Chris@101: // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: // Chris@16: // History: Chris@16: // XZ wrote the original of this file as part of the Google Chris@16: // Summer of Code 2006. JM modified it to fit into the Chris@16: // Boost.Math conceptual framework better, and to correctly Chris@16: // handle the p < 0 case. Chris@101: // Updated 2015 to use Carlson's latest methods. Chris@16: // Chris@16: Chris@16: #ifndef BOOST_MATH_ELLINT_RJ_HPP Chris@16: #define BOOST_MATH_ELLINT_RJ_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@101: #include Chris@16: Chris@16: // Carlson's elliptic integral of the third kind Chris@16: // R_J(x, y, z, p) = 1.5 * \int_{0}^{\infty} (t+p)^{-1} [(t+x)(t+y)(t+z)]^{-1/2} dt Chris@16: // Carlson, Numerische Mathematik, vol 33, 1 (1979) Chris@16: Chris@16: namespace boost { namespace math { namespace detail{ Chris@16: Chris@16: template Chris@101: T ellint_rc1p_imp(T y, const Policy& pol) Chris@101: { Chris@101: using namespace boost::math; Chris@101: // Calculate RC(1, 1 + x) Chris@101: BOOST_MATH_STD_USING Chris@101: Chris@101: static const char* function = "boost::math::ellint_rc<%1%>(%1%,%1%)"; Chris@101: Chris@101: if(y == -1) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument y must not be zero but got %1%", y, pol); Chris@101: } Chris@101: Chris@101: // for 1 + y < 0, the integral is singular, return Cauchy principal value Chris@101: T result; Chris@101: if(y < -1) Chris@101: { Chris@101: result = sqrt(1 / -y) * detail::ellint_rc_imp(T(-y), T(-1 - y), pol); Chris@101: } Chris@101: else if(y == 0) Chris@101: { Chris@101: result = 1; Chris@101: } Chris@101: else if(y > 0) Chris@101: { Chris@101: result = atan(sqrt(y)) / sqrt(y); Chris@101: } Chris@101: else Chris@101: { Chris@101: if(y > -0.5) Chris@101: { Chris@101: T arg = sqrt(-y); Chris@101: result = (boost::math::log1p(arg) - boost::math::log1p(-arg)) / (2 * sqrt(-y)); Chris@101: } Chris@101: else Chris@101: { Chris@101: result = log((1 + sqrt(-y)) / sqrt(1 + y)) / sqrt(-y); Chris@101: } Chris@101: } Chris@101: return result; Chris@101: } Chris@101: Chris@101: template Chris@16: T ellint_rj_imp(T x, T y, T z, T p, const Policy& pol) Chris@16: { Chris@101: BOOST_MATH_STD_USING Chris@16: Chris@101: static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)"; Chris@16: Chris@101: if(x < 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument x must be non-negative, but got x = %1%", x, pol); Chris@101: } Chris@101: if(y < 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument y must be non-negative, but got y = %1%", y, pol); Chris@101: } Chris@101: if(z < 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument z must be non-negative, but got z = %1%", z, pol); Chris@101: } Chris@101: if(p == 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument p must not be zero, but got p = %1%", p, pol); Chris@101: } Chris@101: if(x + y == 0 || y + z == 0 || z + x == 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "At most one argument can be zero, " Chris@101: "only possible result is %1%.", std::numeric_limits::quiet_NaN(), pol); Chris@101: } Chris@16: Chris@101: // for p < 0, the integral is singular, return Cauchy principal value Chris@101: if(p < 0) Chris@101: { Chris@101: // Chris@101: // We must ensure that x < y < z. Chris@101: // Since the integral is symmetrical in x, y and z Chris@101: // we can just permute the values: Chris@101: // Chris@101: if(x > y) Chris@101: std::swap(x, y); Chris@101: if(y > z) Chris@101: std::swap(y, z); Chris@101: if(x > y) Chris@101: std::swap(x, y); Chris@16: Chris@101: BOOST_ASSERT(x <= y); Chris@101: BOOST_ASSERT(y <= z); Chris@16: Chris@101: T q = -p; Chris@101: p = (z * (x + y + q) - x * y) / (z + q); Chris@16: Chris@101: BOOST_ASSERT(p >= 0); Chris@16: Chris@101: T value = (p - z) * ellint_rj_imp(x, y, z, p, pol); Chris@101: value -= 3 * ellint_rf_imp(x, y, z, pol); Chris@101: value += 3 * sqrt((x * y * z) / (x * y + p * q)) * ellint_rc_imp(T(x * y + p * q), T(p * q), pol); Chris@101: value /= (z + q); Chris@101: return value; Chris@101: } Chris@16: Chris@101: // Chris@101: // Special cases from http://dlmf.nist.gov/19.20#iii Chris@101: // Chris@101: if(x == y) Chris@101: { Chris@101: if(x == z) Chris@101: { Chris@101: if(x == p) Chris@101: { Chris@101: // All values equal: Chris@101: return 1 / (x * sqrt(x)); Chris@101: } Chris@101: else Chris@101: { Chris@101: // x = y = z: Chris@101: return 3 * (ellint_rc_imp(x, p, pol) - 1 / sqrt(x)) / (x - p); Chris@101: } Chris@101: } Chris@101: else Chris@101: { Chris@101: // x = y only, permute so y = z: Chris@101: using std::swap; Chris@101: swap(x, z); Chris@101: if(y == p) Chris@101: { Chris@101: return ellint_rd_imp(x, y, y, pol); Chris@101: } Chris@101: else if((std::max)(y, p) / (std::min)(y, p) > 1.2) Chris@101: { Chris@101: return 3 * (ellint_rc_imp(x, y, pol) - ellint_rc_imp(x, p, pol)) / (p - y); Chris@101: } Chris@101: // Otherwise fall through to normal method, special case above will suffer too much cancellation... Chris@101: } Chris@101: } Chris@101: if(y == z) Chris@101: { Chris@101: if(y == p) Chris@101: { Chris@101: // y = z = p: Chris@101: return ellint_rd_imp(x, y, y, pol); Chris@101: } Chris@101: else if((std::max)(y, p) / (std::min)(y, p) > 1.2) Chris@101: { Chris@101: // y = z: Chris@101: return 3 * (ellint_rc_imp(x, y, pol) - ellint_rc_imp(x, p, pol)) / (p - y); Chris@101: } Chris@101: // Otherwise fall through to normal method, special case above will suffer too much cancellation... Chris@101: } Chris@101: if(z == p) Chris@101: { Chris@101: return ellint_rd_imp(x, y, z, pol); Chris@101: } Chris@16: Chris@101: T xn = x; Chris@101: T yn = y; Chris@101: T zn = z; Chris@101: T pn = p; Chris@101: T An = (x + y + z + 2 * p) / 5; Chris@101: T A0 = An; Chris@101: T delta = (p - x) * (p - y) * (p - z); Chris@101: T Q = pow(tools::epsilon() / 5, -T(1) / 8) * (std::max)((std::max)(fabs(An - x), fabs(An - y)), (std::max)(fabs(An - z), fabs(An - p))); Chris@16: Chris@101: unsigned n; Chris@101: T lambda; Chris@101: T Dn; Chris@101: T En; Chris@101: T rx, ry, rz, rp; Chris@101: T fmn = 1; // 4^-n Chris@101: T RC_sum = 0; Chris@16: Chris@101: for(n = 0; n < policies::get_max_series_iterations(); ++n) Chris@101: { Chris@101: rx = sqrt(xn); Chris@101: ry = sqrt(yn); Chris@101: rz = sqrt(zn); Chris@101: rp = sqrt(pn); Chris@101: Dn = (rp + rx) * (rp + ry) * (rp + rz); Chris@101: En = delta / Dn; Chris@101: En /= Dn; Chris@101: if((En < -0.5) && (En > -1.5)) Chris@101: { Chris@101: // Chris@101: // Occationally En ~ -1, we then have no means of calculating Chris@101: // RC(1, 1+En) without terrible cancellation error, so we Chris@101: // need to get to 1+En directly. By substitution we have Chris@101: // Chris@101: // 1+E_0 = 1 + (p-x)*(p-y)*(p-z)/((sqrt(p) + sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(z)))^2 Chris@101: // = 2*sqrt(p)*(p+sqrt(x) * (sqrt(y)+sqrt(z)) + sqrt(y)*sqrt(z)) / ((sqrt(p) + sqrt(x))*(sqrt(p) + sqrt(y)*(sqrt(p)+sqrt(z)))) Chris@101: // Chris@101: // And since this is just an application of the duplication formula for RJ, the same Chris@101: // expression works for 1+En if we use x,y,z,p_n etc. Chris@101: // This branch is taken only once or twice at the start of iteration, Chris@101: // after than En reverts to it's usual very small values. Chris@101: // Chris@101: T b = 2 * rp * (pn + rx * (ry + rz) + ry * rz) / Dn; Chris@101: RC_sum += fmn / Dn * detail::ellint_rc_imp(T(1), b, pol); Chris@101: } Chris@101: else Chris@101: { Chris@101: RC_sum += fmn / Dn * ellint_rc1p_imp(En, pol); Chris@101: } Chris@101: lambda = rx * ry + rx * rz + ry * rz; Chris@16: Chris@101: // From here on we move to n+1: Chris@101: An = (An + lambda) / 4; Chris@101: fmn /= 4; Chris@16: Chris@101: if(fmn * Q < An) Chris@101: break; Chris@101: Chris@101: xn = (xn + lambda) / 4; Chris@101: yn = (yn + lambda) / 4; Chris@101: zn = (zn + lambda) / 4; Chris@101: pn = (pn + lambda) / 4; Chris@101: delta /= 64; Chris@101: } Chris@101: Chris@101: T X = fmn * (A0 - x) / An; Chris@101: T Y = fmn * (A0 - y) / An; Chris@101: T Z = fmn * (A0 - z) / An; Chris@101: T P = (-X - Y - Z) / 2; Chris@101: T E2 = X * Y + X * Z + Y * Z - 3 * P * P; Chris@101: T E3 = X * Y * Z + 2 * E2 * P + 4 * P * P * P; Chris@101: T E4 = (2 * X * Y * Z + E2 * P + 3 * P * P * P) * P; Chris@101: T E5 = X * Y * Z * P * P; Chris@101: T result = fmn * pow(An, T(-3) / 2) * Chris@101: (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16 Chris@101: + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68); Chris@101: Chris@101: result += 6 * RC_sum; Chris@101: return result; Chris@16: } Chris@16: Chris@16: } // namespace detail Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol) Chris@16: { Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: return policies::checked_narrowing_cast( Chris@16: detail::ellint_rj_imp( Chris@16: static_cast(x), Chris@16: static_cast(y), Chris@16: static_cast(z), Chris@16: static_cast(p), Chris@16: pol), "boost::math::ellint_rj<%1%>(%1%,%1%,%1%,%1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: ellint_rj(T1 x, T2 y, T3 z, T4 p) Chris@16: { Chris@16: return ellint_rj(x, y, z, p, policies::policy<>()); Chris@16: } Chris@16: Chris@16: }} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_ELLINT_RJ_HPP Chris@16: