Chris@16: // (C) Copyright John Maddock 2006. Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_SF_ERF_INV_HPP Chris@16: #define BOOST_MATH_SF_ERF_INV_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: namespace boost{ namespace math{ Chris@16: Chris@16: namespace detail{ Chris@16: // Chris@16: // The inverse erf and erfc functions share a common implementation, Chris@16: // this version is for 80-bit long double's and smaller: Chris@16: // Chris@16: template Chris@16: T erf_inv_imp(const T& p, const T& q, const Policy&, const boost::mpl::int_<64>*) Chris@16: { Chris@16: BOOST_MATH_STD_USING // for ADL of std names. Chris@16: Chris@16: T result = 0; Chris@16: Chris@16: if(p <= 0.5) Chris@16: { Chris@16: // Chris@16: // Evaluate inverse erf using the rational approximation: Chris@16: // Chris@16: // x = p(p+10)(Y+R(p)) Chris@16: // Chris@16: // Where Y is a constant, and R(p) is optimised for a low Chris@16: // absolute error compared to |Y|. Chris@16: // Chris@16: // double: Max error found: 2.001849e-18 Chris@16: // long double: Max error found: 1.017064e-20 Chris@16: // Maximum Deviation Found (actual error term at infinite precision) 8.030e-21 Chris@16: // Chris@16: static const float Y = 0.0891314744949340820313f; Chris@16: static const T P[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.000508781949658280665617), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00836874819741736770379), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0334806625409744615033), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0126926147662974029034), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0365637971411762664006), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0219878681111168899165), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00822687874676915743155), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00538772965071242932965) Chris@16: }; Chris@16: static const T Q[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.970005043303290640362), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -1.56574558234175846809), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.56221558398423026363), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.662328840472002992063), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.71228902341542847553), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0527396382340099713954), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0795283687341571680018), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00233393759374190016776), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000886216390456424707504) Chris@16: }; Chris@16: T g = p * (p + 10); Chris@16: T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p); Chris@16: result = g * Y + g * r; Chris@16: } Chris@16: else if(q >= 0.25) Chris@16: { Chris@16: // Chris@16: // Rational approximation for 0.5 > q >= 0.25 Chris@16: // Chris@16: // x = sqrt(-2*log(q)) / (Y + R(q)) Chris@16: // Chris@16: // Where Y is a constant, and R(q) is optimised for a low Chris@16: // absolute error compared to Y. Chris@16: // Chris@16: // double : Max error found: 7.403372e-17 Chris@16: // long double : Max error found: 6.084616e-20 Chris@16: // Maximum Deviation Found (error term) 4.811e-20 Chris@16: // Chris@16: static const float Y = 2.249481201171875f; Chris@16: static const T P[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.202433508355938759655), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.105264680699391713268), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 8.37050328343119927838), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 17.6447298408374015486), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -18.8510648058714251895), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -44.6382324441786960818), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 17.445385985570866523), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 21.1294655448340526258), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -3.67192254707729348546) Chris@16: }; Chris@16: static const T Q[] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 6.24264124854247537712), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 3.9713437953343869095), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -28.6608180499800029974), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -20.1432634680485188801), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 48.5609213108739935468), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 10.8268667355460159008), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -22.6436933413139721736), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.72114765761200282724) Chris@16: }; Chris@16: T g = sqrt(-2 * log(q)); Chris@101: T xs = q - 0.25f; Chris@16: T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = g / (Y + r); Chris@16: } Chris@16: else Chris@16: { Chris@16: // Chris@16: // For q < 0.25 we have a series of rational approximations all Chris@16: // of the general form: Chris@16: // Chris@16: // let: x = sqrt(-log(q)) Chris@16: // Chris@16: // Then the result is given by: Chris@16: // Chris@16: // x(Y+R(x-B)) Chris@16: // Chris@16: // where Y is a constant, B is the lowest value of x for which Chris@16: // the approximation is valid, and R(x-B) is optimised for a low Chris@16: // absolute error compared to Y. Chris@16: // Chris@16: // Note that almost all code will really go through the first Chris@16: // or maybe second approximation. After than we're dealing with very Chris@16: // small input values indeed: 80 and 128 bit long double's go all the Chris@16: // way down to ~ 1e-5000 so the "tail" is rather long... Chris@16: // Chris@16: T x = sqrt(-log(q)); Chris@16: if(x < 3) Chris@16: { Chris@16: // Max error found: 1.089051e-20 Chris@16: static const float Y = 0.807220458984375f; Chris@16: static const T P[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.131102781679951906451), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.163794047193317060787), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.117030156341995252019), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.387079738972604337464), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.337785538912035898924), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.142869534408157156766), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0290157910005329060432), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00214558995388805277169), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.679465575181126350155e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.285225331782217055858e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.681149956853776992068e-9) Chris@16: }; Chris@16: static const T Q[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 3.46625407242567245975), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 5.38168345707006855425), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 4.77846592945843778382), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 2.59301921623620271374), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.848854343457902036425), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.152264338295331783612), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.01105924229346489121) Chris@16: }; Chris@101: T xs = x - 1.125f; Chris@16: T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else if(x < 6) Chris@16: { Chris@16: // Max error found: 8.389174e-21 Chris@16: static const float Y = 0.93995571136474609375f; Chris@16: static const T P[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0350353787183177984712), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00222426529213447927281), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0185573306514231072324), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00950804701325919603619), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00187123492819559223345), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000157544617424960554631), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.460469890584317994083e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.230404776911882601748e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.266339227425782031962e-11) Chris@16: }; Chris@16: static const T Q[] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.3653349817554063097), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.762059164553623404043), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.220091105764131249824), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0341589143670947727934), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00263861676657015992959), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.764675292302794483503e-4) Chris@16: }; Chris@16: T xs = x - 3; Chris@16: T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else if(x < 18) Chris@16: { Chris@16: // Max error found: 1.481312e-19 Chris@16: static const float Y = 0.98362827301025390625f; Chris@16: static const T P[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0167431005076633737133), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00112951438745580278863), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00105628862152492910091), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000209386317487588078668), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.149624783758342370182e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.449696789927706453732e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.462596163522878599135e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.281128735628831791805e-13), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.99055709973310326855e-16) Chris@16: }; Chris@16: static const T Q[] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.591429344886417493481), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.138151865749083321638), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0160746087093676504695), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000964011807005165528527), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.275335474764726041141e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.282243172016108031869e-6) Chris@16: }; Chris@16: T xs = x - 6; Chris@16: T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else if(x < 44) Chris@16: { Chris@16: // Max error found: 5.697761e-20 Chris@16: static const float Y = 0.99714565277099609375f; Chris@16: static const T P[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0024978212791898131227), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.779190719229053954292e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.254723037413027451751e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.162397777342510920873e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.396341011304801168516e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.411632831190944208473e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.145596286718675035587e-11), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.116765012397184275695e-17) Chris@16: }; Chris@16: static const T Q[] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.207123112214422517181), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0169410838120975906478), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000690538265622684595676), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.145007359818232637924e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.144437756628144157666e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.509761276599778486139e-9) Chris@16: }; Chris@16: T xs = x - 18; Chris@16: T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else Chris@16: { Chris@16: // Max error found: 1.279746e-20 Chris@16: static const float Y = 0.99941349029541015625f; Chris@16: static const T P[] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.000539042911019078575891), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.28398759004727721098e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.899465114892291446442e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.229345859265920864296e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.225561444863500149219e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.947846627503022684216e-12), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.135880130108924861008e-14), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.348890393399948882918e-21) Chris@16: }; Chris@16: static const T Q[] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0845746234001899436914), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00282092984726264681981), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.468292921940894236786e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.399968812193862100054e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.161809290887904476097e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.231558608310259605225e-11) Chris@16: }; Chris@16: T xs = x - 44; Chris@16: T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: struct erf_roots Chris@16: { Chris@16: boost::math::tuple operator()(const T& guess) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: T derivative = sign * (2 / sqrt(constants::pi())) * exp(-(guess * guess)); Chris@16: T derivative2 = -2 * guess * derivative; Chris@16: return boost::math::make_tuple(((sign > 0) ? static_cast(boost::math::erf(guess, Policy()) - target) : static_cast(boost::math::erfc(guess, Policy())) - target), derivative, derivative2); Chris@16: } Chris@16: erf_roots(T z, int s) : target(z), sign(s) {} Chris@16: private: Chris@16: T target; Chris@16: int sign; Chris@16: }; Chris@16: Chris@16: template Chris@16: T erf_inv_imp(const T& p, const T& q, const Policy& pol, const boost::mpl::int_<0>*) Chris@16: { Chris@16: // Chris@16: // Generic version, get a guess that's accurate to 64-bits (10^-19) Chris@16: // Chris@16: T guess = erf_inv_imp(p, q, pol, static_cast const*>(0)); Chris@16: T result; Chris@16: // Chris@16: // If T has more bit's than 64 in it's mantissa then we need to iterate, Chris@16: // otherwise we can just return the result: Chris@16: // Chris@16: if(policies::digits() > 64) Chris@16: { Chris@16: boost::uintmax_t max_iter = policies::get_max_root_iterations(); Chris@16: if(p <= 0.5) Chris@16: { Chris@16: result = tools::halley_iterate(detail::erf_roots::type, Policy>(p, 1), guess, static_cast(0), tools::max_value(), (policies::digits() * 2) / 3, max_iter); Chris@16: } Chris@16: else Chris@16: { Chris@16: result = tools::halley_iterate(detail::erf_roots::type, Policy>(q, -1), guess, static_cast(0), tools::max_value(), (policies::digits() * 2) / 3, max_iter); Chris@16: } Chris@16: policies::check_root_iterations("boost::math::erf_inv<%1%>", max_iter, pol); Chris@16: } Chris@16: else Chris@16: { Chris@16: result = guess; Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: struct erf_inv_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: do_init(); Chris@16: } Chris@101: static bool is_value_non_zero(T); Chris@16: static void do_init() Chris@16: { Chris@16: boost::math::erf_inv(static_cast(0.25), Policy()); Chris@16: boost::math::erf_inv(static_cast(0.55), Policy()); Chris@16: boost::math::erf_inv(static_cast(0.95), Policy()); Chris@16: boost::math::erfc_inv(static_cast(1e-15), Policy()); Chris@101: // These following initializations must not be called if Chris@101: // type T can not hold the relevant values without Chris@101: // underflow to zero. We check this at runtime because Chris@101: // some tools such as valgrind silently change the precision Chris@101: // of T at runtime, and numeric_limits basically lies! Chris@101: if(is_value_non_zero(static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130)))) Chris@16: boost::math::erfc_inv(static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130)), Policy()); Chris@16: Chris@16: // Some compilers choke on constants that would underflow, even in code that isn't instantiated Chris@16: // so try and filter these cases out in the preprocessor: Chris@16: #if LDBL_MAX_10_EXP >= 800 Chris@101: if(is_value_non_zero(static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800)))) Chris@16: boost::math::erfc_inv(static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800)), Policy()); Chris@101: if(is_value_non_zero(static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900)))) Chris@16: boost::math::erfc_inv(static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900)), Policy()); Chris@16: #else Chris@101: if(is_value_non_zero(static_cast(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800)))) Chris@16: boost::math::erfc_inv(static_cast(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800)), Policy()); Chris@101: if(is_value_non_zero(static_cast(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900)))) Chris@16: boost::math::erfc_inv(static_cast(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900)), Policy()); Chris@16: #endif Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename erf_inv_initializer::init erf_inv_initializer::initializer; Chris@16: Chris@101: template Chris@101: bool erf_inv_initializer::init::is_value_non_zero(T v) Chris@101: { Chris@101: // This needs to be non-inline to detect whether v is non zero at runtime Chris@101: // rather than at compile time, only relevant when running under valgrind Chris@101: // which changes long double's to double's on the fly. Chris@101: return v != 0; Chris@101: } Chris@101: Chris@16: } // namespace detail Chris@16: Chris@16: template Chris@16: typename tools::promote_args::type erfc_inv(T z, const Policy& pol) Chris@16: { Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: Chris@16: // Chris@16: // Begin by testing for domain errors, and other special cases: Chris@16: // Chris@16: static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)"; Chris@16: if((z < 0) || (z > 2)) Chris@101: return policies::raise_domain_error(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%).", z, pol); Chris@16: if(z == 0) Chris@16: return policies::raise_overflow_error(function, 0, pol); Chris@16: if(z == 2) Chris@16: return -policies::raise_overflow_error(function, 0, pol); Chris@16: // Chris@16: // Normalise the input, so it's in the range [0,1], we will Chris@16: // negate the result if z is outside that range. This is a simple Chris@16: // application of the erfc reflection formula: erfc(-z) = 2 - erfc(z) Chris@16: // Chris@16: result_type p, q, s; Chris@16: if(z > 1) Chris@16: { Chris@16: q = 2 - z; Chris@16: p = 1 - q; Chris@16: s = -1; Chris@16: } Chris@16: else Chris@16: { Chris@16: p = 1 - z; Chris@16: q = z; Chris@16: s = 1; Chris@16: } Chris@16: // Chris@16: // A bit of meta-programming to figure out which implementation Chris@16: // to use, based on the number of bits in the mantissa of T: Chris@16: // Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_ >, mpl::greater > >, Chris@16: mpl::int_<0>, Chris@16: mpl::int_<64> Chris@16: >::type tag_type; Chris@16: // Chris@16: // Likewise use internal promotion, so we evaluate at a higher Chris@16: // precision internally if it's appropriate: Chris@16: // Chris@16: typedef typename policies::evaluation::type eval_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: Chris@16: detail::erf_inv_initializer::force_instantiate(); Chris@16: Chris@16: // Chris@16: // And get the result, negating where required: Chris@16: // Chris@16: return s * policies::checked_narrowing_cast( Chris@16: detail::erf_inv_imp(static_cast(p), static_cast(q), forwarding_policy(), static_cast(0)), function); Chris@16: } Chris@16: Chris@16: template Chris@16: typename tools::promote_args::type erf_inv(T z, const Policy& pol) Chris@16: { Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: Chris@16: // Chris@16: // Begin by testing for domain errors, and other special cases: Chris@16: // Chris@16: static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)"; Chris@16: if((z < -1) || (z > 1)) Chris@101: return policies::raise_domain_error(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%).", z, pol); Chris@16: if(z == 1) Chris@16: return policies::raise_overflow_error(function, 0, pol); Chris@16: if(z == -1) Chris@16: return -policies::raise_overflow_error(function, 0, pol); Chris@16: if(z == 0) Chris@16: return 0; Chris@16: // Chris@16: // Normalise the input, so it's in the range [0,1], we will Chris@16: // negate the result if z is outside that range. This is a simple Chris@16: // application of the erf reflection formula: erf(-z) = -erf(z) Chris@16: // Chris@16: result_type p, q, s; Chris@16: if(z < 0) Chris@16: { Chris@16: p = -z; Chris@16: q = 1 - p; Chris@16: s = -1; Chris@16: } Chris@16: else Chris@16: { Chris@16: p = z; Chris@16: q = 1 - z; Chris@16: s = 1; Chris@16: } Chris@16: // Chris@16: // A bit of meta-programming to figure out which implementation Chris@16: // to use, based on the number of bits in the mantissa of T: Chris@16: // Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::or_ >, mpl::greater > >, Chris@16: mpl::int_<0>, Chris@16: mpl::int_<64> Chris@16: >::type tag_type; Chris@16: // Chris@16: // Likewise use internal promotion, so we evaluate at a higher Chris@16: // precision internally if it's appropriate: Chris@16: // Chris@16: typedef typename policies::evaluation::type eval_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: // Chris@16: // Likewise use internal promotion, so we evaluate at a higher Chris@16: // precision internally if it's appropriate: Chris@16: // Chris@16: typedef typename policies::evaluation::type eval_type; Chris@16: Chris@16: detail::erf_inv_initializer::force_instantiate(); Chris@16: // Chris@16: // And get the result, negating where required: Chris@16: // Chris@16: return s * policies::checked_narrowing_cast( Chris@16: detail::erf_inv_imp(static_cast(p), static_cast(q), forwarding_policy(), static_cast(0)), function); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type erfc_inv(T z) Chris@16: { Chris@16: return erfc_inv(z, policies::policy<>()); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type erf_inv(T z) Chris@16: { Chris@16: return erf_inv(z, policies::policy<>()); Chris@16: } Chris@16: Chris@16: } // namespace math Chris@16: } // namespace boost Chris@16: Chris@16: #endif // BOOST_MATH_SF_ERF_INV_HPP Chris@16: