Chris@16: // Copyright (c) 2006 Xiaogang Zhang Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_BESSEL_Y1_HPP Chris@16: #define BOOST_MATH_BESSEL_Y1_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: // Bessel function of the second kind of order one Chris@16: // x <= 8, minimax rational approximations on root-bracketing intervals Chris@16: // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 Chris@16: Chris@16: namespace boost { namespace math { namespace detail{ Chris@16: Chris@16: template Chris@16: T bessel_y1(T x, const Policy&); Chris@16: Chris@16: template Chris@16: struct bessel_y1_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: do_init(); Chris@16: } Chris@16: static void do_init() Chris@16: { Chris@16: bessel_y1(T(1), Policy()); Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename bessel_y1_initializer::init bessel_y1_initializer::initializer; Chris@16: Chris@16: template Chris@16: T bessel_y1(T x, const Policy& pol) Chris@16: { Chris@16: bessel_y1_initializer::force_instantiate(); Chris@16: Chris@16: static const T P1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0535726612579544093e+13)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4708611716525426053e+12)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7595974497819597599e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2144548214502560419e+09)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9157479997408395984e+07)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2157953222280260820e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1714424660046133456e+02)), Chris@16: }; Chris@16: static const T Q1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0737873921079286084e+14)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1272286200406461981e+12)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7800352738690585613e+10)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2250435122182963220e+08)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8136470753052572164e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.2079908168393867438e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: }; Chris@16: static const T P2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1514276357909013326e+19)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.6808094574724204577e+18)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3638408497043134724e+16)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0686275289804744814e+15)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9530713129741981618e+13)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7453673962438488783e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1957961912070617006e+09)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9153806858264202986e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2337180442012953128e+03)), Chris@16: }; Chris@16: static const T Q2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3321844313316185697e+20)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.6968198822857178911e+18)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0837179548112881950e+16)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1187010065856971027e+14)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0221766852960403645e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.3550318087088919566e+08)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0453748201934079734e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2855164849321609336e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: }; Chris@16: static const T PC[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), Chris@16: }; Chris@16: static const T QC[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: }; Chris@16: static const T PS[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), Chris@16: }; Chris@16: static const T QS[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: }; Chris@16: static const T x1 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1971413260310170351e+00)), Chris@16: x2 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4296810407941351328e+00)), Chris@16: x11 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.620e+02)), Chris@16: x12 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8288260310170351490e-03)), Chris@16: x21 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3900e+03)), Chris@16: x22 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.4592058648672279948e-06)) Chris@16: ; Chris@16: T value, factor, r, rc, rs; Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::tools; Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: if (x <= 0) Chris@16: { Chris@16: return policies::raise_domain_error("bost::math::bessel_y1<%1%>(%1%,%1%)", Chris@16: "Got x == %1%, but x must be > 0, complex result not supported.", x, pol); Chris@16: } Chris@16: if (x <= 4) // x in (0, 4] Chris@16: { Chris@16: T y = x * x; Chris@16: T z = 2 * log(x/x1) * bessel_j1(x) / pi(); Chris@16: r = evaluate_rational(P1, Q1, y); Chris@16: factor = (x + x1) * ((x - x11/256) - x12) / x; Chris@16: value = z + factor * r; Chris@16: } Chris@16: else if (x <= 8) // x in (4, 8] Chris@16: { Chris@16: T y = x * x; Chris@16: T z = 2 * log(x/x2) * bessel_j1(x) / pi(); Chris@16: r = evaluate_rational(P2, Q2, y); Chris@16: factor = (x + x2) * ((x - x21/256) - x22) / x; Chris@16: value = z + factor * r; Chris@16: } Chris@16: else // x in (8, \infty) Chris@16: { Chris@16: T y = 8 / x; Chris@16: T y2 = y * y; Chris@16: rc = evaluate_rational(PC, QC, y2); Chris@16: rs = evaluate_rational(PS, QS, y2); Chris@16: factor = 1 / (sqrt(x) * root_pi()); Chris@16: // Chris@16: // This code is really just: Chris@16: // Chris@16: // T z = x - 0.75f * pi(); Chris@16: // value = factor * (rc * sin(z) + y * rs * cos(z)); Chris@16: // Chris@16: // But using the sin/cos addition rules, plus constants for sin/cos of 3PI/4 Chris@16: // which then cancel out with corresponding terms in "factor". Chris@16: // Chris@16: T sx = sin(x); Chris@16: T cx = cos(x); Chris@16: value = factor * (y * rs * (sx - cx) - rc * (sx + cx)); Chris@16: } Chris@16: Chris@16: return value; Chris@16: } Chris@16: Chris@16: }}} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_BESSEL_Y1_HPP Chris@16: