@16: return gamma_p_derivative(a, x, policies::policy<>()); Chris@16: } Chris@16: Chris@16: } // namespace math Chris@16: } // namespace boost Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: # pragma warning(pop) Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: #endif // BOOST_MATH_SF_GAMMA_HPP Chris@16: Chris@16: Chris@16: Chris@16: