Chris@16: // boost\math\distributions\geometric.hpp Chris@16: Chris@16: // Copyright John Maddock 2010. Chris@16: // Copyright Paul A. Bristow 2010. Chris@16: Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. Chris@16: // (See accompanying file LICENSE_1_0.txt Chris@16: // or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: // geometric distribution is a discrete probability distribution. Chris@16: // It expresses the probability distribution of the number (k) of Chris@16: // events, occurrences, failures or arrivals before the first success. Chris@16: // supported on the set {0, 1, 2, 3...} Chris@16: Chris@16: // Note that the set includes zero (unlike some definitions that start at one). Chris@16: Chris@16: // The random variate k is the number of events, occurrences or arrivals. Chris@16: // k argument may be integral, signed, or unsigned, or floating point. Chris@16: // If necessary, it has already been promoted from an integral type. Chris@16: Chris@16: // Note that the geometric distribution Chris@16: // (like others including the binomial, geometric & Bernoulli) Chris@16: // is strictly defined as a discrete function: Chris@16: // only integral values of k are envisaged. Chris@16: // However because the method of calculation uses a continuous gamma function, Chris@16: // it is convenient to treat it as if a continous function, Chris@16: // and permit non-integral values of k. Chris@16: // To enforce the strict mathematical model, users should use floor or ceil functions Chris@16: // on k outside this function to ensure that k is integral. Chris@16: Chris@16: // See http://en.wikipedia.org/wiki/geometric_distribution Chris@16: // http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html Chris@16: // http://mathworld.wolfram.com/GeometricDistribution.html Chris@16: Chris@16: #ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP Chris@16: #define BOOST_MATH_SPECIAL_GEOMETRIC_HPP Chris@16: Chris@16: #include Chris@16: #include // for ibeta(a, b, x) == Ix(a, b). Chris@16: #include // complement. Chris@16: #include // error checks domain_error & logic_error. Chris@16: #include // isnan. Chris@16: #include // for root finding. Chris@16: #include Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include // using std::numeric_limits; Chris@16: #include Chris@16: Chris@16: #if defined (BOOST_MSVC) Chris@16: # pragma warning(push) Chris@16: // This believed not now necessary, so commented out. Chris@16: //# pragma warning(disable: 4702) // unreachable code. Chris@16: // in domain_error_imp in error_handling. Chris@16: #endif Chris@16: Chris@16: namespace boost Chris@16: { Chris@16: namespace math Chris@16: { Chris@16: namespace geometric_detail Chris@16: { Chris@16: // Common error checking routines for geometric distribution function: Chris@16: template Chris@16: inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) Chris@16: { Chris@16: if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) Chris@16: { Chris@16: *result = policies::raise_domain_error( Chris@16: function, Chris@16: "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); Chris@16: return false; Chris@16: } Chris@16: return true; Chris@16: } Chris@16: Chris@16: template Chris@16: inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol) Chris@16: { Chris@16: return check_success_fraction(function, p, result, pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol) Chris@16: { Chris@16: if(check_dist(function, p, result, pol) == false) Chris@16: { Chris@16: return false; Chris@16: } Chris@16: if( !(boost::math::isfinite)(k) || (k < 0) ) Chris@16: { // Check k failures. Chris@16: *result = policies::raise_domain_error( Chris@16: function, Chris@16: "Number of failures argument is %1%, but must be >= 0 !", k, pol); Chris@16: return false; Chris@16: } Chris@16: return true; Chris@16: } // Check_dist_and_k Chris@16: Chris@16: template Chris@16: inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol) Chris@16: { Chris@16: if(check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol) == false) Chris@16: { Chris@16: return false; Chris@16: } Chris@16: return true; Chris@16: } // check_dist_and_prob Chris@16: } // namespace geometric_detail Chris@16: Chris@16: template > Chris@16: class geometric_distribution Chris@16: { Chris@16: public: Chris@16: typedef RealType value_type; Chris@16: typedef Policy policy_type; Chris@16: Chris@16: geometric_distribution(RealType p) : m_p(p) Chris@16: { // Constructor stores success_fraction p. Chris@16: RealType result; Chris@16: geometric_detail::check_dist( Chris@16: "geometric_distribution<%1%>::geometric_distribution", Chris@16: m_p, // Check success_fraction 0 <= p <= 1. Chris@16: &result, Policy()); Chris@16: } // geometric_distribution constructor. Chris@16: Chris@16: // Private data getter class member functions. Chris@16: RealType success_fraction() const Chris@16: { // Probability of success as fraction in range 0 to 1. Chris@16: return m_p; Chris@16: } Chris@16: RealType successes() const Chris@16: { // Total number of successes r = 1 (for compatibility with negative binomial?). Chris@16: return 1; Chris@16: } Chris@16: Chris@16: // Parameter estimation. Chris@16: // (These are copies of negative_binomial distribution with successes = 1). Chris@16: static RealType find_lower_bound_on_p( Chris@16: RealType trials, Chris@16: RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. Chris@16: { Chris@16: static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p"; Chris@16: RealType result = 0; // of error checks. Chris@16: RealType successes = 1; Chris@16: RealType failures = trials - successes; Chris@16: if(false == detail::check_probability(function, alpha, &result, Policy()) Chris@16: && geometric_detail::check_dist_and_k( Chris@16: function, RealType(0), failures, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: // Use complement ibeta_inv function for lower bound. Chris@16: // This is adapted from the corresponding binomial formula Chris@16: // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm Chris@16: // This is a Clopper-Pearson interval, and may be overly conservative, Chris@16: // see also "A Simple Improved Inferential Method for Some Chris@16: // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY Chris@16: // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf Chris@16: // Chris@16: return ibeta_inv(successes, failures + 1, alpha, static_cast(0), Policy()); Chris@16: } // find_lower_bound_on_p Chris@16: Chris@16: static RealType find_upper_bound_on_p( Chris@16: RealType trials, Chris@16: RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. Chris@16: { Chris@16: static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p"; Chris@16: RealType result = 0; // of error checks. Chris@16: RealType successes = 1; Chris@16: RealType failures = trials - successes; Chris@16: if(false == geometric_detail::check_dist_and_k( Chris@16: function, RealType(0), failures, &result, Policy()) Chris@16: && detail::check_probability(function, alpha, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: if(failures == 0) Chris@16: { Chris@16: return 1; Chris@16: }// Use complement ibetac_inv function for upper bound. Chris@16: // Note adjusted failures value: *not* failures+1 as usual. Chris@16: // This is adapted from the corresponding binomial formula Chris@16: // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm Chris@16: // This is a Clopper-Pearson interval, and may be overly conservative, Chris@16: // see also "A Simple Improved Inferential Method for Some Chris@16: // Discrete Distributions" Yong CAI and K. Krishnamoorthy Chris@16: // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf Chris@16: // Chris@16: return ibetac_inv(successes, failures, alpha, static_cast(0), Policy()); Chris@16: } // find_upper_bound_on_p Chris@16: Chris@16: // Estimate number of trials : Chris@16: // "How many trials do I need to be P% sure of seeing k or fewer failures?" Chris@16: Chris@16: static RealType find_minimum_number_of_trials( Chris@16: RealType k, // number of failures (k >= 0). Chris@16: RealType p, // success fraction 0 <= p <= 1. Chris@16: RealType alpha) // risk level threshold 0 <= alpha <= 1. Chris@16: { Chris@16: static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials"; Chris@16: // Error checks: Chris@16: RealType result = 0; Chris@16: if(false == geometric_detail::check_dist_and_k( Chris@16: function, p, k, &result, Policy()) Chris@16: && detail::check_probability(function, alpha, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k Chris@16: return result + k; Chris@16: } // RealType find_number_of_failures Chris@16: Chris@16: static RealType find_maximum_number_of_trials( Chris@16: RealType k, // number of failures (k >= 0). Chris@16: RealType p, // success fraction 0 <= p <= 1. Chris@16: RealType alpha) // risk level threshold 0 <= alpha <= 1. Chris@16: { Chris@16: static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials"; Chris@16: // Error checks: Chris@16: RealType result = 0; Chris@16: if(false == geometric_detail::check_dist_and_k( Chris@16: function, p, k, &result, Policy()) Chris@16: && detail::check_probability(function, alpha, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k Chris@16: return result + k; Chris@16: } // RealType find_number_of_trials complemented Chris@16: Chris@16: private: Chris@16: //RealType m_r; // successes fixed at unity. Chris@16: RealType m_p; // success_fraction Chris@16: }; // template class geometric_distribution Chris@16: Chris@16: typedef geometric_distribution geometric; // Reserved name of type double. Chris@16: Chris@16: template Chris@16: inline const std::pair range(const geometric_distribution& /* dist */) Chris@16: { // Range of permissible values for random variable k. Chris@16: using boost::math::tools::max_value; Chris@16: return std::pair(static_cast(0), max_value()); // max_integer? Chris@16: } Chris@16: Chris@16: template Chris@16: inline const std::pair support(const geometric_distribution& /* dist */) Chris@16: { // Range of supported values for random variable k. Chris@16: // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. Chris@16: using boost::math::tools::max_value; Chris@16: return std::pair(static_cast(0), max_value()); // max_integer? Chris@16: } Chris@16: Chris@16: template Chris@16: inline RealType mean(const geometric_distribution& dist) Chris@16: { // Mean of geometric distribution = (1-p)/p. Chris@16: return (1 - dist.success_fraction() ) / dist.success_fraction(); Chris@16: } // mean Chris@16: Chris@16: // median implemented via quantile(half) in derived accessors. Chris@16: Chris@16: template Chris@16: inline RealType mode(const geometric_distribution&) Chris@16: { // Mode of geometric distribution = zero. Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: return 0; Chris@16: } // mode Chris@16: Chris@16: template Chris@16: inline RealType variance(const geometric_distribution& dist) Chris@16: { // Variance of Binomial distribution = (1-p) / p^2. Chris@16: return (1 - dist.success_fraction()) Chris@16: / (dist.success_fraction() * dist.success_fraction()); Chris@16: } // variance Chris@16: Chris@16: template Chris@16: inline RealType skewness(const geometric_distribution& dist) Chris@16: { // skewness of geometric distribution = 2-p / (sqrt(r(1-p)) Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: RealType p = dist.success_fraction(); Chris@16: return (2 - p) / sqrt(1 - p); Chris@16: } // skewness Chris@16: Chris@16: template Chris@16: inline RealType kurtosis(const geometric_distribution& dist) Chris@16: { // kurtosis of geometric distribution Chris@16: // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3 Chris@16: RealType p = dist.success_fraction(); Chris@16: return 3 + (p*p - 6*p + 6) / (1 - p); Chris@16: } // kurtosis Chris@16: Chris@16: template Chris@16: inline RealType kurtosis_excess(const geometric_distribution& dist) Chris@16: { // kurtosis excess of geometric distribution Chris@16: // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess Chris@16: RealType p = dist.success_fraction(); Chris@16: return (p*p - 6*p + 6) / (1 - p); Chris@16: } // kurtosis_excess Chris@16: Chris@16: // RealType standard_deviation(const geometric_distribution& dist) Chris@16: // standard_deviation provided by derived accessors. Chris@16: // RealType hazard(const geometric_distribution& dist) Chris@16: // hazard of geometric distribution provided by derived accessors. Chris@16: // RealType chf(const geometric_distribution& dist) Chris@16: // chf of geometric distribution provided by derived accessors. Chris@16: Chris@16: template Chris@16: inline RealType pdf(const geometric_distribution& dist, const RealType& k) Chris@16: { // Probability Density/Mass Function. Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: BOOST_MATH_STD_USING // For ADL of math functions. Chris@16: static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)"; Chris@16: Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType result = 0; Chris@16: if(false == geometric_detail::check_dist_and_k( Chris@16: function, Chris@16: p, Chris@16: k, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: if (k == 0) Chris@16: { Chris@16: return p; // success_fraction Chris@16: } Chris@16: RealType q = 1 - p; // Inaccurate for small p? Chris@16: // So try to avoid inaccuracy for large or small p. Chris@16: // but has little effect > last significant bit. Chris@16: //cout << "p * pow(q, k) " << result << endl; // seems best whatever p Chris@16: //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl; Chris@16: //if (p < 0.5) Chris@16: //{ Chris@16: // result = p * pow(q, k); Chris@16: //} Chris@16: //else Chris@16: //{ Chris@16: // result = p * exp(k * log1p(-p)); Chris@16: //} Chris@16: result = p * pow(q, k); Chris@16: return result; Chris@16: } // geometric_pdf Chris@16: Chris@16: template Chris@16: inline RealType cdf(const geometric_distribution& dist, const RealType& k) Chris@16: { // Cumulative Distribution Function of geometric. Chris@16: static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; Chris@16: Chris@16: // k argument may be integral, signed, or unsigned, or floating point. Chris@16: // If necessary, it has already been promoted from an integral type. Chris@16: RealType p = dist.success_fraction(); Chris@16: // Error check: Chris@16: RealType result = 0; Chris@16: if(false == geometric_detail::check_dist_and_k( Chris@16: function, Chris@16: p, Chris@16: k, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: if(k == 0) Chris@16: { Chris@16: return p; // success_fraction Chris@16: } Chris@16: //RealType q = 1 - p; // Bad for small p Chris@16: //RealType probability = 1 - std::pow(q, k+1); Chris@16: Chris@101: RealType z = boost::math::log1p(-p, Policy()) * (k + 1); Chris@101: RealType probability = -boost::math::expm1(z, Policy()); Chris@16: Chris@16: return probability; Chris@16: } // cdf Cumulative Distribution Function geometric. Chris@16: Chris@16: template Chris@16: inline RealType cdf(const complemented2_type, RealType>& c) Chris@16: { // Complemented Cumulative Distribution Function geometric. Chris@16: BOOST_MATH_STD_USING Chris@16: static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; Chris@16: // k argument may be integral, signed, or unsigned, or floating point. Chris@16: // If necessary, it has already been promoted from an integral type. Chris@16: RealType const& k = c.param; Chris@16: geometric_distribution const& dist = c.dist; Chris@16: RealType p = dist.success_fraction(); Chris@16: // Error check: Chris@16: RealType result = 0; Chris@16: if(false == geometric_detail::check_dist_and_k( Chris@16: function, Chris@16: p, Chris@16: k, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@101: RealType z = boost::math::log1p(-p, Policy()) * (k+1); Chris@16: RealType probability = exp(z); Chris@16: return probability; Chris@16: } // cdf Complemented Cumulative Distribution Function geometric. Chris@16: Chris@16: template Chris@16: inline RealType quantile(const geometric_distribution& dist, const RealType& x) Chris@16: { // Quantile, percentile/100 or Percent Point geometric function. Chris@16: // Return the number of expected failures k for a given probability p. Chris@16: Chris@16: // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability. Chris@16: // k argument may be integral, signed, or unsigned, or floating point. Chris@16: Chris@16: static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: Chris@16: RealType success_fraction = dist.success_fraction(); Chris@16: // Check dist and x. Chris@16: RealType result = 0; Chris@16: if(false == geometric_detail::check_dist_and_prob Chris@16: (function, success_fraction, x, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Special cases. Chris@16: if (x == 1) Chris@16: { // Would need +infinity failures for total confidence. Chris@16: result = policies::raise_overflow_error( Chris@16: function, Chris@16: "Probability argument is 1, which implies infinite failures !", Policy()); Chris@16: return result; Chris@16: // usually means return +std::numeric_limits::infinity(); Chris@16: // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR Chris@16: } Chris@16: if (x == 0) Chris@16: { // No failures are expected if P = 0. Chris@16: return 0; // Total trials will be just dist.successes. Chris@16: } Chris@16: // if (P <= pow(dist.success_fraction(), 1)) Chris@16: if (x <= success_fraction) Chris@16: { // p <= pdf(dist, 0) == cdf(dist, 0) Chris@16: return 0; Chris@16: } Chris@16: if (x == 1) Chris@16: { Chris@16: return 0; Chris@16: } Chris@16: Chris@16: // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small Chris@101: result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1; Chris@16: // Subtract a few epsilons here too? Chris@16: // to make sure it doesn't slip over, so ceil would be one too many. Chris@16: return result; Chris@16: } // RealType quantile(const geometric_distribution dist, p) Chris@16: Chris@16: template Chris@16: inline RealType quantile(const complemented2_type, RealType>& c) Chris@16: { // Quantile or Percent Point Binomial function. Chris@16: // Return the number of expected failures k for a given Chris@16: // complement of the probability Q = 1 - P. Chris@16: static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; Chris@16: BOOST_MATH_STD_USING Chris@16: // Error checks: Chris@16: RealType x = c.param; Chris@16: const geometric_distribution& dist = c.dist; Chris@16: RealType success_fraction = dist.success_fraction(); Chris@16: RealType result = 0; Chris@16: if(false == geometric_detail::check_dist_and_prob( Chris@16: function, Chris@16: success_fraction, Chris@16: x, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Special cases: Chris@16: if(x == 1) Chris@16: { // There may actually be no answer to this question, Chris@16: // since the probability of zero failures may be non-zero, Chris@16: return 0; // but zero is the best we can do: Chris@16: } Chris@16: if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) Chris@16: { // q <= cdf(complement(dist, 0)) == pdf(dist, 0) Chris@16: return 0; // Chris@16: } Chris@16: if(x == 0) Chris@16: { // Probability 1 - Q == 1 so infinite failures to achieve certainty. Chris@16: // Would need +infinity failures for total confidence. Chris@16: result = policies::raise_overflow_error( Chris@16: function, Chris@16: "Probability argument complement is 0, which implies infinite failures !", Policy()); Chris@16: return result; Chris@16: // usually means return +std::numeric_limits::infinity(); Chris@16: // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR Chris@16: } Chris@16: // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small Chris@101: result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1; Chris@16: return result; Chris@16: Chris@16: } // quantile complement Chris@16: Chris@16: } // namespace math Chris@16: } // namespace boost Chris@16: Chris@16: // This include must be at the end, *after* the accessors Chris@16: // for this distribution have been defined, in order to Chris@16: // keep compilers that support two-phase lookup happy. Chris@16: #include Chris@16: Chris@16: #if defined (BOOST_MSVC) Chris@16: # pragma warning(pop) Chris@16: #endif Chris@16: Chris@16: #endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP